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Preface

Welcome to the proceedings of the 4th workshop on Computational Approaches to Linguistic Code
Switching (CALCS). Code-switching (CS) is the phenomenon by which multilingual speakers switch
back and forth between their common languages in written or spoken communication. CS is pervasive in
informal text communications such as news groups, tweets, blogs, and other social media of multilingual
communities. Such genres are increasingly being studied as rich sources of social, commercial and
political information. Moreover, CS language data is penetrating more traditional formal genres such as
newswire in multilingual communities. Apart from the informal genre challenge associated with such
data within a single language processing scenario, the CS phenomenon adds another significant layer
of complexity to the processing of the data. Efficiently and robustly processing CS data still presents a
new frontier for NLP algorithms on all levels. CS accordingly has been garnering more importance and
attention both in academic circles, research labs, and industry. Furthermore, the current pandemic and
associated guidelines of physical distancing has created a significant spike in online platform usage in
an unprecedented manner. The usage is for social connectivity but even more relevant is for information
seeking. This increase in social media usage translates to more CS language usage leading to an even
more urgent need for processing.

The goal of this workshop is to bring together researchers interested in exploring these new frontiers,
discussing state of the art research in CS, and identifying the next steps in this fascinating research
area. The workshop program includes exciting papers discussing new approaches for CS data and the
development of linguistic resources needed to process and study CS.

We received 14 submissions, 9 of which were accepted. The papers run the gamut from creation of novel
resources (such as a corpus of Spanish newspaper headlines annotated for Anglicisms, to a conversational
data set annotated for CS) to modeling papers exploring advanced models (such as multi-task learning
for low resource languages, impact of script mixing on modeling, impact of word embeddings on
Indonesian-English, multimodal modeling of acoustic and linguistic features for English-IsiZulu, parsing
for CS data, efficient grapheme to phoneme conversion) to papers addressing applications such as
sentiment analysis and acoustic modeling for speech recognition. Finally, the range of papers cover
some novel languages not addressed in previous CALCS workshops such as Indonesian-English, Korean
Transliteration, English IsiZulu, Algerian Arabic which code switches with Modern Standard Arabic and
French. We would like to thank all authors who submitted their contributions to this workshop. We also
thank the program committee members for their help in providing meaningful reviews. Lastly, we thank
the LREC 2020 organizers for the opportunity to put together this workshop. See you online/virtually at
LREC 2020!
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A. Seza Doğruöz, Independent Researcher
William H. Hsu, Kansas State University
Constantine Lingos, Brandeis University
Rupesh Mehta, Microsoft
Joel Moniz, Carnegie Mellon University
Adithya Pratapa, Carnegie Mellon University
Yihong Theis, Kansas State University
Jacqueline Toribio, University of Texas at Austin
Gentra Inda Winata, Hong Kong University of Science and Technology
Dan Garrett, Google

iv



Table of Contents

An Annotated Corpus of Emerging Anglicisms in Spanish Newspaper Headlines
Elena Alvarez-Mellado . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

A New Dataset for Natural Language Inference from Code-mixed Conversations
Simran Khanuja, Sandipan Dandapat, Sunayana Sitaram and Monojit Choudhury . . . . . . . . . . . . . . 9

When is Multi-task Learning Beneficial for Low-Resource Noisy Code-switched User-generated Algerian
Texts?

Wafia Adouane and Jean-Philippe Bernardy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Evaluating Word Embeddings for Indonesian–English Code-Mixed Text Based on Synthetic Data
Arra’Di Nur Rizal and Sara Stymne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Understanding Script-Mixing: A Case Study of Hindi-English Bilingual Twitter Users
Abhishek Srivastava, Kalika Bali and Monojit Choudhury . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Sentiment Analysis for Hinglish Code-mixed Tweets by means of Cross-lingual Word Embeddings
Pranaydeep Singh and Els Lefever . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Semi-supervised acoustic and language model training for English-isiZulu code-switched speech recog-
nition

Astik Biswas, Febe De Wet, Ewald Van der westhuizen and Thomas Niesler . . . . . . . . . . . . . . . . . . 52

Code-mixed parse trees and how to find them
Anirudh Srinivasan, Sandipan Dandapat and Monojit Choudhury . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Towards an Efficient Code-Mixed Grapheme-to-Phoneme Conversion in an Agglutinative Language: A
Case Study on To-Korean Transliteration

Won Ik Cho, Seok Min Kim and Nam Soo Kim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

v



Proceedings of the LREC 2020 – 4th Workshop on Computational Approaches to Code Switching, pages 1–8
Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020

European Language Resources Association (ELRA), licensed under CC-BY-NC

An Annotated Corpus of Emerging Anglicisms in Spanish Newspaper Headlines

Elena Álvarez-Mellado
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ealvarezmellado@brandeis.edu

Abstract
The extraction of anglicisms (lexical borrowings from English) is relevant both for lexicographic purposes and for NLP downstream
tasks. We introduce a corpus of European Spanish newspaper headlines annotated with anglicisms and a baseline model for anglicism
extraction. In this paper we present: (1) a corpus of 21,570 newspaper headlines written in European Spanish annotated with
emergent anglicisms and (2) a conditional random field baseline model with handcrafted features for anglicism extraction. We present
the newspaper headlines corpus, describe the annotation tagset and guidelines and introduce a CRF model that can serve as baseline
for the task of detecting anglicisms. The presented work is a first step towards the creation of an anglicism extractor for Spanish newswire.

Keywords: borrowing extraction, anglicism, newspaper corpus

1. Introduction
The study of English influence in the Spanish language
has been a hot topic in Hispanic linguistics for decades,
particularly concerning lexical borrowing or anglicisms
(Gómez Capuz, 2004; Lorenzo, 1996; Medina López,
1998; Menéndez et al., 2003; Núñez Nogueroles, 2017a;
Pratt, 1980; Rodrı́guez González, 1999).
Lexical borrowing is a phenomenon that affects all lan-
guages and constitutes a productive mechanism for word-
formation, especially in the press. Chesley and Baayen
(2010) estimated that a reader of French newspapers en-
countered a new lexical borrowing for every 1,000 words.
In Chilean newspapers, lexical borrowings account for ap-
proximately 30% of neologisms, 80% of those correspond-
ing to English loanwords (Gerding et al., 2014).
Detecting lexical borrowings is relevant both for lexico-
graphic purposes and for NLP downstream tasks (Alex et
al., 2007; Tsvetkov and Dyer, 2016). However, strategies
to track and register lexical borrowings have traditionally
relied on manual review of corpora.
In this paper we present: (1) a corpus of newspaper head-
lines in European Spanish annotated with emerging angli-
cisms and (2) a CRF baseline model for anglicism auto-
matic extraction in Spanish newswire.

2. Related Work
Corpus-based studies of English borrowings in Span-
ish media have traditionally relied on manual evalua-
tion of either previously compiled general corpora such
as CREA1 (Balteiro, 2011; Núñez Nogueroles, 2016;
Núñez Nogueroles, 2018b; Oncı́ns Martı́nez, 2012), either
new tailor-made corpora designed to analyze specific gen-
res, varieties or phenomena (De la Cruz Cabanillas and
Martı́nez, 2012; Diéguez, 2004; Gerding Salas et al., 2018;
Núñez Nogueroles, 2017b; Patzelt, 2011; Rodrı́guez Med-
ina, 2002; Vélez Barreiro, 2003).
In terms of automatic detection of anglicisms, previous ap-
proaches in different languages have mostly depended on

1http://corpus.rae.es/creanet.html

resource lookup (lexicon or corpus frequencies), charac-
ter n-grams and pattern matching. Alex (2008b) combined
lexicon lookup and a search engine module that used the
web as a corpus to detect English inclusions in a corpus
of German texts and compared her results with a max-
ent Markov model. Furiassi and Hofland (2007) explored
corpora lookup and character n-grams to extract false an-
glicisms from a corpus of Italian newspapers. Andersen
(2012) used dictionary lookup, regular expressions and
lexicon-derived frequencies of character n-grams to detect
anglicism candidates in the Norwegian Newspaper Corpus
(NNC) (Hofland, 2000), while Losnegaard and Lyse (2012)
explored a Machine Learning approach to anglicism de-
tection in Norwegian by using TiMBL (Tilburg Memory-
Based Learner, an implementation of a k-nearest neighbor
classifier) with character trigrams as features. Garley and
Hockenmaier (2012) trained a maxent classifier with char-
acter n-gram and morphological features to identify angli-
cisms in German online communities.

In Spanish, Serigos (2017a) extracted anglicisms from a
corpus of Argentinian newspapers by combining dictionary
lookup (aided by TreeTagger and the NLTK lemmatizer)
with automatic filtering of capitalized words and manual
inspection. In Serigos (2017b), a character n-gram mod-
ule was added to estimate the probabilities of a word being
English or Spanish. Moreno Fernández and Moreno San-
doval (2018) used different pattern-matching filters and lex-
icon lookup to extract anglicism cadidates from a corpus of
tweets in US Spanish.

Work within the code-switching community has also dealt
with language identification on multilingual corpora. Due
to the nature of code-switching, these models have pri-
marily focused on oral copora and social media datasets
(Aguilar et al., 2018; Molina et al., 2016; Solorio et al.,
2014). In the last shared task of language identification
in code-switched data (Molina et al., 2016), approaches
to English-Spanish included CRFs models (Al-Badrashiny
and Diab, 2016; Shrestha, 2016; Sikdar and Gambäck,
2016; Xia, 2016), logistic regression (Shirvani et al., 2016)
and LSTMs models (Jaech et al., 2016; Samih et al., 2016).
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The scope and nature of lexical borrowing is, however,
somewhat different to that of code-switching. In fact, ap-
plying code-switching models to lexical borrowing detec-
tion has previously proved to be unsuccessful, as they tend
to overestimate the number of anglicisms (Serigos, 2017b).
In the next section we address the differences between both
phenomena and set the scope of this project.

3. Anglicism: Scope of the Phenomenon
Linguistic borrowing can be defined as the transference of
linguistic elements between two languages. Borrowing and
code-switching have frequently been described as a contin-
uum (Clyne et al., 2003), with a fuzzy frontier between the
two. As a result, a precise definition of what borrowing
is remains elusive (Gómez Capuz, 1997) and some authors
prefer to talk about code-mixing in general (Alex, 2008a) or
“lone other-language incorporations” (Poplack and Dion,
2012).
Lexical borrowing in particular involves the incorporation
of single lexical units from one language into another
language and is usually accompanied by morphological
and phonological modification to conform with the pat-
terns of the recipient language (Onysko, 2007; Poplack
et al., 1988). By definition, code-switches are not inte-
grated into a recipient language, unlike established loan-
words (Poplack, 2012). While code-switches are usually
fluent multiword interferences that normally comply with
grammatical restrictions in both languages and that are pro-
duced by bilingual speakers in bilingual discourses, lexical
borrowings are words used by monolingual individuals that
eventually become lexicalized and assimilated as part of the
recipient language lexicon until the knowledge of “foreign”
origin disappears (Lipski, 2005).
In terms of approaching the problem, automatic code-
switching identification has been framed as a sequence
modeling problem where every token receives a language
ID label (as in a POS-tagging task). Borrowing detection,
on the other hand, while it can also be transformed into a se-
quence labeling problem, is an extraction task, where only
certain spans of texts will be labeled (in the fashion of a
NER task).
Various typologies have been proposed that aim to clas-
sify borrowings according to different criteria, both with
a cross-linguistic perspective and also specifically aimed
to characterize English inclusions in Spanish (Gómez Ca-
puz, 1997; Haspelmath, 2008; Núñez Nogueroles, 2018a;
Pratt, 1980). In this work, we will be focusing on unassim-
ilated lexical borrowings (sometimes called foreignisms),
i.e. words from English origin that are introduced into
Spanish without any morphological or orthographic adap-
tation.

4. Corpus description and annotation
4.1. Corpus description
In this subsection we describe the characteristics of the cor-
pus. We first introduce the main corpus, with the usual
train/development/test split that was used to train, tune and
evaluate the model. We then present an additional test set
that was designed to assess the performance of the model
on more naturalistic data.

4.1.1. Main Corpus
The main corpus consists of a collection of monolingual
newspaper headlines written in European Spanish. The cor-
pus contains 16,553 headlines, which amounts to 244,114
tokens. Out of those 16,553 headlines, 1,109 contain at
least one anglicism. The total number of anglicisms is
1,176 (most of them are a single word, although some of
them were multiword expressions). The corpus was divided
into training, development and test set. The proportions of
headlines, tokens and anglicisms in each corpus split can be
found in Table 1.
The headlines in this corpus come from the Spanish news-
paper eldiario.es2, a progressive online newspaper based
in Spain. eldiario.es is one of the main national newspa-
pers from Spain and, to the best of our knowledge, the only
one that publishes its content under a Creative Commons
license, which made it ideal for making the corpus publicly
available3.

Set Headlines Tokens Headlines Anglicisms Other
with anglicisms borrowings

Train 10,513 154,632 709 747 40
Dev 3,020 44,758 200 219 14
Test 3,020 44,724 202 212 13
Suppl. test 5,017 81,551 122 126 35

Table 1: Number of headlines, tokens and anglicisms per
corpus subset.

The headlines were extracted from the newspaper website
through web scraping and range from September 2012 to
January 2020. Only the following sections were included:
economy, technology, lifestyle, music, TV and opinion.
These sections were chosen as they were the most likely
to contain anglicisms. The proportion of headlines with an-
glicisms per section can be found in Table 2.

Section Percentage of anglicisms

Opinion 2.54%
Economy 3.70%
Lifestyle 6.48%
TV 8.83%
Music 9.25%
Technology 15.37%

Table 2: Percentage of headlines with anglicisms per sec-
tion.

Using headlines (instead of full articles) was beneficial for
several reasons. First of all, annotating a headline is faster
and easier than annotating a full article; this helps ensure
that a wider variety of topics will be covered in the corpus.
Secondly, anglicisms are abundant in headlines, because
they are frequently used as a way of calling the attention of
the reader (Furiassi and Hofland, 2007). Finally, borrow-
ings that make it to the headline are likely to be particularly
salient or relevant, and therefore are good candidates for
being extracted and tracked.

2http://www.eldiario.es/
3Both the corpus and the baseline model (Section 5) can be

found at https://github.com/lirondos/lazaro.
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4.1.2. Supplemental Test Set
In addition to the usual train/development/test split we have
just presented, a supplemental test set of 5,017 headlines
was collected. The headlines included in this additional
test set also belong to eldiario.es. These headlines were
retrieved daily through RSS during February 2020 and in-
cluded all sections from the newspaper. The headlines in
the supplemental corpus therefore do not overlap in time
with the main corpus and include more sections. The num-
ber of headlines, tokens and anglicisms in the supplemental
test set can be found in Table 1.
The motivation behind this supplemental test set is to assess
the model performance on more naturalistic data, as the
headlines in the supplemental corpus (1) belong to the fu-
ture of the main corpus and (2) come from a less borrowing-
dense sample. This supplemental test set better mimics the
real scenario that an actual anglicism extractor would face
and can be used to assess how well the model generalizes
to detect anglicisms in any section of the daily news, which
is ultimately the aim of this project.

4.2. Annotation guidelines
The term anglicism covers a wide range of linguistic phe-
nomena. Following the typology proposed by Gómez Ca-
puz (1997), we focused on direct, unadapted, emerging An-
glicisms, i.e. lexical borrowings from the English language
into Spanish that have recently been imported and that have
still not been assimilated into Spanish. Other phenomena
such as semantic calques, syntactic anglicisms, acronyms
and proper names were considered beyond the scope of this
annotation project.
Lexical borrowings can be adapted (the spelling of the word
is modified to comply with the phonological and ortho-
graphic patterns of the recipient language) or unadapted
(the word preserves its original spelling). For this annota-
tion task, adapted borrowings were ignored and only un-
adapted borrowings were annotated. Therefore, Spanish
adaptations of anglicisms like fútbol (from football), mitin
(from meeting) and such were not annotated as borrow-
ings. Similarly, words derived from foreign lexemes that
do not comply with Spanish orthotactics but that have been
morphologically derived following the Spanish paradigm
(hacktivista, hackear, shakespeariano) were not annotated
either. However, pseudo-anglicisms (words that are formed
as if they were English, but do not exist in English, such as
footing or balconing) were annotated.
Words that were not adapted but whose original spelling
complies with graphophonological rules of Spanish (and
are therefore unlikely to be ever adapted, such as web, in-
ternet, fan, club, videoclip) were annotated or not depend-
ing on how recent or emergent they were. After all, a
word like club, that has been around in Spanish language
for centuries, cannot be considered emergent anymore and,
for this project, would not be as interesting to retrieve
as real emerging anglicisms. The notion of emergent is,
however, time-dependent and quite subjective: in order to
determine which unadapted, graphophonologically accept-
able borrowings were to be annotated, the online version
of the Diccionario de la lengua española4 (Real Academia

4https://dle.rae.es/

Española, 2014) was consulted. This dictionary is compiled
by the Royal Spanish Academy, a prescriptive institution on
Spanish language. This decision was motivated by the fact
that, if a borrowing was already registered by this dictio-
nary (that has conservative approach to language change)
and is considered assimilated (that is, the institution recom-
mended no italics or quotation marks to write that word)
then it could be inferred that the word was not emergent
anymore.
Although the previous guidelines covered most cases, they
proved insufficient. Some anglicisms were unadapted (they
preserved their original spelling), unacceptable according
to the Spanish graphophonological rules, and yet did not
satisfy the condition of being emergent. That was the case
of words like jazz or whisky, words that do not comply
with Spanish graphophonological rules but that were im-
ported decades ago, cannot be considered emergent any-
more and are unlikely to ever be adapted into the Span-
ish spelling system. To adjudicate these examples on those
cases, the criterion of pragmatic markedness proposed by
Winter-Froemel and Onysko (2012) (that distinguishes be-
tween catachrestic and non-catachrestic borrowing) was ap-
plied: if a borrowing was not adapted (i.e. its form re-
mained exactly as it came from English) but referred to a
particular invention or innovation that came via the English
language, that was not perceived as new anymore and that
had never competed with a Spanish equivalent, then it was
ignored. This criteria proved to be extremely useful to deal
with old unadapted anglicisms in the fields of music and
food. Figure 1 summarizes the decision steps followed dur-
ing the annotation process.
The corpus was annotated by a native speaker of Spanish
using Doccano5 (Nakayama et al., 2018). The annotation
tagset includes two labels: ENG, to annotate the English
borrowings just described, and OTHER. This OTHER tag
was used to tag lexical borrowings from languages other
than English. After all, although English is today by far the
most prevalent donor of borrowings, there are other lan-
guages that also provide new borrowings to Spanish. Fur-
thermore, the tag OTHER allows to annotate borrowings
such as première or tempeh, borrowings that etymologi-
cally do not come from English but that have entered the
Spanish language via English influence, even when their
spelling is very different to English borrowings. In general,
we considered that having such a tag could also help assess
how successful a classifier is detecting foreign borrowings
in general in Spanish newswire (without having to create
a label for every possible donor language, as the number
of examples would be too sparse). In total, the training set
contained 40 entities labeled as OTHER, the development
set contained 14 and the test set contained 13. The supple-
mental test set contained 35 OTHER entities.

5. Baseline Model
A baseline model for automatic extraction of anglicisms
was created using the annotated corpus we just presented
as training material. As mentioned in Section 3, the task
of detecting anglicisms can be approached as a sequence

5https://github.com/chakki-works/doccano
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Figure 1: Decision steps to follow during the annotation
process to decide whether to annotate a word as a borrow-
ing.

labeling problem where only certain spans of texts will be
labeled as anglicism (in a similar way to an NER task). The
chosen model was conditional random field model (CRF),
which was also the most popular model in both Shared
Tasks on Language Identification for Code-Switched Data
(Molina et al., 2016; Solorio et al., 2014).
The model was built using pycrfsuite6 (Korobov
and Peng, 2014), the Python wrapper for crfsuite7

(Okazaki, 2007) that implements CRF for labeling sequen-
tial data. It also used the Token and Span utilities from
spaCy8 library (Honnibal and Montani, 2017).
The following handcrafted features were used for the
model:

• Bias feature

• Token feature

• Uppercase feature (y/n)

• Titlecase feature (y/n)

• Character trigram feature

• Quotation feature (y/n)

• Word suffix feature (last three characters)

• POS tag (provided by spaCy utilities)

• Word shape (provided by spaCy utilities)

• Word embedding (see Table 3)

Given that anglicisms can be multiword expressions (such
as best seller, big data) and that those units should be
treated as one borrowing and not as two independent bor-
rowings, we used multi-token BIO encoding to denote the

6https://github.com/scrapinghub/
python-crfsuite

7https://github.com/chokkan/crfsuite
8https://spacy.io/

boundaries of each span (Ramshaw and Marcus, 1999). A
window of two tokens in each direction was set for the fea-
ture extractor. The algorithm used was gradient descent
with the L-BFGS method.
The model was tuned on the development set doing grid
search; the hyperparameters considered were c1 (L1 reg-
ularization coefficient: 0.01, 0.05, 0.1, 0.5, 1.0), c2 (L2
regularization coefficient: 0.01, 0.05, 0.1, 0.5, 1.0), em-
bedding scaling (0.5, 1.0, 2.0, 4.0), and embedding type
(Bojanowski et al., 2017; Cañete, 2019; Cardellino, 2019;
Grave et al., 2018; Honnibal and Montani, 2017; Pérez,
2017a; Pérez, 2017b) (see Table 3). The best results
were obtained with c1 = 0.05, c2 = 0.01, scaling = 0.5
and word2vec Spanish embeddings by Cardellino (2019).
The threshold for the stopping criterion delta was selected
through observing the loss during preliminary experiments
(delta = 1e− 3).

Author Algorithm # Vectors Dimensions

Bojanowski et al. (2017) FastText 985,667 300
Cañete (2019) FastText 1,313,423 300
Cardellino (2019) word2vec 1,000,653 300
Grave et al. (2018) FastText 2,000,001 300
Honnibal and Montani (2017) word2vec 534,000 50
Pérez (2017a) FastText 855,380 300
Pérez (2017b) GloVe 855,380 300

Table 3: Types of embeddings tried.

In order to assess the significance of the the handcrafted
features, a feature ablation study was done on the tuned
model, ablating one feature at a time and testing on the de-
velopment set. Due to the scarcity of spans labeled with
the OTHER tag on the development set (only 14) and given
that the main purpose of the model is to detect anglicisms,
the baseline model was run ignoring the OTHER tag both
during tuning and the feature ablation experiments. Ta-
ble 4 displays the results on the development set with all
features and for the different feature ablation runs. The re-
sults show that all features proposed for the baseline model
contribute to the results, with the character trigram feature
being the one that has the biggest impact on the feature ab-
lation study.

Features Precision Recall F1 score F1 change

All features 97.84 82.65 89.60
− Bias 96.76 81.74 88.61 −0.99
− Token 95.16 80.82 87.41 −2.19
− Uppercase 97.30 82.19 89.11 −0.49
− Titlecase 96.79 82.65 89.16 −0.44
− Char trigram 96.05 77.63 85.86 −3.74
− Quotation 97.31 82.65 89.38 −0.22
− Suffix 97.30 82.19 89.11 −0.49
− POS tag 98.35 81.74 89.28 −0.32
−Word shape 96.79 82.65 89.16 −0.44
−Word embedding 95.68 80.82 87.62 −1.98

Table 4: Ablation study results on the development test.

6. Results
The baseline model was then run on the test set and the
supplemental test set with the set of features and hyperpa-
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rameters mentioned on Section 5. Table 5 displays the re-
sults obtained. The model was run both with and without
the OTHER tag. The metrics for ENG display the results ob-
tained only for the spans labeled as anglicisms; the metrics
for OTHER display the results obtained for any borrowing
other than anglicisms. The metrics for BORROWING dis-
card the type of label and consider correct any labeled span
that has correct boundaries, regardless of the label type (so
any type of borrowing, regardless if it is ENG or OTHER).
In all cases, only full matches were considered correct and
no credit was given to partial matching, i.e. if only fake in
fake news was retrieved, it was considered wrong and no
partial score was given.
Results on all sets show an important difference between
precision and recall, precision being significantly higher
than recall. There is also a significant difference between
the results obtained on development and test set (F1 =
89.60, F1 = 87.82) and the results on the supplemental test
set (F1 = 71.49). The time difference between the supple-
mental test set and the development and test set (the head-
lines from the the supplemental test set being from a dif-
ferent time period to the training set) can probably explain
these differences.
Comparing the results with and without the OTHER tag, it
seems that including it on the development and test set pro-
duces worse results (or they remain roughly the same, at
best). However, the best precision result on the supplemen-
tal test was obtained when including the OTHER tag and
considering both ENG and OTHER spans as BORROWING
(precision = 87.62). This is caused by the fact that,
while the development and test set were compiled from
anglicism-rich newspaper sections (similar to the training
set), the supplemental test set contained headlines from all
the sections in the newspaper, and therefore included bor-
rowings from other languages such as Catalan, Basque or
French. When running the model without the OTHER tag
on the supplemental test set, these non-English borrowings
were labeled as anglicisms by the model (after all, their
spelling does not resemble Spanish spelling), damaging the
precision score. When the OTHER tag was included, these
non-English borrowings got correctly labeled as OTHER,
improving the precision score. This proves that, although
the OTHER tag might be irrelevant or even damaging when
testing on the development or test set, it can be useful when
testing on more naturalistic data, such as the one in the sup-
plemental test set.
Concerning errors, two types of errors were recurrent
among all sets: long titles of songs, films or series writ-
ten in English were a source of false positives, as the model
tended to mistake some of the uncapitalized words in the
title for anglicisms (for example, it darker in “‘You want
it darker’, la oscura y brillante despedida de Leonard Co-
hen”). On the other hand, anglicisms that appear on the first
position of the sentence (and were, therefore, capitalized)
were consistently ignored (as the model probably assumed
they were named entities) and produced a high number of
false negatives (for example, vamping in “Vamping: la re-
currente leyenda urbana de la luz azul ‘asesina’”).
The results on Table 5 cannot, however, be compared to the
ones reported by previous work: the metric that we report

Set Precision Recall F1 score

Development set (− OTHER) 97.84 82.65 89.60
Development set (+ OTHER)

ENG 96.79 82.65 89.16
OTHER 100.0 28.57 44.44
BORROWING 96.86 79.40 87.26

Test set (− OTHER) 95.05 81.60 87.82
Test set (+ OTHER)

ENG 95.03 81.13 87.53
OTHER 100.0 46.15 63.16
BORROWING 95.19 79.11 86.41

Supplemental test set (− OTHER) 83.16 62.70 71.49
Supplemental test set (+ OTHER)

ENG 82.65 64.29 72.32
OTHER 100.0 20.0 33.33
BORROWING 87.62 57.14 69.17

Table 5: Results on test set and supplemental test set.

is span F-measure, as the evaluation was done on span level
(instead of token level) and credit was only given to full
matches. Secondly, there was no Spanish tag assigned to
non-borrowings, that means that no credit was given if a
Spanish token was identified as such.

7. Future Work
This is an on-going project. The corpus we have just pre-
sented is a first step towards the development of an extractor
of emerging anglicisms in the Spanish press. Future work
includes: assessing whether to keep the OTHER tag, im-
proving the baseline model (particularly to improve recall),
assessing the suitability and contribution of different sets
of features and exploring different models. In terms of the
corpus development, the training set is now closed and sta-
ble, but the test set could potentially be increased in order
to have more and more diverse anglicisms.

8. Conclusions
In this paper we have presented a new corpus of 21,570
newspaper headlines written in European Spanish. The
corpus is annotated with emergent anglicisms and, up to
our very best knowledge, is the first corpus of this type
to be released publicly. We have presented the annotation
scope, tagset and guidelines, and we have introduced a CRF
baseline model for anglicism extraction trained with the de-
scribed corpus. The results obtained show that the the cor-
pus and baseline model are appropriate for automatic angli-
cism extraction.
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Menéndez, F., Menéndez, M., and Morales, H. (2003).
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Abstract
Natural Language Inference (NLI) is the task of inferring the logical relationship, typically entailment or contradiction, between a
premise and hypothesis. Code-mixing is the use of more than one language in the same conversation or utterance, and is prevalent
in multilingual communities all over the world. In this paper, we present the first dataset for code-mixed NLI, in which both the
premises and hypotheses are in code-mixed Hindi-English. We use data from Hindi movies (Bollywood) as premises, and crowd-source
hypotheses from Hindi-English bilinguals. We conduct a pilot annotation study and describe the final annotation protocol based on
observations from the pilot. Currently, the data collected consists of 400 premises in the form of code-mixed conversation snippets and
2240 code-mixed hypotheses. We conduct an extensive analysis to infer the linguistic phenomena commonly observed in the dataset
obtained. We evaluate the dataset using a standard mBERT-based pipeline for NLI and report results.

Keywords: code-switching, natural language inference, dataset

1. Introduction
Natural Language Inference (NLI) is a fundamental NLP
task, not only because it has several practical applications,
but also because it tests the language understanding abil-
ities of machines beyond pattern recognition. NLI tasks
usually involve inferring the logical relationship, such as
entailment or contradiction, between a pair of sentences. In
some cases, instead of a sentence, a document, paragraph
or a dialogue snippet might be provided as the premise; the
task then is to infer whether a given hypothesis is entailed
in (or implied by) the premise. There are several mono-
lingual NLI datasets available, with the most notable ones
being included in the GLUE (Wang et al., 2018) and Su-
perGLUE (Wang et al., 2019) benchmarks. There are also
multilingual and crosslingual NLI datasets, such as XNLI
(Conneau et al., 2018). These datasets have successfully
spurred and facilitated research in this area.
In this paper, we introduce, for the first time, a new NLI
dataset for code-mixing. Code-mixing or code-switching
refers to the use of more than one language in a single
conversation or utterance. It is prevalent in almost all
multilingual societies across the world. Monolingual as
well as multilingual NLP systems typically fail to handle
code-mixed inputs. Therefore, recently, code-mixing has
attained considerable attention from the speech and NLP
communities. Consequently, there have been several shared
tasks on language labeling, POS-tagging, and sentiment
analysis of code-mixed text, and several datasets exist for
these as well. Other speech and language processing tasks
such as speech recognition, parsing, and question answer-
ing, have also been well researched upon. However, as far
as we know, there exists no code-mixed dataset for any NLI
task.
The following reasons explain the motivation behind creat-
ing a code-mixed NLI dataset:

• NLI is an important requirement for chatbots and con-
versational agents, and since code-mixing is a spoken
and conversational phenomenon, it is crucial that such

systems understand code-mixing.

• Most NLI datasets, including monolingual datasets,
are created using sentence pairs as the premise and
hypothesis. Ours is one of the only datasets built on
conversations as premises, which, we believe, facili-
tates improved consistency in dialogue agents.

• NLI helps indicate whether our models can truly un-
derstand code-mixing, as the task requires a deeper se-
mantic understanding of language rather than reliance
upon shallow heuristics.

To create the code-mixed NLI dataset, we use pre-existing
code-mixed conversations from Hindi movies (Bollywood)
as premises, and ask crowd-workers to annotate the data
with hypotheses that are either entailed in or contradicted
by the premise. We follow this with a validation step
where annotators are shown premises and hypotheses and
are asked to validate whether the hypothesis is entailed in
or contradicted by the corresponding premise. We conduct
a pilot experiment and present its analysis with the final
annotation scheme and a description of the data collection
process. Currently our data consists of 400 premises with
2240 hypotheses in code-mixed Hindi-English.
The rest of the paper is organized as follows. Section 2
introduces different NLI datasets and situates our work in
their context. Section 3 describes the creation of the data for
annotation. Section 4 describes the data annotation, includ-
ing results from the pilot and the final annotation scheme.
Section 5 presents an extensive analysis and a baseline eval-
uation. Section 6 concludes with a discussion of future
work.

2. NLI Datasets
NLI is a concept central to natural language understand-
ing models. Most of the prominent datasets that are used
to solve NLI problems involve learning textual entailment
wherein we determine whether a hypothesis is entailed in
or contradicts a textual document (Zhang and Chai, 2009).
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Conversation Translation
MRS.KAPOOR: Kitna old fashion hairstyle hai tumhara, MRS KAPOOR: Your hairstyle is so old fashioned,
new hair cut kyun nahin try karte .. Go to the Vidal why don’t you try a new hair cut .. Go to the Vidal
Sasoon salon tomorrow .. Aur thoda product use karo .. Sasoon salon tomorrow .. And use some product ..
You’ll get some texture. You’ll get some texture.

MR.KAPOOR: Tumhari maa ko bahut pata hai, MBA kiya MR.KAPOOR: Your mother knows a lot, she has
hai usne hair styling mein. done an MBA in hair styling.

MRS.KAPOOR: Kaash kiya hota to tumhara kuch kar pati? MRS.KAPOOR: I wish I had so that I could have done
Kab se ke rahi hun, Soonawallas ki tarah hair transplant karva lo, something about you? Been telling you for so long,
already 55 ke lagte ho! get a hair transplant like the Soonawallas, you already look

like you are 55!

MR.KAPOOR: main 57 ka hun. MR.KAPOOR: I am 57 years old.

Table 1: Example Conversation from the Bollywood data

Even so, each dataset is severely limited in the reasoning it
represents and cannot be generalised outside of its domain.
(Bernardy and Chatzikyriakidis, 2019)

2.1. Types of NLI Datasets
We briefly outline the prominent NLI datasets that have
been well researched upon, to suitably place our contribu-
tion in context of the same.

• The FraCaS test suite (Consortium and others, 1996)
consists of 346 manually curated premises followed
by a Yes/No/Don’t Know question.

• The RTE datasets (Dagan et al., 2005) include nat-
urally occurring data as premises and construct hy-
potheses based on them. All datasets have fewer than
1000 examples for training. A limitation of these
datasets is that many examples assume world knowl-
edge which is not explicitly labeled with each exam-
ple.

• The SNLI dataset (Bowman et al., 2015) consists of
570k inference pairs created using crowd-sourcing on
Amazon Mechanical Turk. The size of this dataset
makes it conducive to be used for training deep learn-
ing models. Subjects are given the caption of an image
and are asked to formulate a true caption, a possible
true caption and a false caption.

• The Multi-Genre NLI corpus (Williams et al., 2017) is
also a crowd-sourced collection of 433k sentence pairs
annotated with entailment information. Although it
is modeled on SNLI, it differs from it as it covers a
variety of genres in both written and spoken English.
XNLI (Conneau et al., 2018) is a multilingual exten-
sion of MultiNLI wherein 5k (train) and 2.5k (dev)
examples are translated into 14 languages.

• The SICK (Sentences Involving Compositional
Knowledge) (Marelli et al., 2014) dataset consists
of 9840 examples of inference patterns primarily
to test distributional semantics. It is constructed by

randomly selecting a subset of sentence pairs from
two sources - the 8k ImageFlickr dataset and the
SemEval2012 STS MSR-Video Description dataset.

• The Dialogue NLI Corpus (Welleck et al., 2018) con-
sists of pairs of sentences generated using the Persona-
Chat dataset (Zhang et al., 2018). Each human labeled
triple is first associated to each persona sentence and
then pairs of such triple; persona sentences are labeled
as entailment, neutral or contradiction. The corpus
consists of around 33k examples.

• The Conversation Entailment (Zhang and Chai, 2010)
dataset consists of 50 dialogues from the Switchboard
corpus (Godfrey et al., 1992). 15 volunteer annotators
read the dialogues and manually created hypotheses to
obtain a total of 1096 entailment annotated examples.

While most of the datasets described above benefit infor-
mation extraction and other textual analysis problems, they
cannot be used to tackle inference in conversations, which
is an important application today given the upsurge and
importance of dialogue agents. (Bernardy and Chatzikyr-
iakidis, 2019) make a strong case for the need of entail-
ment datasets for dialogue data, highlighting that there has
been no attempt towards building one so far. They point out
several ways in which conversation entailment is different
from textual entailment. Most importantly, each participant
in the conversation adds more structure to the segment in
his/her turn unlike textual entailment where one segment is
stand-alone.
Consider the example below from (Bernardy and
Chatzikyriakidis, 2019):

A. Mont Blanc is higher than
B. Mt. Ararat?
A. Yes.
B. No, this is not correct. It is the other way around.
A. Are you...
B. Sure? Yes, I am.
A. Ok, then
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Further, with the exception of the XNLI dataset, all other
NLI datasets are in English. This motivates us to use di-
alogue, or conversation, as a premise, and build hypothe-
ses based on them for code-mixed language. Based on the
approaches used for creating the datasets mentioned above,
there are three main approaches that can be taken while cre-
ating a code-mixed NLI dataset. One approach is to trans-
late an existing NLI dataset into a code-mixed language.
Since there do not exist good Machine Translation systems
for code-mixed languages, that can capture the nuances of
the language necessary for an NLI dataset, this would need
to be done manually to ensure high quality. Another ap-
proach is to synthesize code-mixed data artificially, using
approaches such as (Pratapa et al., 2018). However, this
cannot be done for a conversational dataset, and will not
be natural enough to create good hypotheses. The third
approach, which we take, is to use a naturally occurring
source of conversational data as premises, and get the hy-
potheses manually annotated.

3. Dataset Creation
Code-mixing is primarily a spoken language phenomenon,
so it is challenging to find naturally occurring code-mixed
text on the web, or in standard monolingual corpora. Social
Media and Instant Messaging data from multilingual users
can be a source of code-mixed conversational data, but can-
not be used due to privacy concerns. For this reason, we
choose scripts of Hindi movies, also referred to as “Bolly-
wood” movies. Bollywood movies, from certain time pe-
riods and genres, contain varying amounts of code-mixing,
as described in (Pratapa and Choudhury, 2017). Although
the movie data is not artificially generated, it is scripted,
which makes it a less natural source of data than conversa-
tions between real people.

3.1. Data Preparation
The Bollywood data consists of scenes taken from 18
movies. The data is in Romanized form, so both Hindi
and English parts of the conversation are written in the Ro-
man script. Table 1 shows an example conversation from
the Bollywood dataset. The data contains examples of both
inter-sentential and intra-sentential code-mixing.
Based upon an initial manual inspection of the data, we
make the following design choices :

• There are 1803 scenes in the 18 movie transcripts
combined. We observe that a few scenes are mono-
logues, reducing the problem from a conversational
entailment to a textual one. Hence we use an initial
filter of choosing scenes with greater than three num-
ber of turns.

• A number of scenes were in monolingual Hindi, this
being a Bollywood movie dataset. Hence we calcu-
late the Code Mixing Index (CMI) (Gambäck and Das,
2014) of each scene and choose scenes having a CMI
greater than 20%. After application of the above fil-
ters, we obtain 720 scenes.

• We choose not to transliterate the Romanized Hindi
into the original Devanagari script. However, this can

be done automatically using a transliteration system if
desired.

3.2. Task Paradigm
The data annotation process involves the formulation of one
or more true and false hypothesis, given a scene from the
categories above as a premise. Subsequently, the NLI task
is to classify whether the conversation entails the hypothe-
sis or contradicts it, which we label true and false respec-
tively. Note that the premises and the formulated hypothe-
ses are in code-mixed Hindi-English.

4. Data Annotation
4.1. Initial Annotation Guidelines
Our annotation scheme consists of two stages. In the first
stage, we present conversations with a set of already cre-
ated hypotheses (cf. Table 3) and ask the annotators to as-
sign two labels to each hypothesis statement. The first is
a true/false label and the second is a good/fair/bad label,
judging the quality of the given hypothesis. Table 2 shows
details of the two different labels used in the annotation pro-
cess.
Annotators were also instructed to assign an Irrelevant la-
bel in case the generated hypothesis is not relevant to the
conversation. In general, a hypothesis is considered as ir-
relevant when there is not enough topic and word overlap
between the statement of the hypothesis and the conver-
sation, especially when generating negative hypotheses, or
when world knowledge is used to formulate the hypothesis,
which cannot be inferred from the conversation.
The first stage is conducted to fulfil two objectives:

• It acts as an initial filter to make sure that the annota-
tors are well versed in both languages and have a good
understanding of the task. If they fail to assign gold
labels to more than 80 percent of the hypotheses, they
will not be assigned the second stage of annotation.

• It serves to show annotators, the kind of hypotheses
we are expecting will be generated from the conversa-
tions.

In the second stage, the annotators are given only the
conversation snippet and are asked to come up with
hypotheses which they think are entailed in or contra-
dicted by the conversation. We provide annotators with a
guideline containing worked out examples to make them
familiar with the classification and help them generate
good hypotheses. These hypotheses could be written in
Hindi, English or both languages mixed in one sentence,
as people often do in informal settings. Note that since
the conversation contains Romanized Hindi, we ask the
annotators to write Hindi in the Roman script. Romanized
Hindi is not standardized, so we find variations of the
same word across the Bollywood data. The annotators
were asked to use spelling variants that they found in the
snippets, or use the variants they are most familiar with.
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(a) Category 1 distribution (b) Category 2 distribution

Figure 1: Distribution of data in different categories

Label Categories Definition
Label1 True It can be inferred from the conversation (entailed)

False It is contradictory to the conversation
Good An unambiguous statement which can clearly

be either inferred from the conversation or stands contradictory to it
Label2 Fair Can be fairly inferred/contradicted from the conversation

but lacks in either a good structure/is too long/is too abstract
contains too many(or too few) words from the snippet

Bad A statement which isn’t well-formed/ is too ambiguous
or is verbatim from the conversation

Table 2: Types of labels

4.2. Pilot Experiments
In the pilot experiment, for the first stage, we use 2 con-
versations of different lengths (7 and 17 turns) having
a set of carefully curated hypotheses (8 and 10 respec-
tively). The task is to mark each hypothesis with Label1
(True/False/Irrelevant) and Label2 (Good/Fair/Bad). On an
average, the number of correct labels is 88%.
For the second stage, we take 3 conversation snippets of
different lengths (9, 12 and 13 turns) and ask the annota-
tors to generate 4 hypotheses (2 True and 2 False) for each
conversation. 7 different annotators conduct the task.
Our observations from the pilot are as follows:

• Annotators do not prefer long premises as they need
to go back and forth to validate the correctness of a
statement. However, too short a premise also does not
provide enough context for the annotators to come up
with good hypotheses.

• Annotators face difficulty in producing a large number
of hypotheses. The average amount of time required to
produce a hypothesis increases non-linearly with the
number of hypotheses expected from a conversation.

• A few annotators use prior knowledge about the topic
(i.e. the movie is known to the annotator). This leads
to the generation of bad hypotheses or incorrect label-
ing.

4.3. Final Scheme and Guidelines
Based on the observations from the pilot experiments, we
make the following changes into the annotation process:

• Length of the Premises: We segregate the conver-
sations into three categories based on the number of
tokens they contain, to obtain 151 scenes that contain
less than 55 tokens (Category 1), 252 scenes that con-
tain less than 130 tokens (Category 2), and the rest
containing more than 130 tokens (Category 3). We
consider conversations from Categories 1 and 2 for an-
notation, based on the observation that annotators find
it increasingly time-consuming to formulate hypothe-
ses for very long conversations. Figures 1 (a) and (b)
give a pictorial representation of conversations in Cat-
egory 1 and 2, with number of tokens on the X axis
and number of turns on the Y axis.

• Number of Hypotheses: Depending on the length of
the premises, the annotators are asked to generate dif-
ferent number of hypotheses. The required number of
hypotheses is 2 (one True and one False) if a conver-
sation is from Category 1 (between 20-55 tokens) and
4 (two each for True and False) if taken from Category
2 (between 55 and 130 tokens). However, the annota-
tors have the option to generate additional hypotheses
if they desire.
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Category Hypothesis Translation
True Mr. Kapoor 57 years ke hai Mr. Kapoor is 57 years old
False Mrs. Kapoor ne hair styling mei MBA kiya hai Mrs. Kapoor has done an MBA in hair styling
Bad Mr. Kapoor will go to the Vidal Sasoon salon tomorrow
Irrelevant Mr. Kapoor was born in Delhi.
Ambiguous Mrs. Kapoor ko hair styling ke baare mei bohot pata hai Mrs. Kapoor knows a lot about hair styling

Table 3: Different kinds of hypotheses for the conversation snippet in Table 1

• De-biasing: Bias in NLI datasets is well studied
(Rudinger et al., 2017) and can be attributed to an-
notators amplifying stereotypical characteristics of the
conversation participants. In our case, there is addi-
tional bias due to the knowledge of the movie, which
can be inferred from the names of some characters,
and sometimes from the conversation. To handle the
latter, we anonymize the names of the turn owners and
replace them with generic tokens (“C1”, “C2” etc.).
In this process, we only substitute the proper names
from the conversation and not the kinship terms (Fa-
ther, Mother, Bauji etc.) or professions (Doctor, Re-
ceptionist, Police Officer etc.). This helps reduce the
familiarity of the conversation with a known movie
which produces noise in the pilot study (cf. Section
4.2).

4.4. Final Annotation Process
The final hypotheses generation process is as follows:

• First, an annotator is shown the conversation after
making the changes described above, and asked to for-
mulate 2 or 4 hypotheses depending on the length of
the conversation. Currently, we have 600 hypotheses
created from 150 premises in Category 1 (length be-
tween 20-55 tokens) and another 1640 hypotheses cre-
ated from 250 premises in Category 2 (length between
55-130 tokens).

• Subsequently, we conduct a validation step in which
two annotators are shown 300 conversation snippets
and corresponding hypotheses, and asked to mark the
hypotheses “True” (entailed),“False” (contradicted) or
“Irrelevant”. The Inter-Annotator Agreement is 0.863,
and the agreement of each annotator with the labels
of the generated hypotheses is greater than 0.8, which
shows that the data collected is of good quality.

5. Analysis and Evaluation
On a deeper analysis of the hypotheses generated, we make
the following observations:

• Sarcasm and Rhetorics: Several examples require
the model to interpret sarcasm in the conversation, to
make a correct prediction. This is natural, given the
premises are human conversations, and these help add
complexity to the dataset. For example -

PREMISE:
Mother: 5 saal baad saath-saath aaye ho .. janvaron ki
tarah ladna zaroori hai ?

C0: Haan aapko toh main hi galat lagta hoon ..

HYPOTHESIS:
Mother told C0 to quarrel like animals. (False)

Translated

PREMISE:
Mother: Y’all have met after 5 years .. is it necessary
to fight like animals?
C0: Yeah you always think I am wrong ..

HYPOTHESIS:
Mother told C0 to quarrel like animals. (False)

• Word Sense Disambiguation : There exist several
examples requiring the model to resolve the meaning
of the word in context of its usage. For example, in
the following, the word ”saala” is used as an abusive
term in the premise, but is taken to mean ”brother in
law” in the hypothesis -

PREMISE:
C0: Ek lafz aur toh tera bheja baahar .
C1: Accha ? Nikaal .. Himmat hai to nikal C1 ka
bheja baahar !
C1: Maar !
C0: Dekh be C1 . Aakhiri baar keh raha hoon ..
C1: Naqli Nawab saala ..

HYPOTHESIS:
C0 is C1’s brother in law. (False)

Translated

PREMISE:
C0: One more word and I will smack your head.
C1: Really ? Hit .. If you have the strength, hit me !
C1: Hit !
C0: See C1 . I am telling you one last time ..
C1: Fool ..

HYPOTHESIS:
C0 is C1’s brother in law. (False)

• Inter-dependent Inference : Several premises are
such that each utterance is highly contextual, requiring
knowledge of the speakers of the past few utterances
as well. Hypotheses thus generated pick facts from
several utterances at once. For example -
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PREMISE:
C0: Kaun se school mein tha ?
C1: Bishop Cotton .
C0: Kahan hai ?
C1: Shimla ...

HYPOTHESIS:
Bishop Cotton School Manali mein hai. (False)

Translated

PREMISE:
C0: Which school were you in ?
C1: Bishop Cotton .
C0: Where is it ?
C1: Shimla ...

HYPOTHESIS:
Bishop Cotton School is in Manali. (False)

• Domain Generality : We also observe that this being
a movie dataset, we obtain premise-hypothesis pairs
across several domains. There even exist pairs with
dialect differences as shown below :-

PREMISE:
C0: Chhorey tanne manaa karya tha na jaane se ?
C1: Koi milne aaya hai .
C0: Kaun ?
C0: Kaun sa ?
C1: Boli thaare se kaam tha

HYPOTHESIS:
C0 ne C1 ko jaane se mana kiya tha. (True)

Translated

PREMISE:
C0: Son, I had told you not to go right ?
C1: Somebody had come to meet me .
C0: Who ?
C0: Who was it ?
C1: She said she had some work for you

HYPOTHESIS:
C0 had told C1 not to go. (True)

• Speaker Conflict: We also observe examples wherein
multiple parties hold different beliefs on a particular
fact, hence inferring about the fact from the conversa-
tion becomes a difficult task. For example -

PREMISE:
C0: Waise main bhi uski tarah chest hila sakta hun.
C1: Show . See .. Nobody can beat him.

HYPOTHESIS:
C0 bhi uski tarah chest hila sakta hai. (False)

Translated

PREMISE:
C0: Even I can move my chest like him.
C1: Show . See .. Nobody can beat him.

HYPOTHESIS:
C0 can also move his chest like him. (False)

• Paraphrasing: In a few examples, true hypotheses
are paraphrases of what was said in the conversation.
In some cases, they are a substring of the conversa-
tion, but in other cases, they are paraphrased using
code-mixing, or a single language when the premise
uses the other language. This is usually observed
in longer conversations. An example wherein the
hypothesis is picked verbatim from the conversation
is shown below :

PREMISE:
C0: Nahi Sir busy hain - voh nahi le saktey brief
aapka !
C1: Lekin subah toh unhone kaha tha ki ...

HYPOTHESIS:
Sir busy hain. (True)

Translated

PREMISE:
C0: No, Sir is busy - He cannot take your brief !
C1: But in the morning he said that ...

HYPOTHESIS:
Sir is busy. (True)

• Negation: True or False hypotheses were negations
of what was said in the conversation. For example -

PREMISE:
C0: Kahin bhi shuru ho jaati ho dance karna , shushma
didi ki sagai hai ... relations mein hain humarey ...
socha to karo ...
C1: Baaki ladkiyan bhi to kar rahi thi ...

HYPOTHESIS:
Baaki ladkiyan dance nahi kar rahi hai. (False)

Translated

PREMISE:
C0: You start dancing anywhere, It’s sushma’s
reception ... they are our relatives... think sometimes
C1: But the other girls were dancing as well ...

HYPOTHESIS:
The other girls are not dancing. (False)

• Swapping Roles: We also observe cases wherein a
false hypothesis is constructed by simply swapping
for the speaker. For example -
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Model RTE SNLI MNLI QNLI
BERTBASE 66.4 90.4 86.7 90.5

Table 4: NLI results (Accuracy)

Model NLI En-Hi
mBERT 57.82

Table 5: NLI results (Accuracy)

PREMISE:
C1: Jaan bhai ! Ab kya hoga ?
C0: Sab theek ho jaayega . Chup kar bus chup . Sab
theek ho jaayega . Bank manager ko bol 10 karod
cash chahiye kal subah

HYPOTHESIS:
C1 bol raha hai sab theek ho jaaega. (False)

Translated

PREMISE:
C1: Brother ! What will happen now ?
C0: Everything will be alright. Just be quiet. Every-
thing will be alright. Tell the bank manager to arrange
for 10 crore rupees by tomorrow morning.

HYPOTHESIS:
C1 says that everything will be alright. (False)

• Numerical Hypotheses: A few examples simply
change a numeral in the premise to create a false
hypothesis. For example -

PREMISE:
C2: Kitne saal se kaam kar rahe ho clinic mein ?
C1: 4 to ho gaye honge saab ..

HYPOTHESIS:
C2 5 saal se clinic mein kaam karta hai. (False)

Translated

PREMISE:
C2: For how many years have you been working at
the clinic ?
C1: It must have been 4 years at the least, Sir ..

HYPOTHESIS:
C2 has been working at the clinic for 5 years. (False)

• Length of Premise : We also observe that for longer
premises, annotators usually pick out sentences ver-
batim from the conversation. In general, the quality
of the hypotheses generated decreases as the premises
become longer.

• No hypotheses are found that are irrelevant or use
world knowledge, or knowledge about the movies.

On the basis of the above observations, we see that the
dataset obtained is highly varying in complexity. Models
that rely on shallow heuristics and learn statistical patterns
from training data, which is the case with most neural mod-
els today (McCoy et al., 2019), are expected to correctly
predict examples involving Negation, Numeral Changes,
Swapping Roles or Paraphrasing. However, they are hy-
pothesized to fail in examples requiring deeper semantic
knowledge, for instance, the examples involving Sarcasm,
Word Sense Disambiguation, Inter-dependent Inference or
Speaker Conflict.
With the recent upsurge of multilingual models, and claims
that they can be used to solve code-mixed tasks as well,
we evaluate the multilingual BERT model on our dataset.
Previously, it has been shown to perform well on code-
mixed POS tagging by (Pires et al., 2019). Our results are
as shown in Table 5. We make use of the transformers li-
brary1 for the experiment. We use the AdamW optimizer
with a learning rate of 5e-5, epsilon of 1e-8, and a batch
size of 16, as suggested by (Devlin et al., 2018). We train
for 5 epochs. We report the average result of training on 5
random seed values. Note that the dataset contains Hindi in
Roman script while mBERT is trained on Hindi in Devana-
gari, and we report this number as a mere baseline.
To put our numbers in perspective, we have included
accuracies achieved by the BERT base model, as shown
in (Talman and Chatzikyriakidis, 2018) and (Devlin et al.,
2018), in Table 4 on standard monolingual NLI datasets.
Note that these numbers are not directly comparable due
to differences in language and corpus sizes. However,
even standalone, the accuracy obtained by mBERT on our
dataset clearly highlights the fact that this task is far from
being solved.

6. Conclusion and Future Work
In this paper, we introduce a new dataset for code-mixed
Natural Language Inference (NLI). Our dataset is unique
due to the nature of the language used (code-mixed Hindi-
English) and also because it is one of the few datasets
created using conversations as premises. Solving the NLI
task would help understand how well machines understand
code-mixing. We also observe that multilingual models
such as mBERT (Pires et al., 2019) are not competent
enough to solve this task, thus highlighting the need for
models especially suited for the task at hand. In future
work, we plan to experiment with neural and symbolic ar-
chitectures for code-mixed NLI. One challenge in testing

1https://github.com/huggingface/transformers
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our data on models pre-trained on monolingual data is a
script mismatch, as monolingual models tend to be trained
on Devanagari, while our data contains Romanized Hindi
with spelling variations.
Given the nature of the data, we observe that this dataset
can be scaled up to generate a plethora of such premise
hypothesis pairs. Noting the dearth of conversation entail-
ment datasets in monolingual settings as well, the same can
be done to create monolingual datasets. This can be a ma-
jor contribution to help solve conversation inference tasks
which can show significant improvements in existing con-
versational agents.
Currently, our dataset consists of 400 premises with 2240
hypotheses, labeled for True and False only. We plan to
continue the annotation process with more such transcripts.
Further, we plan to further annotate the dataset for other lin-
guistic phenomena, which may help to better solve the task.
We plan to release the annotations we have crowd-sourced
for research purposes and hope that it will spur research in
the field of code-mixed NLI.
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Abstract
We investigate when is it beneficial to simultaneously learn representations for several tasks, in low-resource settings. For this, we work
with noisy user-generated texts in Algerian, a low-resource non-standardised Arabic variety. That is, to mitigate the problem of the
data scarcity, we experiment with jointly learning progressively 4 tasks, namely code-switch detection, named entity recognition, spell
normalisation and correction, and identifying users’ sentiments. The selection of these tasks is motivated by the lack of labelled data
for automatic morpho-syntactic or semantic sequence-tagging tasks for Algerian, in contrast to the case of much multi-task learning for
NLP. Our empirical results show that multi-task learning is beneficial for some tasks in particular settings, and that the effect of each task
on another, the order of the tasks, and the size of the training data of the task with more data do matter. Moreover, the data augmentation
that we performed with no external resources has been shown to be beneficial for certain tasks.

Keywords: Algerian Arabic, code-switched user-generated data, multi-task learning, low-resource colloquial languages

1. Introduction

New breakthrough results are continuously achieved for
various natural language processing (NLP) tasks, often
thanks to the availability of more data and computational
power. Likewise, various learning frameworks have been
proposed for NLP including multi-task learning. Multi-task
learning is about transferring knowledge learned in one task
to other tasks by sharing representations (Caruana, 1997).
The assumption is that the final learned shared representa-
tions are conditioned on the multiple tasks learned simul-
taneously, and as such they generalise better compared to
separate training for each task. This works well when the
jointly learned tasks are beneficial for each other, or in cases
where a well-performing (auxiliary) task with large data is
trained with a related (target) task with less data. However,
predicting when tasks are useful for each other remains an
open theoretical question and the reported results are still
experimental.
This paper is an attempt to take advantage of the state-
of-the-art advances in NLP, namely deep neural networks
(DNNs) and multi-task learning in order to mitigate the
problem of the scarcity of labelled data for colloquial Al-
gerian language (henceforth referred to as ALG). Our main
contributions are (1) the creation of a new dataset for code-
switched Named Entity Recognition for ALG. (2) An in-
vestigation of the settings where it is beneficial to share
representations learned between two or several tasks. To
this end, we jointly train 4 tasks (or subsets thereof): (1)
Code-Switch Detection (CSD), (2) Named Entity Recog-
nition (NER) —both framed as sequence tagging— (3)
Spelling Normalisation and Correction (SPELL) —framed
as a sequence-to-sequence task— and (4) identifying users’
sentiments (SA) —framed as a classification task.
We analyse (1) the effect of each task on another, (2)
whether task order matters or not, (3) whether word con-
text for the sequence-to-sequence task is important or not,
(4) whether the size of the training data of the task with
more data matters, and (5) whether it is useful to augment

the training dataset of sequence-to-sequence task (while not
requiring any extra resources). We believe that this in-
vestigation will extend the utility of multi-task learning in
low-resource settings, particularly for code-switched user-
generated data. In our experiments we increase the diffi-
culty of the tasks gradually, for instance learning the tasks
in pairs, 3 tasks, then 4 tasks, and increase the size of the
training data for SPELL progressively.
The paper is organised as follows. In Section 2 we review
related work. In Section 3 we describe our tasks and their
corresponding datasets. In Section 4 we present the archi-
tecture of our model. In Section 5 we describe our exper-
iments and discuss the results. In Section 6 we conclude
with the main findings and outline potential directions for
future improvements.

2. Related Work
In general, in the context of multi-task learning, the
definition of a task is vague: it can refer to an NLP
task (Martı́nez Alonso and Plank, 2017), to a domain (Peng
and Dredze, 2017) or to a dataset (Bollmann et al., 2018).
Multi-task learning has been applied successfully to a va-
riety of NLP tasks1 (Collobert and Weston, 2008; Luong
et al., 2016; Martı́nez Alonso and Plank, 2017; Bingel and
Søgaard, 2017), focusing on examining the effect of dif-
ferent auxiliary tasks on the performance of a target task.
Changpinyo et al. (2018) use joint learning of 11 sequence
tagging tasks, investigating whether doing so benefits all of
the tasks. Based on the previously reported results, multi-
task learning is a promising framework to improve learn-
ing with scarce data. Nevertheless, previous work has been
mostly limited to morpho-syntactic and semantic sequence
labeling tasks, inter alia, part-of-speech tagging, syntactic
chunking, supersense tagging, semantic trait tagging, se-
mantic role labeling, semantically related words, as well
as multi-perspective question answering, and named entity
recognition.

1We cite here only a few examples.
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But what about the languages (domains) for which we do
not have labelled data for morpho-syntactic and seman-
tic tasks? Unfortunately many languages (or domains like
user-generated data) do not have labelled data to perform
such tasks. Indeed, NLP research is still focused largely
only on a few well-resourced languages, and models are
trained primarily on large well-edited standardised mono-
lingual corpora, mainly due to historical reasons or current
incentives. Additionally, in many cases the developed tech-
niques fail to generalise (Hovy and Spruit, 2016), even to
new domains within a single language (Jørgensen et al.,
2015), mostly because they are designed to deal with par-
ticularly structured corpora.
Accordingly, it is not clear whether the previously reported
results using multi-task learning for NLP generalise to low-
resource settings. In this work, we begin to answer this
question by applying multi-task learning to user-generated
data. As a case study, we take the language used in Al-
geria (ALG) which uses code-switching, non-standardised
orthography as well as it suffers from the lack of any NLP
processing tools such as a tokenizer or morpho-syntactic
parsers. Like Changpinyo et al. (2018), we examine the
settings in which our tasks benefit from multi-task learn-
ing, including pairwise tasks, order of the tasks and the size
of the training data for the task with more data.

3. Tasks and Datasets
3.1. Tasks
In multilingual societies people have access to many lin-
guistic codes at the same time. In diglossic situations peo-
ple have access to even different linguistic levels of the
same language (Major, 2002). It is the case in North Africa,
where for historical reasons many languages and language
varieties are used simultaneously to various extents, in-
cluding mostly Berber, Arabic and French (Sayahi, 2014).
These languages and language varieties coexist throughout
the region and they are actively used on a daily basis (Rick-
ford, 1990). Consequently in speech-like communications,
such as in social media, people tend to mix languages.

• CSD the task deals with the detection of the language
(in multilingual CSD) or language variety (in diglossic
CSD) of each word in its context for disambiguation (El-
fardy et al., 2013; Samih and Maier, 2016; Adouane and
Dobnik, 2017). This is challenging for ALG, because the
same script is used for all languages (MSA, local Arabic
varieties, Berber, French, and English). To further com-
plicate matters, vowels are omitted from the text.

On the other hand, the enormous spelling variations in
user-generated data for all languages and language va-
rieties (Eisenstein, 2013; Doyle, 2014; Jørgensen et al.,
2015) challenges the standard language ideology with re-
gards to whether human languages are universally stan-
dardised and uniform (Milroy, 2001). It also poses seri-
ous challenges to the current NLP approaches at all lin-
guistic levels.

• SPELL the task aims at reducing orthographic variation
and noise in the data, by context-dependent spelling cor-
rection and normalisation. Indeed, user-generated con-

tent in colloquial languages contains lots of spelling vari-
ations because these languages do not have standardised
orthography and the content is unedited. We stress that
SPELL is different from a usual spelling error correc-
tion task in that it deals with a non-standardised code-
switched language —there is no existing largely agreed
on reference spelling (Adouane et al., 2019).

• SA the task deals with identifying users’ sentiments from
their generated comments.

• NER the task deals with the detection and classification
of mentions referring to entities into pre-defined classes
(person, location, organisation, product, company, etc.).

3.2. Datasets
For each task we use a separate labelled dataset. Table 1
shows statistics about the CSD, SA and NER datasets. We
give more details for each dataset below.

CSD SA NER
Class Total Class Total Class Total
ALG 118,942 MIX 11,736 OOO 67,7191
MSA 82,114 POS 10,698 PER 7,262
FRC 6,045 NEU 7,262 LOC 4,641
BOR 4,025 NEG 6,424 PRO 3,682
NER 2,283 OTH 901
DIG 1,394 ORG 399
SND 687 COM 248
ENG 254
BER 99

Table 1: Statistics about the datasets: CSD (#tokens), SA
(#samples) and NER (#mentions).

• CSD we use the dataset described by Adouane and Dob-
nik (2017) which consists of 10,590 user-generated texts
labelled at a token level (intrasentential), and includes 9
classes: Local Algerian Arabic (ALG), Berber (BER),
French (FRC), English (ENG), Modern Standard Ara-
bic (MSA), and Borrowing (BOR) (which refers to for-
eign words adapted to the Algerian Arabic morphol-
ogy), Named Entity as a general class (NER), interjec-
tions/sounds (SND) and digits (DIG).

• SPELL we use the dataset described in (Adouane et al.,
2019) which consists of a parallel corpus with 50,456
words and 26,199 types to be corrected or normalised.

• SA we use the dataset described by Adouane et al. (2020)
which consists of 36,120 user-generated comments la-
belled for 4 sentiment classes: positive (POS), negative
(NEG), neutral (NEU) and mixed (MIX).

• NER we could not get any dataset labelled for NER for
ALG that would serve directly our purpose. Therefore
we compiled a new dataset by combining the two datasets
used for CSD and SA, resulting in 46,710 user-generated
comments in total. Then with the help of two other native
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speakers, we manually labelled it for NER task by clas-
sifying every named entity mention in one of the 6 pre-
defined classes, following the labelling schema used in
OntoNotes Release 5.0 2. The classes are: person (PER),
location (LOC), product (PRO), organisation (ORG) and
company (COM). We tagged the rest of named entity
mentions like time and events as “other” (OTH) to dis-
tinguish them from non-named entities (OOO). In order
to identify multi-word expressions as one named entity
chunk, we use the IOB (Inside-Outside-Beginning) la-
belling scheme. The newly labelled corpus for NER task
has 17,133 named entities with IOB details.

4. Models

4.1. CSD and NER
We frame CSD and NER as sequence tagging tasks, i.e., the
task is to assign one of the pre-defined tags to each token in
an input sequence. We use an encoder-decoder architecture
similar the one described by Adouane et al. (2018). How-
ever, here the encoders are shared between the tasks, while
decoders are task-specific.

• The Token-level encoder (in dark orange in Figure 1) en-
codes the input sequence at the token level. It maps each
of 430 possible characters (including special characters
and emoticons) to a 100-dimensional representation. It
is composed of two convolution layers with 100 features
and a filter size of 5 with a dropout rate of 20%, followed
by ReLU activation and max pooling in the temporal di-
mension. In sum, it reads an input sequence character
by character and outputs character embeddings for each
token (constructs token representations).

• The Sequence-level encoder (in light orange) acts at a
sequence level. It takes the outputs of the token-level
encoder (character embeddings) and outputs word em-
beddings as a representation for the entire sequence. It
consists of two convolution layers with 200 features for
the first and 100 for the second, a filter size of 3, ReLU
activation and a dropout rate of 5%.

• The Dense layer (in dark green for CSD and light blue
for NER) with softmax activation maps the output of the
sequence-level encoder (word embeddings) to CSD or
NER tag sets respectively.

4.2. SPELL
We frame SPELL as a sequence-to-sequence prediction
task where the input is a user-generated sequence (text)
and the output is its normalised and corrected version (se-
quence). For this, we use an encoder-decoder architecture
(Cho et al., 2014) similar to the one described by Adouane
et al. (2019).

• The Encoder consists of the shared layers described
above in 4.1.

2https://catalog.ldc.upenn.edu/docs/
LDC2013T19/OntoNotes-Release-5.0.pdf

• The Decoder (in light green) and consists of one
Long Short-Term Memory (LSTM) layer (Hochreiter and
Schmidhuber, 1997). It takes the output of the sequence-
level encoder (word embeddings) as input and reads
it character by character. It has a vocabulary size of
430, 100 units, a token representation size of 100 and
a dropout rate of 10%. It is followed by a dense layer (in
light green too).

4.3. SA
We frame SA as a text classification task: i.e., assign one of
the pre-defined tag sets to an input sequence of any length.
We use the model described in (Adouane et al., 2020) which
consists of two sub-neural networks.

• The Encoder consists of the shared layers described ear-
lier in 4.1, namely the Token-level and the Sequence-
level encoders.

• The Dense layer (in yellow) with softmax activation
maps the output of the sequence-level encoder to SA tags.

All models are trained end-to-end for 50 epochs using a
batch size of 64 and Adam optimiser. Gradients with a
norm greater than 5 are clipped. As the main focus of the
multi-task learning, models share embedding and encoder
parameters. Each task is run for a full epoch before switch-
ing to the next task. Therefore there is no special code to
combine losses (each loss function remains the same for a
whole epoch).

5. Experiments and Results
In order to evaluate the performance of our model, we shuf-
fled the datasets and split them (with no overlapping parts)
as follows.
For CSD we use 30% (3,177 samples) as a test set, 10%
(1,059 samples) as a development set, and the remaining
60% (6,354 samples) as a training set.
For SPELL we use 20% (37,041 samples) as a test set, 5%
(9,261 samples) as a development set, and 75% (138,917
samples) as a training set.
For SA we use 17% (6,122 samples) as a test set, 10%
(3,612 samples) as a development set, and 73% (26,386
samples) as a training set.
For NER we use 30% (14,013 samples) as a test set, 10%
(4,671 samples) as a development set, and the remaining
60% (28,026 samples) as a training set.
Note that all datasets are separate and are labelled for
different tasks using different tag sets (depending on the
task). The hyper-parameters mentioned in Section 4 are
fine-tuned on the development sets. Given the small size of
the CSD dataset and the high sparsity of the SPELL dataset,
after fixing the hyper-parameters, we train both on the train-
ing and the development sets, following Yin et al. (2015).
To examine the effect of jointly learning the tasks, we ex-
periment with the following setups:

1. Pairwise tasks: To measure the effect of a task on a
single other task, we train them two at a time, as shown
in Table 2.
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Figure 1: Multi-task model architecture.

2. Order of tasks: To check whether the order of tasks
affects the overall performance, we run sets of 3 and 4
tasks in various orders. We report the cases where the
order has a measurable effect (positive or negative) on
the performance.

3. Context of words: We are interested in measuring
the effect of the context for SPELL (sequence-to-
sequence). To do so we either feed the data word by
word or whole user-generated text at a time. In the
following SPELL will refer to the context-aware task,
and SPELL-token refers to the contextless task.

4. Size of SPELL training data: We want to investigate
the impact of the size of the training data, especially
considering that one of the tasks (SPELL) has much
more data than the other (CSD, SA and NER) tasks.
To do so, we vary only the size of the training data
of SPELL while keeping the training sets of CSD, SA
and NER fixed each time (as well as the test sets).

5. Training data augmentation: We experiment with
augmenting the training data for the SPELL task (fur-
ther referred to as augmented). In this experiment
the training data is a combination of tokens and se-
quence of tokens. (This is equivalent to jointly training
SPELL and SPELL-token.)

For each case we take models trained separately (single
tasks) as baselines. For pairwise tasks we report the de-
tailed results measured as the average Accuracy and macro
F-score on the test sets over 50 epochs, thus taking into ac-
count the speed of learning. For other experiments (2, 3,
4, and 5) we show the performance, measured as the over-
all Accuracy, of jointly learning the tasks at hand on the
test sets over 20 epochs (we found no significant gain when
training for longer and do not report further).

5.1. Pairwise tasks

Task Tasks Training Accuracy (%) Macro F-score

C
SD

CSD single 96.80 64.54
CSD + SPELL joint 96.32 62.27
CSD + SA joint 94.30 34.61
CSD + NER joint 97.20 71.29

SP
E

L
L

SPELL single 93.49
SPELL + CSD joint 93.60
SPELL + SA joint 93.20
SPELL + NER joint 93.71

SA

SA single 61.23 54.08
SA + CSD joint 61.35 53.31
SA + SPELL joint 60.74 51.50
SA + NER joint 59.82 53.46

N
E

R

NER single 99.80 49.68
NER + CSD joint 99.82 48.65
NER + SPELL joint 99.78 42.05
NER + SA joint 99.74 34.60

Table 2: Macro-average performance of the tasks trained
separately and pairwise. Underlined values are baselines.
Values in bold show positive effect of jointly learning the

tasks at hand.

In Table 2, results measured as Accuracy indicate that
learning SPELL, SA and NER tasks jointly with CSD im-
proves their performance over learning them separately —
by comparing the performance of single tasks to their per-
formance when jointly trained with CSD.
Note that the gain is mutual between CSD and NER, i.e.,
jointly learning the tasks benefits both, to different extents.
Nevertheless, SPELL and SA slightly benefit from CSD but
do not improve it. Interestingly whenever multi-task in-
cludes SPELL or SA tasks, the overall performance of the
second task (CSD or NER) drops compared to learning the
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task separately.

Figure 2: Accuracy (%) of jointly learning 2 tasks for 50
epochs.

A closer look at the results per epoch in Figure 2 indicates
that when beneficial, multi-task learning speeds up the per-
formance of the tasks for the first few epochs.
The same behaviour is observed in experiments below (Sec-
tion 5.2 for instance). This could be because (1) the gener-
ated shared representation is not wide enough to capture all
tasks perfectly —it needs more parameters in shared lay-
ers, or that (2) each task has enough data in itself to reach
maximum accuracy. (3) Another hypothesis, which contra-
dicts (2), is that the sparsity and noise in the SPELL and SA
training data effects negatively the other tasks.
Jointly training NER with CSD (in turquoise) outperforms
training the tasks separately. Furthermore, jointly learning
SA with CSD (in red) and SA with SPELL (in pink) out-
performs SA trained as a single task. These observations
refute hypothesis (2). We controlled for hypothesis (1) by
increasing the number of features in the shared layers. That
is to say, we tried different values and found that using 500
features in the CNN layers of the token-level encoder, and
500 and 1,000 features for the first and the second CNN
layers of the sequence-level encoder has slightly improved
the performance of SPELL. However, the overall behaviour
of jointly learning SPELL or SA with CSD or NER is still
the same. This means that hypothesis (1) does not hold,
i.e., it is likely that the noise and sparsity of the SPELL and
SA datasets have negative effects on training them jointly
with each other or with CSD and NER. Evaluating this hy-
pothesis requires further investigation, which we leave it as
future work.
We provide in Table 2 the macro-average F-score for each
setting which also reflects the overall impact of jointly
learning the tasks by treating all the classes equally. More-
over, since all our datasets are imbalanced both in terms of
class distributions and dataset sizes (certain classes have
more samples than others and some datasets are much
larger than others) we also show the micro F-score at a con-
vergence point for each setting to better analyse the effect
of jointly learning the tasks on each class.

Task Class CSD CSD + SPELL CSD + SA CSD + NER

C
SD

ALG 92.05 89.82↓ 83.90↓ 91.86↓
BER 74.29 71.43↓ 00.00↓ 64.71↓
BOR 77.10 62.45↓ 20.91↓ 72.22↓
DIG 99.93 99.93 99.25↓ 99.93
ENG 26.67 15.38↓ 00.00↓ 37.50↑
FRC 83.62 74.45↓ 44.93↓ 82.17↓
MSA 90.76 87.88↓ 81.71↓ 90.39↓
NER 58.62 26.74↓ 02.35↓ 62.83↑
SND 96.14 95.98↓ 80.37↓ 95.58↓
Class SA SA + CSD SA + SPELL SA + NER

SA

MIX 60.38 62.48↑ 64.20↑ 60.70↑
NEG 41.72 42.44↑ 31.88↓ 48.21↑
NEU 53.80 50.95↓ 54.95↑ 56.11↑
POS 75.59 75.92↑ 76.92↑ 75.48↓
Class NER NER + CSD NER + SPELL NER + SA

N
E

R

COM 21.54 29.55↑ 11.32↓ 00.00↓
LOC 80.77 81.50↑ 74.03↓ 66.05↓
OOO 99.50 99.59↑ 99.45↓ 99.42↓
ORG 09.57 06.67↓ 03.87↓ 00.00↓
OTH 26.39 27.41↑ 22.66↓ 18.75↓
PER 63.38 69.77↑ 54.36↓ 52.17↓
PRO 57.20 59.93↑ 54.51↓ 47.80↓

Table 3: Micro F-score of the tasks in single and multi-task
settings. ↑ marks positive effect and ↓ marks negative effect
of jointly learning the 2 tasks at hand.

Results in Table 3 show that jointly training CSD with
SPELL or SA has negative effect on all CSD classes
(marked with ↓). The negative effect of SA is more pro-
nounced. Minority classes (BER, BOR, ENG, FRC, and
NER) are more affected than others. Training CSD with
NER has also caused some loss in the performance of some
classes of CSD (marked with ↓), but the loss is smaller
than when trained with SPELL or SA. The positive effect
of NER task on CSD (marked with ↑) could be attributed
to its improvements for ENG and NER classes (two minor
classes) with a gain of 10.83 and 4.21 points on the F-score
respectively. One possible explanation for this improve-
ment could be that the model could extract some under-
lying structures between some named entity mentions and
English words used in the same context. It could be also
that it becomes easier for the model to further classify a to-
ken in one of NER classes when it knows it is a mention of
a named entity.
As shown in Table 3, some classes are harder to learn than
others, single trained models struggle also with them. Over-
all SA benefits from CSD and NER. On the one hand, the
gain from CSD could be attributed to its positive effect on
MIX, NEG and POS classes. Nevertheless, CSD has a neg-
ative effect on NEU with a loss of 2.85 points on the F-
score. On the other hand, NER has improved MIX, NEG
and NEU classes with a slight loss on POS. SPELL has im-
proved MIX, NEU and POS and caused significant drop on
NEG with a loss of 9.84 points on the F-score.
The main difference between the effect of the tasks is
mainly on the minority classes (NEG and NEU). This sug-
gests that the tasks could be complementary and their ef-
fect could be optimised if trained jointly. This is confirmed
when training the 4 tasks together as shown in Figure 4 —at
least for the first 10 epochs for SA.
SPELL and especially SA have a significant negative im-

21



pact on all classes of NER. Nonetheless CSD has improved
all NER classes except ORG (which a single NER model
struggles to capture, with an F-score of only 9.57).

5.2. Order of tasks
Results in Figure 3 show that, except for NER, jointly learn-
ing the CSD, SPELL and SA tasks improves their perfor-
mance over learning each one separately (as single tasks)
only for the first few (7) epochs: after that, learning CSD as
a single task outperforms training it with other tasks (blue
line), and the effect of learning jointly the tasks is not clear
for SPELL and SA.

Figure 3: Accuracy (%) of jointly learning 3 tasks for 20
epochs with varying task order.

The results suggest that the order of the tasks has a differ-
ent effect on the different tasks, for the first few epochs.
For instance, while training SA+NER+CSD has a negative
effect on both CSD and NER, it has a positive effect on
SA (outperforms even SA trained separately). Likewise for
CSD-NER-SA but at different extent. NER+CSD+SA has
a negative effect on SA and NER overall, but it has a posi-
tive effect on CSD at the beginning. This suggests that the
order of the tasks affects strongly the first epoch.
The same observation could be applied when jointly learn-
ing the 4 tasks as shown in Figure 4. In more details,
jointly learning the 4 tasks in NER+CSD+SPELL+SA and
SPELL+CSD+NER+SA orders improves SPELL, where
the task achieves its best performance. While the same task
orders have no positive effect on NER, they do boost the
performance of CSD and SA in the beginning but eventu-
ally they cause the overall performance to level faster.

5.3. Context of words for SPELL
So far SPELL is trained at a sequence level (as a sequence-
to-sequence). In order to measure the effect of the word
context we train the same model architecture at a token
level, and we refer to it as SPELL-token in Figure 5. The
choice of NER+CSD+SPELL+SA order is based on the
aforementioned results in Figure 4 where the selected task
order performs the best for SPELL (in red). The results
indicate clearly that context does matter for SPELL when

Figure 4: Accuracy (%) of jointly learning 4 tasks for 20
epochs with varying task order.

Figure 5: Accuracy (%) of jointly learning 4 tasks with(out)
word context for SPELL.

trained separately and for CSD and NER tasks when trained
jointly with SPELL and SA. Surprisingly, SPELL (with
context) has a positive effect on SA only for the first 6
epochs then the effect is reversed. SPELL-token has an
even more positive effect on SA before epoch 8. This sug-
gests that either SA and SPELL datasets could include more
ambiguity compared to other datasets, or that the noise of
the two datasets hinders learning the tasks jointly.

5.4. Size of SPELL training data
As mentioned earlier, in this experiment we only vary
the size of the training set for SPELL. We try 10k, 50k,
100k and all (185k)) and keep the rest unchanged to in-
vestigate whether this has any impact on jointly learn-
ing the tasks. We use the same task order, namely
NER+CSD+SPELL+SA as motivated earlier, and we refer
to it as multi-task in Figure 6.
In single task learning, the learning curves of SPELL in
Figure 6 indicate that the performance of the task improves
quickly with more data (by comparing the performances of
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Figure 6: Accuracy (%) of jointly learning 4 tasks with
varying SPELL training size. Single task: learning each
task separately (baselines). Multi-task: jointly learning the
tasks in NER+CSD+SPELL+SA order. All: train on all
training sets as described in Section 5.

100k to 10k and 50k training samples). However, the per-
formance levels with 100k samples, even though it takes
a few more epochs to reach the performance than when
using all training data. Towards the end the two lines are
almost superposed. One possible explanation is that most
representative data is already covered in 100k samples (the
model has already seen enough data to achieve its maxi-
mum performance).
In multi-task learning, the same trend of single task learn-
ing is observed for SPELL with a small gain in the perfor-
mance in the beginning when multi-tasking. Interestingly,
as the amount of data increases, the gain of multi-tasking
diminishes. For CSD, increasing the training size of SPELL
from 10k to 50k has a negative effect, but increasing the
size to 100k has boosted the performance of CSD especially
in the beginning. The same thing is observed for NER and
SA. One possible explanation could be that the datasets of
50k or less are too small and subject to random noise.
The best gain of multi-task for CSD is achieved when
trained with only 100k of SPELL. NER and SA, exceeding
even single task, benefits the most when trained with only
10k of SPELL. SPELL nevertheless follows the “more data
better performance” hypothesis.

5.5. Data augmentation
We replicate the same experiment as in Section 5.3, but in-
stead of comparing the performance of SPELL-token and
SPELL separately, we augment the SPELL training data by
combining both (token and sequence as input). This allows
us to optimise the gain, if any, from the SPELL data.
Results in Figure 7 show that multi-task with the aug-
mented data has arguably very little effect on SPELL com-
pared to the single task in the same setting (the two lines are
nearly superposed). However, data augmentation boosts the
performance of SPELL compared to non-augmented data
and even achieves its best performance. This rejects again
hypothesis (2) in Section 5.1 because the performance of

Figure 7: Accuracy (%) of jointly learning 4 tasks with data
augmentation for SPELL. Augmented: using token + se-
quence as input to SPELL.

SPELL keeps increasing with more data.
On the one hand, augmenting SPELL data has a no-
table positive effect on SPELL when jointly trained with
the other tasks compared to the same setting with non-
augmented data (comparing green and red lines). On the
other hand, in terms of effect on the other tasks, while aug-
menting SPELL data has a negative impact on SA, it offers
a small benefit for CSD and NER at the very beginning (be-
fore epoch 6), but it is outperformed by the non-augmented
data after that.

6. Conclusions and Future Work
We have examined the effect of jointly learning 4 tasks,
which are neither morpho-syntactic nor semantic tagging,
for noisy user-generated Algerian texts. The main find-
ings of our empirical investigation, which includes a va-
riety of experiments, could be summarised in the following
points. (1) Tasks have different impacts on each other when
learned jointly. (2) In multi-task learning notable gains are
achieved for some tasks when trained jointly with specific
tasks. Other tasks benefit from jointly learning them with
some other tasks but the gain is only during the first few
epochs, especially for tasks with little training data (CSD,
NER and SA comparably to SPELL). Training for more
epochs degraded their performance compared to learning
them separately which is likely caused by the noisiness and
sparsity of the data.
This means that it is hard to say whether multi-tasking is
useful or not without mentioning several factors such as the
tasks themselves, their order, the size of their datasets. (3)
Word context for SPELL does matter for the task itself (sin-
gle task) and for the tasks it is jointly trained with. (4) More
SPELL training data does not necessary yield better results
neither for the task itself (single task) nor for the tasks it
is jointly learned with. In fact, performance is levelling at
a certain point, in our case 10k samples for SA and NER,
100k for CSD, confirming this hypothesis. (5) Combin-
ing token and sequence level SPELL (augmented) is more
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beneficial for the task itself (single task) with no gain for
multi-task at the convergence point.
In the future, we will examine hypothesis (3) using sequen-
tial transfer learning, for instance by running SPELL on all
datasets and compare their performances to the non spell
corrected and normalised ones. Furthermore, we plan to
explore the idea of curriculum learning (Elman, 1993; Ha-
cohen and Weinshall, 2019) on both tasks and individual
classes for each task by introducing the tasks or the classes
in increasing order of difficulty.
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Abstract
Code-mixed texts are abundant, especially in social media, and poses a problem for NLP tools, which are typically trained on
monolingual corpora. In this paper, we explore and evaluate different types of word embeddings for Indonesian–English code-mixed
text. We propose the use of code-mixed embeddings, i.e. embeddings trained on code-mixed text. Because large corpora of code-mixed
text are required to train embeddings, we describe a method for synthesizing a code-mixed corpus, grounded in literature and a survey.
Using sentiment analysis as a case study, we show that code-mixed embeddings trained on synthesized data are at least as good as
cross-lingual embeddings and better than monolingual embeddings.
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1. Introduction
People from around the world are able to connect and ex-
change information instantly, through the internet and so-
cial media. This exchange of information is dominated by
the English language (Danet and Herring, 2003; Kramarae,
1999; Poppi, 2014). To prepare Indonesians to go global,
the English language has been taught to Indonesian students
from elementary school. This exposure to the English lan-
guage instigates frequent Indonesian–English code-mixing
in Indonesia (Brown, 2000, p. 139). This phenomenon
is clearly observable in social media not only used by In-
donesians but also across languages (Cárdenas-Claros and
Isharyanti, 2009; Shafie and Nayan, 2013). Code-mixed
text is a challenge for the computational linguistic commu-
nity, where work based on social media text (Chakma and
Das, 2016; Barman et al., 2014) is common. This poses
a challenge because most models such as word-embedding
models assume the training data is monolingual.
In this paper, we focus on code-mixed Indonesian–English
text. Code-mixing has also been referred to as intra-
sentential code-switching (Hoffmann, 2014), i.e. the two
or more languages are mixed within sentences, not only be-
tween sentences. In code-mixed sentences, depending on
the language, the word in L1 (e.g. Indonesian) is usually
not only replaced with its translation in L2 (e.g. English),
but can also be merged with affixes of the L1 (e.g. In-
donesian). For instance ”Kita perlu revise documentnya”
(ID: Kita perlu memperbaiki dokumennya; EN: We need
to revise the document). In the example, the English word
”revise” is used instead of the Indonesian word ”memper-
baiki” and the English word ”document” is merged with
the Indonesian suffix ”-nya”.
There is plenty of research on cross-lingual word-
embeddings, which can use either monolingual corpora or
parallel corpora to do projection, mapping or alignment
(Ruder et al., 2017). In most cases, a set of monolingual
embeddings in one language is projected to a set of mono-
lingual embeddings in the other language, or both sets are
projected into a shared space. These methods might not

be enough to capture intra-sentential code-switched words
since cross-lingual embedding tries to merge word rep-
resentations from two sets of monolingual texts. Mixed
words will therefore not be represented in cross-lingual
word-embeddings. To address this issue, we suggest that a
cross-lingual word embedding model based on code-mixed
sentences might be needed. We will call these embeddings
code-mixed word embeddings. These word embeddings
still cover more than one language like cross-lingual em-
beddings, but they do so in a setting where the languages
are mixed, rather than separate. This has previously been
proposed for English–Spanish by Pratapa et al. (2018b).

To train a word embedding model of any type, a large
amount of data is needed. Crawling social media does not
guarantee that we get balanced corpora of diverse patterns
of code-mixed sentences, nor that we get a large enough set
of code-mixed sentences. To avoid getting a skewed cor-
pus, we need to be able to control class (code-mixed pat-
tern) distribution in our corpus. One possible method is to
synthesize the training corpus By synthesizing a corpus, we
will be able to control the class distribution in our data set,
and we can easily create a large corpus.

A number of studies has previously proposed methods
for synthesizing code-mixed text, using a variety of ap-
proaches, based on neural networks (Winata et al., 2019;
Chang et al., 2019), linguistic theories (Lee et al., 2019;
Pratapa et al., 2018a), or heuristics (Wick et al., 2016).
None of these studies have incorporated mixed morphol-
ogy, which is important in the Indonesian–English setting
we are interested in. Our study is using a heuristic approach
similar to the work by Wick et al. (2016), which is, how-
ever, focused on artificial code-switching involving sev-
eral languages with the end goal of improving cross-lingual
NLP, rather then on mimicking naturally occurring code-
mixed data with the end goal of processing code-mixed
data.

The main purpose of this study is to evaluate whether code-
mixed sentences can be better represented by code-mixed
embeddings than by cross-lingual embeddings based on
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Figure 1: Overview of the methodology for this study. Blue color shows the process of synthesizing a code-mixed corpus.
The orange color shows the process of Word Embedding Evaluation

monolingual embeddings. In addition, as a prerequisite
task, a method for synthesizing Indonesian-English code-
mixed corpus will be presented, grounded in literature and
a survey, but simpler than previously proposed methods.
The main contributions of this paper are:

• A simple method for creating a synthetic code-mixed
corpus of high quality

• Evaluation of code-mixed, cross-lingual and mono-
lingual word embeddings on code-mixed Indonesian-
English text on a sentiment classification task.

The methodology that we used is shown in Figure 1. The
process is divided into two phases. The first one is to syn-
thesize a code-mixed corpus. The second phase is word
embedding evaluation, where we compare different types
of word embeddings on a sentiment classification task, in
order to investigate the feasibility of using word embed-
dings created from a synthetic code-mixed corpus.
The paper is organized as follows: In section 2 we review
related work. In section 3 we describe Indonesian–English
code-mixing and section 4 describes the data used. Sec-
tion 5 describes the synthesis of the code-mixed corpus, in-
cluding the results on a survey of code-mixed patterns and
an evaluation. Section 6 describes how we trained word
embeddings, and section 7 gives the results for these word
embeddings on a sentiment classification task. The paper
ends with a conclusion and suggestions for future work in
section 8.

2. Related Work
We are only aware of two attempts to compare monolin-
gual word embeddings, code-mixed word embeddings, and
cross-lingual word embeddings trained on corpora with dif-
ferent types of contents. Pratapa et al. (2018b) tested dif-
ferent word embedding techniques on a code-mixed corpus,
namely correlation based model, compositional model, and
skip-gram model on Spanish–English. They created the
bilingual word embedding using monolingual embedding
and synthetic code-mixed corpus. They evaluated these
word embeddings on a semantic task (sentiment analysis)
and a syntactic task (POS tagging). They found that word
embeddings created from the code-mixed text, even if it
is artificially created, is needed for processing code-mixed
text since the existing cross-lingual embeddings are not
suitable. Our study is applied to a different language pair,

and we use different methods for training embeddings. We
were unable to evaluate on a syntactic task, due to a lack of
annotated data for code-mixed Indonesian–English.
Wick et al. (2016) train code-mixed embeddings on syn-
thetic data where five languages are mixed. They evalu-
ate these embeddings on a bilingual analogy tasks and on
cross-lingual sentiment analysis. The goal of this work
is different from us, since their purpose was to find em-
beddings that are useful in a cross-lingual learning setting,
rather than in a setting where code-mixed data is processed.
As for non-synthetically creation of code-mixed corpus,
there have been multiple attempts such as Turkish–German
Code-Switching Corpus (Çetinoğlu, 2016), Arabic–
Moroccan Darija Code-Switched Corpus (Samih and
Maier, 2016), Hindi–English Code-Mixed Corpus (Vijay
et al., 2018), and English–Spanish Code-Switching Twit-
ter Corpus (Vilares et al., 2016). Yet, English–Indonesian
Code-Mixed Corpus does not exist. Most of the code-
mixed corpora are created by fetching social media infor-
mation such as Tweets.
There are several studies that precede our study in code-
mixed text synthesis. Some of the recent approach use neu-
ral networks. Winata et al. (2019) create a sequence-to-
sequence model with a copy mechanism which learn how to
combine sentences from parallel corpora to generate code-
mixed text. Chang et al. (2019) utilize a generative adver-
sarial network to generate code-mixed sentences.
One early study which synthesizes code-mixed sentences
is the work by Wick et al. (2016). They present a method
for creating artificially code-switched text across many lan-
guages, which they apply to five languages. They use an al-
gorithm where they randomly sample words to be replaced.
For each sampled word, they pick one of the concepts, or
word senses, possible for that word, and sample a word in
any language that belongs to that concept. Our method
only mixes two languages, and it is even simpler, in that
it does not require a concept dictionary. We also integrate
morphology mixing, which is not handled by Wick et al.
(2016). Furthermore, the purpose of the two studies are dif-
ferent, since our goal is to mimic naturally occurring code-
mixing, whereas their goal is to create data which is useful
for cross-lingual learning.
Lately, theories about the nature of code-switched dis-
course have been used to generate synthetic code-mixed
text. Although there is no consensus, there are, among oth-
ers, three leading theories explaining the formation of code-
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switched text. They are the Functional Head Constraint
(FHC) theory (Di Sciullo et al., 1986; Belazi et al., 1994),
the Equivalence Constraint (EC) theory (Sankoff, 1998;
Poplack, 1980) and the Matrix Language Frame (MLF) the-
ory (Myers-Scotton, 1997).
One study which uses EC theory to synthesize the code-
mixed test is the work by Pratapa et al. (2018a). The ba-
sic idea of EC-based code-mixed sentence generation is to
ensure that the generated sentence does not break mono-
lingual grammar in both languages. For instance, EC the-
ory will disallow the fragment book blue in an English sen-
tence since it is grammatically incorrect. They apply EC-
theory to generate synthetic sentences by collapsing two
constituency parses tree into one. In order to apply their
method, they create a parallel word-aligned corpus that is
used to replace every L2 words with L1 words in L2 con-
stituency tree with a corresponding hierarchical structure,
on which they can apply the EC-theory to maintain the
grammatical structure of L2. In contrast, our study uses
a simpler rule-based method replicating the pattern that hu-
man produces. It does not need parse trees nor word aligned
corpora, but a bilingual dictionary.
Lee et al. (2019) present a study where they use the MLF
theory to generate synthetic code-mixed text. MLF the-
ory suggests that in a code-mixed sentence, there will be
a dominant language (matrix language) and inserted lan-
guage (embedded language). This study uses parallel text
data aligned at the phrase-level, as a basis for inserting
phrases from the embedded language into the matrix lan-
guage. They apply their method to language modelling,
where they sample phrases to insert on the fly, and also
combine this with naturally occurring code-mixed data.
The idea of using embedded language to create synthetic
code-mixed text is similar to our study. An important differ-
ence is that their method is based on parallel data whereas
our method is based on a bilingual dictionary. They do not
model morphology mixing.
There is some work on sentiment classification for code-
mixed data. Typical methods are text normalization
(Sharma et al., 2015) or adding additional annotations (Vi-
lares et al., 2016).

3. Code Mixing in Indonesian
The Indonesian language has two distinct forms, a formal
and an informal variant. Code-mixing can occur with both
variants, both in speech and in written format, e.g. maga-
zine articles, text messages, and social media content. Most
social media text, such as twitter, use the informal variant.
The informal form of Indonesian is mainly categorized into
two groups. The first group is the informal usage of words.
For instance; the usage of informal pronouns (e.g. ”gue”
instead of ”saya”; EN: ”I”), informal abbreviations (e.g.
”lht” instead of ”lihat”; EN: ”see”), and non-standard
spelling (e.g. ”haaaaloo” instead of ”halo”; EN: ”hello”).
The second group is the informal grammar especially the
informal use of affixes. In the informal form, formal affixes
are either dropped or replaced. For instance; ”saya men-
jual ayam” (EN: ”I am selling chicken”) becomes ”saya
jual ayam” (the prefix men- is dropped) or ”saya ngejual
ayam” (the prefix ”men-” is replaced with informal prefix

”nge-”). Another example is ”kirimkan paket ini” (EN:
”send this package”) becomes ”kirim pake ini” (suffix -
kan is dropped) or ”kirimin paket ini” (suffix -kan replaced
with informal suffix -in). In code-mixed sentences, both
categories of informality can be used. For instance; ”Gue
ngeupdate document”; ID: ”saya memperbaharui doku-
men”; EN: ”I am updating a document”. In the exam-
ple, the formal pronouns ”saya” is replaced with the in-
formal pronouns ”Gue” and the informal prefix ”nge-” is
used with english word ”update” to replace the formal verb
”memperbaharui”.
Many studies have been conducted to analyze the usage
and the form of English–Indonesian code-mixed sentences
(Marzona, 2017; Siregar et al., 2014; Kurniawan, 2016;
Habib, 2014; Setiawan, 2016). From these studies, we de-
duced that there are two main forms of Indonesian code-
mixed sentences. These two patterns appear in all liter-
ature. The first form is word replacement where, for in-
stance, Indonesian nouns, adjectives, verbs, and conjunc-
tions are replaced with their English counterparts. The sec-
ond form is morphology mixing where Indonesian affixes
(formal and informal) are mixed with English verbs. For
instance, ”Dokumennya bisa didownload anytime” (ID:
Dokumennya bisa diunduh kapan saja; EN: The docu-
ment can be downloaded anytime). The study by Kur-
niawan (2016) found that 60 percent of English words in
an English–Indonesian code-mixed sentence is the average
distribution in code-mixed Indonesian–English text. How-
ever, this is based on a small study of only three young
persons.
In this work, we will only be concerned with the formal
variant, since the formal variant has smaller word vari-
ation than the informal variant. Formalizing the corpus
helps reduce the Out-of-Vocabulary (OOV) when we do a
downstream task such as sentiment analysis. Furthermore,
the sentiment analysis corpus (Saputri et al., 2018) we use
mostly contains formal Indonesian. However, all methods
used would be equally applicable to informal Indonesian.

4. Data and Pre-Processing
We use multiple English–Indonesian sentence-aligned cor-
pora from several genres: The Open Subtitle 2018 Cor-
pus (Lison et al., 2018), TED 2018 Corpus (Cettolo et
al., 2012), and GlobalVoice Corpus (Tiedemann, 2012), all
taken from the OPUS collection (Tiedemann, 2012). These
corpora are cleaned and pre-processed. Table 1 gives an
overview of the size of the corpus before and after pre-
processing. Open Subtitle 2018 dominates the corpus.
The open subtitle corpus contains a lot of non-letter char-
acters (e.g. ¶\∗#) and formatting (e.g. {\cHFFFFFF}). To
clean this, we adjusted the PrepCorpus script1 to accommo-
date the Indonesian translation. Moreover, the subtitles also
contain song lyrics that are not translated into Indonesian.
Therefore, the non-translated sentence pairs were removed
from the corpus. These sentences were automatically re-
moved leveraging a bilingual lexicon. A sentence pair is
removed if more than 60 percent of the words in the In-
donesian sentence are found in the English dictionary. The

1https://github.com/rbawden/
PrepCorpus-OpenSubs.
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Original TED 2018 Glove OpenSub Total
Sentences 117,359 14,448 9,268,181 9,399,988

Tokens – ID 1,646,944 238,968 47,025,227 48,911,139
Tokens – EN 1,882,869 264 689 54,969,761 57,117,319

Cleaned TED 2018 Glove OpenSub Total
Sentences 114,915 14,213 9,237,234 9,366,362

Tokens –ID 1,624,189 232,060 45,943,213 47,799,462
Tokens – EN 1,862,658 257,976 53,723,799 55,844,433

Table 1: The size of corpora before and after pre-processing, for Indonesian (ID) and English (EN).

TED2018 corpus has meta-data information in the corpus.
For example <speaker>Al Gore</speaker>. We removed
all such meta-data as well as blank lines and double dash
characters (--). The Global Voice Corpus contains non-
letter characters (e.g. # and ... ). These characters as well
as blank lines were also removed. After this basic cleaning,
we extended all English contractions, (e.g I’ve → I have)
using our script which based on the pycontractions library2.
Several Indonesian sentences in the corpus were formed in
an informal manner. Since this study only concerns formal
Indonesian, formalization of the informal sentences was
done during the pre-processing. To formalize the informal
sentence, we are using the Colloquial Indonesian Lexicon3

as well as a lexical normalization method from the study
by Barik et al. (2019). The lexicon and the normalization
method are sufficient for mapping the informal words and
affixes back to the standard form. We then lower-cased all
data. For English we used Moses (Koehn et al., 2007) to
tokenize the data, and for Indonesian, the InaNLP toolkit
(Purwarianti et al., 2016). To make sure that the character
replacement in Indonesian is consistent with the English
Corpus (e.g. apostrophe (’)→ &apos; ), the tokenized cor-
pus was re-tokenized using Moses with the English lan-
guage as an option. The sentences were not lemmatized
because affixes are part of the Indonesian code-mixed pat-
tern.
For synthesizing our code-mixed corpus, and for some of
the methods for creating cross-lingual embeddings, as well
as for the cleaning described above, we used the bilin-
gual Indonesian–English lexicon from Facebook’s ground
truth bilingual dictionaries4. The bilingual lexicon contains
96,518 words pairs.

5. Synthesizing a Code-Mixed Corpus

In this section, we describe the work on synthesizing the
code-mixed corpus. We first describe a survey conducted
to investigate the patterns of code-mixing actually in use
across Indonesia. We then describe our method for synthe-
sizing and evaluate the resulting corpus.

2https://github.com/ian-beaver/
pycontractions.

3https://github.com/nasalsabila/
kamus-alay.

4https://dl.fbaipublicfiles.com/arrival/
dictionaries/id-en.txt.

5.1. Survey
The purpose of the survey is to confirm the code-mixed
patterns described in the literature. The goal is to validate
whether Indonesian people from different cities would cre-
ate English–Indonesian code-mixed sentences in the same
way. The reason for this is that the literature are typically
based on one specific subset of the Indonesian population,
e.g. one city (Siregar et al., 2014), one institution (Kurni-
awan, 2016) or one industry (Marzona, 2017). Therefore,
since Indonesian society is not homogeneous, these studies
might not represent more than a single variant of Indone-
sian.
The survey was given out to Polyglot Indonesia members.
Polyglot Indonesia is a non-profit organization in Indone-
sia, which started as a community for language enthusiasts.
The organization’s members reside across Indonesia.
The survey was made in Google Form which was then
spread via Polyglot Indonesia’s WhatsApp group, which
has 200 members from various cities across Indonesia.
Polyglot Indonesia members were chosen because they
have linguistic knowledge and they have a diverse cultural
and linguistic background. The survey has two questions.
1. The city of origin; 2. Write 10 examples of code-mixed
sentences. The survey was conducted for 4 weeks starting
in September 2019.
The respondents of the survey (115 people) reside in 14
cities around Indonesia. All of them produced code-mixed
sentences with the two patterns that appear in all literature
(Marzona, 2017; Siregar et al., 2014; Kurniawan, 2016;
Habib, 2014; Setiawan, 2016). For instance ”Harganya ga
reasonable” (ID: Harganya tidak masuk akal; EN: The
price is not reasonable) and ”Gue gampang kedistract
gitu” (ID: saya gampang terganggu; EN: I am easily got
distracted). In the two examples, the underlined word is
the informal form.
The results of the survey confirm that the code-mixed
patterns found in the literature actually reflects the code-
mixed patterns used across Indonesia well. The survey also
confirms, referring to Matrix Language Frame theory, In-
donesian language is the dominant language in Indonesia-
English code-mixed text. We thus go on to develop a
method implementing the two main patterns: to exchange
words and to exchange words with the addition of Indone-
sian affixes.

5.2. Method for synthesis
We developed an algorithm for the code-mixed sentence
synthesizer, based on a monolingual Indonesian corpus and
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Algorithm 1 Code-mixed synthesis algorithm
1: for each Indonesian sentences do
2: swapped← 0
3: for each word in sentence do
4: if swapped / num words in sentence < MAX SWAP then
5: continue with next sentence
6: end if
7: if random.generate() > SWAP THRESHOLD then
8: strippedWord, affixes← removeAffixes(word)
9: if word in bilingual dictionary then

10: swap(word, englishWord)
11: swapped++
12: else if strippedWord in bilingual dictionary then
13: mergedWord← addAffixes(englishWord, affixes)
14: swap(word, mergedWord)
15: swapped++
16: end if
17: end if
18: end for
19: end for

a bilingual dictionary. The reason for basing the synthe-
sis on the Indonesian side is that code-mixed Indonesian–
English tend to follow Indonesian syntax. Only formal In-
donesian was addressed, but the algorithm can easily be ex-
tended to cover informal Indonesian as well.
Algorithm 1 shows how we synthesize the code-mixed cor-
pus. For each sentence, we go through the words in the
sentence from left-to-right. For each word, we try to ex-
change it with a probability set by SWAP THRESHOLD.
If the Indonesian word is found in the bilingual lexicon, it is
exchanged (swapped) with the English word, otherwise, we
try to strip it of its affixes, and lookup the stem. If the stem
is found, we merge the affixes to the English stem, and ex-
change this mixed word with the original word. Otherwise,
no exchange takes place. We limit the number of words
exchanged in any sentence to MAX SWAP. The list of af-
fixes is based on the Indonesian affixes description from the
study by Adriani et al. (2007) (section 2). It contains 30 af-
fixes of the following types:

• Inflectional suffixes, for example, ”-kah”, ”-lah”, ”-
tah”, ”-pun”, ”-ku”, ”-mu”, and ”-nya”,

• Derivational prefixes, for example, ”be-”, ”di-”, ”ke-”,
”me-”, ”pe-”, ”se-”, and ”te-”,

• Derivational suffixes, for example, ”-i”, ”-kan”, ”-an”

• Derivational confixes, for example, ”be-an”, ”me-i”,
”me-kan”, ”di-i”, ”ke-an”.

In our experiments we set SWAP THRESHOLD to 50%
and MAX SWAP to 60% which is the average percent-
age of English words used in a code-mixed sentence in the
study of Kurniawan (2016). It is also close to the average
value in the code-mixed sentences in the corpus taken from
the survey result, which is 55.1%. Other values for these
two parameters are possible, but we leave the investigation
of this effect to future work. The generated code-mixed
corpus has the same size as our parallel corpus, over 9M

sentences and 47M words. Some examples are shown in
Table 2.

5.3. Corpus Evaluation
To measure the similarity between the real code-mixed
sentences and the synthetic code-mixed text, we use two
previously proposed measurements: Switch-Point Fraction
(SPF) and Code Mixing Index (CMI). SPF (Pratapa et al.,
2018a) measures the number of switch-points in a sentence
divided by the total number of word boundaries . We define
”switch-point” as a point in a sentence at which the words
switch to another language. CMI (Gambäck and Das, 2014)
measures the number of switches at the utterance level. It
is computed by determining the dominant language (the
most frequent language) and then counting the frequency
of words belonging to the embedded language. We calcu-
late SPF and CMI at the corpus level, averaging the SPF
and CMI for all sentences in a corpus.
We used these two measures to investigate if the synthe-
sized corpus seemed to have the same characteristics as a
naturally occurring code-mixed corpus. As a point of com-
parison, we used the corpus produced from the survey. Ta-
ble 3 shows that the natural and synthesized corpora have
very similar values for both measurements, indicating that
the distribution of words in the code-mixed corpus mimics
that of naturally occurring code-mixed sentences. It also
indicates that the choices for the tunable values of the syn-
thesizing algorithm were well chosen.
To further make sure that the generated sentences are good
examples of code-mixed text, we conducted a human eval-
uation. Two native Indonesian bilinguals (Indonesian and
English) evaluated 500 generated sentences, chosen at ran-
dom. 86 percent of the evaluated sentences were con-
sidered to be acceptable code-mixed sentences while 14
percent of the sentences were considered to be incorrect,
e.g phrases were not translated properly, or not properly
formed (e.g. misspelling), or words had translations that
are incorrect in that context. For example, the phrase
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Good Conversion.

1
ID: Dia paham betul kisah Irak, mungkin melebihi siapapun.
EN: He knows the story of Iraq perhaps more than anybody else
CM: Dia paham betul story iraq, probably melebihi anyone .

2
ID: Anda harus meninggalkan misi ini.
EN: You have to leave this mission.
CM: Anda harus leaving misi ini.

3
ID: Foto oleh Forum Pengada Layanan.
EN: Photo by Forum Pengada Layanan.
CM: Photo by Forum Pengada Layanan.

4
ID: Dua belas dari pemerkosanya diduga kini telah ditangkap, tapi dua lagi masih buron.
EN: Twelve of the suspected rapists have now been arrested, but two are still at large.
CM: Dua belas dari rapistnya diduga kini have captured, but two more still buron.

5
ID: Kesehatannya memburuk sejak kematian putrinya.
EN: She is not doing so well since the death of her daughter.
CM: Kesehatannya memburuk since deaths daughternya.

Bad Conversion.

1
ID: Dia memusnahkan prestasi ekonomi.
EN: He destroyed economic achievement.
CM: Dia gutted prestasi economy.

2
ID: Adik saya menjawab Kamu tidak mengerti sama sekali.
EN: And my sister replies You do not understand anything.
CM: Adik saya answer kamu tidak understand equal once.

3
ID: Dia mengambil risiko hidup membujang seumur hidup.
EN: She risks living the rest of her life alone.
CM: Dia retrieving risks alive membujang seumur alive.

Table 2: Example sentences from the generated synthetic corpus. ID: Indonesian, En: English: CM: Synthesized code-
mixed.

Measurement Survey Synthetic
SPF 0.2951 0.2989
CMI 0.8559 0.8431

Table 3: Switch-Point Fraction and Code Mixing Index
from the corpus taken from survey result and the corpus
from synthetic code-mixed text.

”ID:Terima kasih” sometime becomes ”EN:accept love”
or ”EN:accept ID:kasih” where it is supposed to be re-
placed by ”EN:thank you”. To evaluate the inter-evaluator
agreement, Cohen’s kappa (Cohen, 1960) was used. The
kappa coefficient is 0.874 suggesting that both evaluators
are in almost perfect agreement (between 0.81 and 1.00 ) in
the evaluation (Landis and Koch, 1977).
Table 2 shows examples of code-mixed sentences judged
as good and bad. The main issue with the three bad exam-
ples is that word by word translation causes the sentences
to be incomprehensible. In example 1, the word ”memus-
nahkan” is replaced with the word ”gutted”, which is not
contextually correct. This is because the synthesizer does
not understand the context of the sentence nor understand
word sense. In example 2, the phrase ”sama sekali” (EN:
”anything”) is replaced by the fragment ”equal once”.
This example shows another example of a phrase that is
not translated properly. In example 3, the fragment ”hidup
membujang seumur hidup” which is supposed to be re-
placed with the fragment ”living the rest of her life alone”
is replaced with the fragment ”alive membujang seumur

alive”. In addition, the word ”mengambil” is supposed
to be deleted or not replaced. The conversion for example
number three is considered more complex since the synthe-
sizer needs to be able to understand the sentence context
and word alignment.

Overall, the majority of issues come from the inability of
the synthesizer to replace phrases, which sometimes ren-
der sentences unintelligible. Another common issue is the
inability to add function words when it is needed. For ex-
ample, ”ID: ingin tahu” became ”EN:want know” where
it should became ”EN:want to know”. Misspelling is also
a common issue when replacing words and adding affixes.
A misspelled word leads to the creation of multiple variants
of the same word in the word embedding set, which is not
only useless but also reduces the potential embedding qual-
ity of the correct word. If the misspelled word were correct,
there would be more training data. We think that this issue
could be solved with a spelling correction algorithm.

The code-mixed synthesis algorithm is simple, but it can
still capture the two types of code-mixed patterns we have
identified. As shown, it does overall give good results.
There are plenty of options for improvement, though, such
as tuning the two thresholds, choosing the words to ex-
change at random, rather than linearly, and basing the
words to exchange on part-of-speech tags. Many of the er-
rors are due to multi-word expressions and collocations, so
identifying these, or at least applying the algorithm on the
phrase-level could also potentially lead to improvements.
Nevertheless, we do believe that the quality of the corpus is
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good enough for training code-mixed word embeddings.

6. Training Word Embeddings
We first train monolingual embeddings for each language
based on each monolingual side of the parallel corpus using
FastText5 (Joulin et al., 2016) with default configuration.
The model chosen to create word embeddings is the skip-
gram model (Mikolov et al., 2013).6 The code-mixed word
embeddings were created in the same way as the monolin-
gual embeddings, but from the synthetic code-mixed corpus
using the same tool (fastText) and configuration as for the
monolingual embeddings.7

To create cross-lingual word embeddings, we used
Vecmap8 (Artetxe et al., 2018) to combine the Indonesian
and English monolingual embeddings into a shared space.
We used four different modes provided by Vecmap: super-
vised, semi-supervised, identical, and unsupervised, with
the default configuration. The supervised mode, the semi-
supervised mode, and the identical mode are trying to learn
how to map two monolingual embeddings to a shared space
using seed dictionaries. The difference is on how each
mode creates seed dictionaries. The supervised mode uses
the full bilingual lexicon of 96,518 word pairs to create a
seed dictionary. The semi-supervised mode is intended to
be used if there is no large bilingual lexicon. The small
number of word pairs will be used to bootstrap the training.
In our case, we use the same bilingual lexicon as for the su-
pervised mode to bootstrap the training. The identical mode
uses identical words from both sets of monolingual word
embeddings to build the seed dictionary. The unsupervised
mode does not require a seed dictionary building. Instead,
it uses unsupervised initialization based on the isometry as-
sumption of monolingual embeddings. The isometry as-
sumption assumes that the embedding spaces are perfectly
isometric.
Since Vecmap is intended to be used for tasks like Machine
Translation or zero-shot transfer for a range of tasks, where
the texts they are applied to are monolingual, the output of
Vecmap are two files (source language and target language).
To apply these embeddings to code-mixed data, we need a
single set of embeddings. To do this, we added all English
words that did not occur in Indonesian to the Indonesian
embeddings. This means that word forms that happen to
occur in both languages will get the embedding from the
Indonesian side. The reason that we prioritized Indonesian
for shared words, is that the corpus is syntactically Indone-
sian. However, other strategies are possible, like averaging
the embeddings, but we leave this for future work.
Compared to creating cross-lingual embeddings based on
monolingual word embeddings, creating code-mixed word

5https://github.com/facebookresearch/
fastText.

6According to fasttext documentation, skipgram model is bet-
ter in performance compared to CBOW in practice.

7There was no need to use parallel data for these embeddings,
the reason for this was that we wanted the two sets of monolin-
gual embeddings to be comparable. The quality of all these sets of
embeddings could be improved by also adding additional mono-
lingual data.

8https://github.com/artetxem/vecmap.

embeddings is straightforward and a lot faster.9

7. Evaluating Word Embeddings
As a final step, we evaluate the different word embeddings
on a sentiment classification task. In this section, we de-
scribe the sentiment data, the architecture of our sentiment
classifier, and the results of the evaluation.

7.1. Sentiment Classification Task
We use the sentiment classification tweets-emotion corpus
(5,000 sentences) by Saputri et al. (2018)10. We use this
corpus because it contains Indonesian–English code-mixed
sentences.
For this study, the original code-mixed corpus which has
6 classes (anger, happiness, sadness, fear, love) were con-
verted into two polarities (positive and negative). Anger,
sadness, and fear were converted into negative, while hap-
piness and love were converted into positive. The reason for
converting the corpus into a binary sentiment task is that it
is very small and the classes for the six-way classification
had few training examples. The preparation of code-mixed
corpus is similar to the Indonesian Corpus. Sentences were
formalized, if needed, lower-cased, and tokenized.

7.2. Sentiment Classifier Architectures
Note that the purpose of this study is not to achieve state-
of-the-art on sentiment classification, but to compare word
embeddings. For that reason, we use a rather simple ar-
chitecture for classification. In preliminary experiments,
we also tried deeper architectures, but they tended to over-
fit since the data is quite small. To further highlight the
strength of each embedding type, the weights of word em-
beddings were purposely frozen, i.e. not updated, during
training.
The classifier architecture used is the Deep Averaging Net-
work architecture by Iyyer et al. (2015) as shown in Fig-
ure 2. Each word in the input sentence was converted into
its vector representation using word embeddings. Then,
from this word representation, a sentence representation
was created by averaging the representation of each word.
The sentence representation was then fed to multiple fully-
connected layers with ReLU activation followed by a soft-
max layer. A lambda layer was used to create sentence
representation. The implementation was done using Keras
framework.11 Cross-entropy was used as a loss function
with the Adam optimiser (lr=0.00003, β1=0.9, β2=0.999).
The training process was done for 20 epochs (the model
tends to overfit after 20 epochs) with 32 as batch size. Stan-
dard 10-fold cross-validation with a split of 90 percent for
the training set and 10 for test set split was used. We used
the F1-score as a metric.

7.3. Word Embedding Evaluation Result
Table 4 shows the scores using the different types of word
embeddings. The score is the mean and maximum of model

925 minutes compared to 6 hours on an 8 Intel Xeon processor
(E5620) with 4 cores @ 2.40Ghz with 192GB RAM

10https://github.com/meisaputri21/
Indonesian-Twitter-Emotion-Dataset.

11https://github.com/keras-team/keras
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Figure 2: Sentiment Classification Architecture using Deep
Averaging Network (Iyyer et al., 2015)

F1-score from each fold, accompanied by the standard de-
viation (STD). Code-mixed embeddings clearly give an ad-
vantage compared to using monolingual embeddings, with
an average improvement of 0.55% over Indonesian and
0.82% over English. It even gives slightly better results
than all of the cross-lingual embedding modes, which re-
quires more processing times and a bilingual lexicon (su-
pervised and semi-supervised). It is also worth noting that
the differences between the different types of initialization
for the cross-lingual embeddings are minor, showing no ad-
vantage of supervision over the unsupervised variants.
Analyzing the word embeddings, we find that the code-
mixed word embeddings have a somewhat higher number
of OOVs than the cross-lingual embeddings, see Table 5.
This is due both to missing English and Indonesian words,
which were on one side of the original corpus, but where
the English word was never chosen by the swap opera-
tion, or the Indonesian word was always swapped. We do
note that some words with mixed morphology are covered
in the code-mixed embeddings, such as ”drivernya“ (EN:
The driver) and ”viralkan“ (EN: make it viral). In this con-
text, we note that the code-mixed embeddings are actually
trained on less data since it is trained on the synthesized
Indonesian corpus of 9.4M sentences, whereas the cross-
lingual embeddings are trained on 9.4M sentences for each
Indonesian and English (18.8M sentences in total), which
contributes to this issue. This means that the competitive
results on the sentiment analysis task are not due to better
coverage of words. We think that the reason code-mixed
embeddings give a slightly better score than cross-lingual
methods, despite the slightly higher OOV rate and fewer
types, is because it has an inherent representation of how
both Indonesian and English words are related to each other
within the code-mixed context. This feature seems not to be
fully captured or replicated by cross-lingual methods.

8. Conclusion and Future work
In this study, we show that code-mixed embeddings are
competitive and even slightly better than both monolin-
gual and cross-lingual embeddings on a sentiment analy-
sis task of code-mixed Indonesian–English. A large code-

Result in percentage Mean (STD) Best
Baseline Embedding
1 English 62.60 (1.94) 64.77
2 Indonesia 62.87 (2.45) 64.77
Cross Lingual Embedding
3 Supervised 63.05 (1.60) 66.82
4 Semi-supervised 63.33 (1.49) 65.53
5 Identical 63.17 (1.84) 67.27
6 Unsupervised 63.33 (2.54) 66.36
Code-Mixed Embedding
7 Code-mixed 63.42 (1.65) 67.27

Table 4: List of sentiment classification cross-validation
score employing different embedding

Word Embedding OOV Type
Cross-Lingual 6,206 148,737
Code-Mixed 6,406 92,867

Table 5: Number of Out-of-Vocabulary (OOV) on word
embedding. The type is the number of distinct word repre-
sentation in the word embedding used in sentiment classifi-
cation

mixed corpus is needed to train these embeddings, but we
show that such a corpus can be synthesized based only on a
monolingual Indonesian corpus and a bilingual lexicon. We
design a simple method for synthesis, which is, however,
firmly grounded in both theory and a survey among speak-
ers across Indonesia. The synthesis resulted in 86% ac-
ceptable sentences, which we show was enough for training
competitive code-mixed embeddings. In this work, we only
explored one method for training word embeddings. We
think that it would be useful to explore other methods, as
well, in order to see how well they work for code-switched
data, and to evaluate the embeddings also on other tasks
than sentiment analysis. The synthesis method could also
be potentially improved in many ways, most importantly by
extending the matching from single words to multi-word
expressions. Other more resource-intensive options could
be to integrate spell checking or a POS-tagger into the syn-
thesis. We also want to further explore the impact of train-
ing set size for the different types of embeddings, which
might have given an unfair advantage of cross-lingual em-
beddings in our experiment.
We believe that code-mixed word embeddings have good
potential also for other NLP tasks that require cross-lingual
word embeddings. If we could use code-mixed word em-
beddings, the time and cost needed to be spent could be re-
duced, since code-mixed word embeddings do not require
a sentence-aligned corpus or the process to align monolin-
gual word embeddings. It does require either a large code-
mixed corpus, or a synthesized corpus, however, as we have
shown, good quality code-mixed embeddings can be had
also with a simple and resource-lean synthesis method. A
further potential advantage of code-mixed embeddings is
that they model code-mixed words in the context of both
languages, which might be advantageous.
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Abstract
In a multi-lingual and multi-script society such as India, many users resort to code-mixing while typing on social media. While
code-mixing has received a lot of attention in the past few years, it has mostly been studied within a single-script scenario. In this
work, we present a case study of Hindi-English bilingual Twitter users while considering the nuances that come with the intermixing of
different scripts. We present a concise analysis of how scripts and languages interact in communities and cultures where code-mixing
is rampant and offer certain insights into the findings. Our analysis shows that both intra-sentential and inter-sentential script-mixing
are present on Twitter and show different behavior in different contexts. Examples suggest that script can be employed as a tool for
emphasizing certain phrases within a sentence or disambiguating the meaning of a word. Script choice can also be an indicator of
whether a word is borrowed or not. We present our analysis along with examples that bring out the nuances of the different cases.

Keywords:Mixed-script, Code-mixing, Script-mixing

1. Introduction
Code-switching or code-mixing is a common occurrence
in multilingual societies across the world and is well-
studied linguistic phenomena (MacSwan (2012) and refer-
ences therein). Code-switching/mixing refers to the juxta-
position of linguistic units from two or more languages in a
single conversation or sometimes even a single utterance.
Despite many recent advancements in NLP, handling code-
mixed data is still a challenge. The primary reason be-
ing that of data scarcity as it appears very less in formal
texts which are usually spread across the World Wide Web.
Code-mixing is primarily observed in informal settings like
spoken conversations. However, with the advent of social
media, it has pervaded to mediums that are set in informal
contexts like forums and messaging platforms. Often these
platforms are behind privacy walls that prohibit the use or
scraping of such data. We resort to Twitter because studies
have shown that a large number of bilingual/multilingual
users code-mix on the platform (Carter et al., 2013; Solorio
et al., 2014; Jurgens et al., 2017; Rijhwani et al., 2017) and
the data is easily accessible for analysis.
There are two ways of representing a code-mixed utterance
in textual form,

• Entire utterance is written in one script (single-script
case)

• It is written in more than one script (mixed-script case)

The second phenomenon is known as script-mixing which
occurs when the languages used for code-mixing have dif-
ferent native scripts (such as English-Hindi, French-Arabic,
etc). This poses a key challenge for handling code-mixed
data collected from social media and other such informal
settings. As there is no laid out rule of how someone should
write code-mixed sentences, all permutations of scripts can
be observed in these sentences. Moreover, script-mixing
can introduce noise especially spelling variations occurring

due to transliteration based loosely on the phonetic structure
of the words (Singh et al., 2018; Vyas et al., 2014).
The primary contribution of this paper lies in analyzing
mixed-script texts present on Twitter and uncovering the un-
derlying patterns as to when and where they are seen. While
past studies have thoroughly studied linguistic functions of
code-mixing (and language alternation) in speech and text
(Poplack, 1980; Woolford, 1983; Alvarez-Cáccamo, 1990;
Muysken et al., 2000; Sebba et al., 2012), we examine the
functions of script alternation in mixed-script text. Our
analysis shows that most cases of script-mixing are inten-
tional. We find examples which suggest that script can
be used as a tool for emphasizing certain nominal entities1

within a sentence and also for disambiguating certain words
from other close homonyms. We further see how script
choice can be used to indicate whether a word is borrowed
or not.
The sections are divided in the following manner,
Data Collection: We collect a large corpus from Twitter
based on certain meta-information such as the location of
the origin of the tweet.
Data Segregation: In order to understand the co-
occurrence of code-mixing with script-mixing we tabulate
their frequencies among different permutations possible.
This gives a clear overview of how the scripts and languages
intermix with each other.
Data Analysis: At last, we present a thorough analysis of
the patterns found in the mixed-script portion of the corpus
when seen under different language contexts.

We complement our analyses with running examples for
a better understanding of the different cases. We believe
that our study will help understand the nuanced landscape
of script-mixing in better detail, and can inspire the devel-
opment of appropriate NLP tools that can harness mixed-

1We define nominal entities as phrases that behave either as a
noun phrase or a named entity.
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language/script data in the future.

2. Related Work
Mixed-script information retrieval deals with cases in which
the query and documents are in different scripts. The shared
tasks in FIRE 2015 (Sequiera et al., 2015) and FIRE 2016
(Banerjee et al., 2016) present an overview of these ap-
proaches. However, they do not work for queries or docu-
ments that are in itself represented in the mixed-script text.
Jurgens et al. (2014) study the tweets that have code-
switched (and possibly mixed-script) hashtags. They ob-
serve that authors fluent in non-Latin writing systems often
use Latin-transliterated hashtags. In our dataset too, we find
examples of tweets that are entirely in Devanagari but for
the hashtag, which is in Roman. While the hashtags can be
suggestive of certain information such as whether the tweet
is spam, an advertisement, or contains sarcasm (Davidov et
al., 2010), it could have been added just to insert the post
within the global discussion of other posts using the same
hashtag (Letierce et al., 2010). Therefore, script alternation
using hashtags may not be suggestive of much information
and we only analyse the script-mixing that occurs within the
grammatical boundary of a sentence.
Bali et al. (2014) analyse English-Hindi code-mixed posts
on Facebook to study whether a word is an instance of actual
code-mixing or just borrowing. They segregate the code-
mixed sentences on the basis of the matrix2 or embedding
language and analyse them individually. However, they
only consider the language aspect and limit themselves to
Roman sentences.
Our work differs from others because we take the script
axis into consideration. We consider all the permutations
of script and language and present a rich case study con-
taining qualitative and quantitative analyses. To the best of
our knowledge, this is the first study of its kind dealing with
code-mixing in a mixed-script scenario.

3. Data Collection and Labelling
3.1. Scraping Tweets
We scrape 1 million tweets from Twitter using
TweetScraper3 which has options to specify certain
meta-information such as location and distance range of
the scraped tweets.
For an analysis of code-mixing, tweets generated from In-
dian metropolitan cities are good candidates because the
quantity of tweets generated is huge and they also have
a better representation of code-mixed tweets. However,
since India has a very multilingual4 population, both the
language and the script of the tweets vary widely as per
the demography. For example, when we scraped tweets
from around Mumbai, we found code-mixing between En-
glish and Marathi (regional language), and many tweets

2Code-mixing occurs where one language provides the
morpho-syntactic frame into which a second language inserts
words and phrases. The former is termed as the Matrix while the
latter is called Embedding (Myers-Scotton, 1993).

3https://github.com/jonbakerfish/TweetScraper
4There are more than 66 different scripts and 780 written lan-

guages in India(Article in The Hindu)

Tweets

Script	Segregation

Roman Devanagari Mixed-Script

Dictionary	LID Hybrid	LIDRoman	LID

ENG						HIN							CM ENG					HIN						CM ENG					HIN						CM

Figure 1: Data collection and labelling.

were written in Balbodh script (script for Marathi). Similar
trends were seen for Bangalore, which had tweets written in
Kannada script.
In our study, we limit ourselves to Roman and Devanagari,
and hence, scrape Tweets from around 200 miles of New
Delhi, where Hindi and English are the primary spoken lan-
guages. Figure 1 illustrates our approach to data collection
and labelling.

3.2. Preprocessing Tweets
We remove the tweets that contain characters in a script
other than Roman or Devanagari and then preprocess the
rest. We remove the hashtags (#), mentions (@) and hyper-
links using regular expressions. We also de-duplicate the
tweets. Eventually, we obtain a dataset of 880,345 tweets.

3.3. Script-Based Segregation
Script-based segregation is a trivial task since each script
inherently has a fixed Unicode range. We count the number
of words written in Roman and Devanagari for each tweet
and then segregate them as follows,

• Tweets written entirely in Devanagari are labelled as
Devanagari.

• Tweets written entirely in Roman are labelled as Ro-
man.

• Tweets that have at least two words from both the
scripts are labelled as mixed-script.

• Rest of the tweets are dumped as discarded.

Table 1 contains the number of unique tweets in each cat-
egory after script-segregation. 21,049 tweets are discarded
from the dataset.

Roman Devanagari Mixed-script
Tweets Count 617,438 213,113 28,745

Table 1: Tweets after script-based segregation
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3.4. Language-Based Segregation
Language-based segregation requires word-level English-
Hindi language tags. When dealing with code-mixed sen-
tences, it is a challenge to disambiguate certain transliter-
ated words which share their surface form with a different
word (called as homonyms). For example, Table 2 contains
the variants of the word ‘the’ when written in both scripts
in different contexts. A robust Language Identification Tool
(LID) should be able to handle the following cases,

• For Roman, it must disambiguate between the English
word ‘the’ (दी) and ‘the’ (थे) which is a Hindi word.

• For Devanagari, it must disambiguate between the En-
glish word ‘the’ (दी) and ‘di’ (दी) which is a Hindi
word.

• For mixed-script, it must disambiguate amongst all
these cases.

English Context Hindi Context
Devanagari दी थे

Roman the the

Table 2: Example of homonym (‘the’)

We are not aware of any LID tool that can simultaneously
disambiguate Hindi or English words when written in De-
vanagari or Roman scripts. Therefore, we undertake differ-
ent approaches while dealing with different scripts.
For each script, we classify the tweets into three distinct cat-
egories,

• English context (EN)
• Hindi context (HI)
• Code-mixed context (CM)

3.4.1. Roman Script
While typing English-Hindi code-mixed text, Roman script
is most frequently used (Virga and Khudanpur, 2003; B. et
al., 2010), and as a result, there are many LID tools available
for it (Gella et al., 2014; Das and Gambäck, 2014; Rijhwani
et al., 2017).
We use the LID tool by Gella et al. (2014) and tag all our
Roman tweets at word-level. After comparing the count of
language tags, we divide the tweets into three categories.
Here are a few examples of the tweets,

1. English context (EN)

(a) Many congratulations on your winning return to
competitive tennis super proud

(b) Congratulations sania that is a super win

2. Hindi context (HI)

(a) Pahale to aapko modi ji kaam nahi karne de rahe
hai
Translation: First of all, Modi-ji is not letting
you work.

(b) Kya biscuit milna bandh hogaya isko
Translation: Has he stopped getting biscuits?

3. Code-mixed context (CM)

(a) million hone wala hai dosto common fast speed
badhawo Tweet karo
Translation: Friends, it is going to hit a million;
come on! speed up fast; tweet more.

(b) Good night dosto ab tumhare hawale ye trend
sathiyo
Translation: Good night, friends! Now the
trend depends on you, buddy.

3.4.2. Devanagari Script
Since code-mixing in Devanagari has not been observed
frequently in previous works, we expect a majority of the
tweets to be in monolingual Hindi. We do not know of
any publicly available tool that can perform English-Hindi
LID for Devanagari. Therefore, we employ a dictionary-
based approach, where we take the list of the most frequent
words in English5 and transliterate them into Devanagari.
For Hindi, we generate the dictionary by taking frequent
words from a corpus collected from Dainik Jagran6. Af-
ter removing homonyms (such as ‘in’ and ‘the’) and wrong
transliterations from the dictionaries, we use them to tag the
English and Hindi words in the tweets. We further divide
the tweets into three language contexts by comparing the
count of tags. Here are a few examples of the tweets,

1. English context (EN)

(a) गुड मॉ नग इं डया
Translation: Good morning, India.

(b) ग्रेट लीडर
Translation: Great leader.

2. Hindi context (HI)

(a) जन्मिदन क हा दक शुभकामनाएं और ढेरो बधाईयां
Translation: Happy birthday and lots of well
wishes.

(b) क्या तुम सही कर रहे हो?
Translation: Are you doing the right thing?

3. Code-mixed context (CM)

(a) आपको फ्र ज करना है तो टेम्परचेर कम क रए
Translation: Reduce the temperature if you want
to freeze.

(b) गलत लॉ जक
Translation: Wrong logic.

3.4.3. Mixed-Script
Unlike Roman and Devanagari, a LID tool for mixed-script
text has to look at all the possible variations of a word (Ta-
ble 2). Contextual information about the running language
in the sentence is required to predict the language tag of
such words. Therefore, even with annotated data, building
technology for such a problem is hard.
We end up following a hybrid approach for language tag-
ging mixed-script sentences. We first follow a dictionary-
based approach where we language tag the Devanagari

5https://github.com/first20hours/google-10000-english
6https://www.jagran.com/
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words as Hindi or English using the approach used in Sec-
tion 3.4.2.. We then transliterate these Devanagari words
into Roman and tag the resulting sentence using the Roman
LID tool (Section 3.4.1.). We compare the count of tags
generated from the two approaches in each tweet to classify
them into one of the three language contexts.
Here are a few examples of the tweets,

1. English Context (EN)

(a) We should hold up our constitution and provide a
relief to all the citizens सत्यमेव जयते
Translation: We should hold up our constitution
and provide a relief to all the citizens satyamev
jayate7. (‘Truth alone triumphs’)

(b) नमन I have told you multiple times stay away
from them.
Translation: Naman, I have told you multiple
times, stay away from them.

2. Hindi Context (HI)

(a) Dr Santosh ji ka आशीवार्द प्राप्त हुआ
Translation: Received the blessings of Dr San-
tosh

(b) क्या तुम FB पे हो
Translation: Are you on FB (Facebook)?

3. Code-Mixed Context (CM)

(a) I miss you meri behen बहुत िदन से म िमस कर रहा
था आपको
Translation: I miss you my sister; I was missing
you since so many days.

(b) वो बाबा ढ गी नह थे so better watch your mouth be-
fore blabbering
Translation: That Baba (Spiritual Teacher) was
not an imposter, so better watch your mouth be-
fore blabbering.

3.5. Data Statistics
After segregating the data along the two axes, we end up
with a 3 × 3 table (Table 3) that summarises the intermix-
ing of the two scripts and languages quantitatively. Ta-
ble 4 contains the numbers as percentages (rounded) for
a quick understanding of the scenario. The statistics pre-
sented resonate with similar findings of previous works. Liu
et al. (2014) observe that non-English tweets are approach-
ing 50% of the total volume of tweets on Twitter. On com-
paring the frequency of EN context tweets with HI and CM
context, the number seems to have already crossed 50% in
India.
Bali et al. (2014) observe in a small sample of Indian
Facebook posts (in Roman), that as many as 17% of them
have code-switching. Our data shows that on Indian Twit-
ter (around New Delhi) 26.5% of the total volume are code-
mixed tweets.
Table 5 and Table 6 contain the distribution of unique words
across the entire dataset and the mixed-script portion, re-
spectively.

7It is a Sanskrit quote, part of the Indian National Emblem.

EN HI CM Total
Roman 357,029 52,401 208,008 617,438

Devanagari 45 212,002 1,066 213,113
Mixed-script 186 10,204 18,355 28,745

Total 357,260 274,607 227,429 859,296 

Table 3: Total number of tweets in the entire dataset

EN HI CM Total
Roman 41.55 % 6.1 % 24.2 % 71.85 %

Devanagari 0.01 % 24.67 % 0.12 % 24.8 %
Mixed-script 0.02 % 1.19 % 2.14 % 3.35 %

Total 41.58 % 31.96 % 26.46 % 100.0 % 

Table 4: Percentage of tweets in the entire dataset (rounded)

EN HI CM Total
Roman 135,817 40,523 156,359 332,699

Devanagari 44 116,775 6,005 122,824
Mixed-script 1,612 27,995 39,576 69,183

Total 137,473 185,293 201,940 524,706 

Table 5: Total number of unique words in the entire dataset

EN HI CM Total
Roman 1,445 5,863 16,784 24,092

Devanagari 168 22,133 22,793 45,094
Total 1,613 27,996 39,577 69,186

Table 6: Total number of unique words in different scripts
and language contexts in mixed-script tweets

4. Analysis of Mixed-Script Tweets
After segregating the tweets along the script and language
axis, we analyse the mixed-script data. As already dis-
cussed in Section 3.4.3., analysing this scenario is non-
trivial because contextual information is required. There-
fore, we resort to manual annotation and sample 200 tweets
each from the Hindi and code-mixed context while taking
all the 186 tweets from the English context. We then anal-
yse these tweets separately to find patterns.
If a tweet, which is primarily in one script, contains a short
phrase in another script, we refer to that short phrase as an
insertion.

4.1. English Context
We observe that all the 186 tweets are written primarily in
Roman with some Devanagari insertions. We manually go
through all the insertions and categorise them (see Table 7).
Here are the categories along with examples,

1. Named Entities
We find that 31% of all Devanagari insertions are
Named Entities referring mostly to political parties, in-
dividual and locations.
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Category Percentage Examples

Named Entities 31%

नमन,
िवश्वनाथ,

कनॉट प्लेस,
कांग्रेसी

Quotes 23%

सत्यमेव जयते,
जय श्री राम,
भेिड़या आया,
सावधान रहे

Hindi Words 35%

ईमानदारी,
कंचे,
लगंर,

ना स्तक,
संस्कार

English Words 11%

होल्ड,
स्टड,
हेलो,
अमे जग

Table 7: Examples of Devanagari insertions within English
context (mixed-script case)

(a) Gosh I never knew हरयाणा has so much skull caps
wearer a big sign to worry.
Translation: Gosh I never knew Haryana has
so much skull caps wearer a big sign to worry.

(b) भारतीय जनता पाट is the largest democratic party
with autocratic designs.
Translation: Bhartiya Janta Party is the largest
democratic party with autocratic designs.

2. Quotes
23% of the insertions are quotes. A few of them are
excerpts from Sanskrit Shlokas8 while the others are
proper nouns such as the name of a story (e.g.भेिड़या
आया - bhediya aaya), song, book or slogans (e.g.जय
िहन्द - jai hind) etc.

(a) Don’t let it become the example of भेिड़या आया
story pls.
Translation: Don’t let it become the example of
Bhediya Aaya story, please.

(b) अहम स्म योधः I am a fighter every man has a
fighter hidden inside him.
Translation: Ahamasmi Yoddhah (Sanskrit
Shloka) I am a fighter every man has a fighter
hidden inside him.

3. Hindi Words
35% of the insertions are Hindi words. Almost all of
them are nouns which either do not have a direct trans-
lation in English or the translation does not convey the
meaning as well as the Hindi word.

(a) I used to have scratch free colorful कंचे of all size
it was fun winning it in games.

8https://en.wikipedia.org/wiki/Shloka

Translation: I used to have scratch free color-
ful Marbles (toy in India) of all sizes. It was fun
winning it in games.

(b) They waited for the अवतार to become king then
they behaved as confused and imposed dubious
claims.
Translation: They waited for the incarnation to
become king and then they behaved as confused,
and imposed dubious claims.

4. English Words
11% of the Devanagari insertions are English words
such as Hello and Amazing. This unexpected occur-
rence raises many questions such as whether this mix-
ing is intentional or is it just noise. While the other
cases make sense, this one does not, primarily because
it is not intuitive to have a Devanagari representation
of an English word in an overall Roman English sen-
tence.
We have anecdotal evidence that these cases could
be due to the predictive keyboards used. Many such
keyboards (such as SwiftKey9) allow the user to se-
lect both Romanized Hindi (often termed as Hinglish)
and English as their preferred languages. The key-
board then automatically suggests or replaces Roman-
ized Hindi words into their corresponding Devanagari
form. Often such predictions incorrectly convert valid
English words to Devanagari as well, leading to such
errors.
This specific case requires many such examples to be
studied, and hence we leave it aside for future analysis.

(a) अमे जग but why not their paid for the safety of
passengers vehicles
Translation: Amazing, but why are they not paid
for the safety of passengers vehicles?

(b) I स्टड with Shaheen Bagh.
Translation: I stand with Shaheen Bagh.

4.2. Hindi Context
In contrast to the English context, we observe that these
tweets are written primarily in Devanagari with Roman in-
sertions. We go through the 200 sampled tweets and man-
ually categorize the insertions (Table 8). Here are the cate-
gories along with examples,

1. Acronyms
We find that 39.8% of all the Roman insertions in the
sample are acronyms. One reason for this occurrence
could be the difference in the number of characters re-
quired to type an acronym which is higher in Devana-
gari.

(a) ल गो ने इतने otp मांगे इतने otp मांगे क otp का स्टॉक
खत्म हो गया
Translation: People asked for so many OTPs
(one time password) that the stock of OTPs ran
out.

9https://www.microsoft.com/en-us/swiftkey
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Category Percentage Examples

Acronyms 39.8%
CAA, NRC,
NPR, BJP,
JNU, FB

Named Entities 27.7%
China, Akhilesh,
Kejriwal, Smriti

Platform-Specific
Terms

4.8%
Follow, Poke,

Emoji, Retweet

Frozen Expressions 3.5%
Good morning,

via Dainik News

English Phrases 16.4%
Solidarity, Doctorate,

Income Tax,
Population Control

Hindi Phrases 7.8%
Abe, Dil,

Acche Accho

Table 8: Examples of Roman phrases within Hindi context
(mixed-script case)

(b) BJP को वोट दो
Translation: Vote for BJP.

2. Named Entities
27.7% of the insertions are named entities referring
mostly to political leaders, political parties, countries
and companies.

(a) रश्तेदार इतने भी बुरे नही है जतना star plus िदखाता है
Translation: Relatives are not that bad as por-
trayed on Star Plus.

(b) China का सामन खरीदना ही क्य है
Translation: Why even buy stuff from China?

3. Platform-Specific Terms
4.8% of the Roman insertions are platform-specific
terms that have their original version in English. We
speculate that these terms are in Roman by the virtue
of them being used as a nominal entity.

(a) लोगो को अभी follow back दे रहा हूं आपको बढ़ाने ह
Translation: I am following back people, do you
want to increase your followers?

(b) पहले बेटा emoji का प्रयोग करना सीख
Translation: First, learn how to use the emoji,
kid.

4. Frozen Expressions
A small portion of the insertions (3.5%) are commonly
used frozen expressions in English. Although we ex-
pected this number to be higher, the identified phrases
capture the overall trend of this category.

(a) बेवजह िदल पर बोझ ना भारी र खए जदगंी एक खूबसूरत
जगं है इसे जारी र खए good morning
Translation: Don’t take too much stress unnec-
essarily, life is a beautiful battle, keep on fighting
it. Good morning.

Category Percentage

Natural
Inter-sentential 56%
Intra-sentential 19%

Cross-script 25%

Table 9: Categories within code-mixed context (mixed-
script case)

(b) पए म िबकने के आरोप पर भड़के प्रदशर्नकारी via the
hind news
Translation: On the allegation of being bought
in rupees, the Demonstrators flared up. Via The
Hind News.

5. English Phrases
16.4% of the Roman insertions are English phrases.
Almost all of them are noun phrases or words that ei-
ther do not have a direct translation in Hindi, or the
translation is not very popular.

(a) मुझे वोट नह चािहए ये मोटा भई बस polarization कर
के ख़ुश रहेता है
Translation: I don’t want votes, the big brother
is happy just by polarizing people.

(b) क्या आप human rights का हवाला देकर उनको छोड़ने
क मांग करगेी
Translation: Will you ask for them to be released
for the sake of human rights?

6. Hindi Phrases
7.8% of the Roman insertions are Hindi phrases. This
unexpected case could again be due to the predictive
keyboards as discussed for English insertions (written
in Devanagari) in English context in Section 4.1..

(a) yeh sabka िदल कहता है
Translation: Everyone’s heart says this.

(b) शायद उसे भी उसके लए धड़कना अच्छा लगता है kaisi
hai kavita
Translation: Maybe they also like to live for
them. How are you, Kavita?

4.3. Code-Mixed Context
Unlike the previous two cases, this context contains tweets
that are not in any one primary script. In other words, both
the scripts may have an equal proportion in the tweet. We
categorize each tweet in the sample into one of the three
categories (Table 9).
If the language of a word agrees with the native script it
is originally in, it is said to be in Natural script, else in
Cross-script. For example, English words are in Natural
script when written in Roman and in Cross-script when
written in Devanagari.

Here are the categories along with some examples,

1. Natural Inter-Sentential Code-Switching
Tweets in which script-mixing is at sentence-level and
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all the words are in Natural script are put in this cat-
egory. By definition, these tweets would show inter-
sentential code-switching.
For example, consider these tweets with each sentence
having words in Natural script,

(a) thanks good morning a relaxing sunday ahead
भारत माता क जय आपका िदन मगंलमय हो
Translation: thanks good morning a relaxing
Sunday ahead Victory to Mother India, have a
fortunate day.

(b) क्या होगया यार just chill bro
Translation: What happened friend just chill bro

2. Natural Intra-Sentential Code-Switching
Tweets in which script-mixing takes place within the
sentence and all the words are in Natural script are
put in this category. By definition, these tweets would
show intra-sentential code-switching.
For example, consider these tweets that have mixing
within the sentence with words in Natural script,

(a) उनको support करने के लए आपको िकतना money
िमला है
Translation: How much money did you get for
supporting them?

(b) google पर सबसे ज़्यादा search होने वाला खलाड़ी
Translation: Most searched player on Google.

(c) oh really देश के students सड़को पर है उनक कौन
सुनेगा
Translation: Oh, really, the students of our coun-
try are on roads. Who will listen to them?

3. Cross-script
Code-mixed tweets in which there is at least one word
in Cross-script are put in this category. In most cases,
it appears to be just noise and does not seem inten-
tional. This phenomenon, again, could be due to the
predictive keyboards as discussed in Section 4.1. and
Section 4.2.
For example, consider these tweets which contain
Hindi words in Cross-script,

(a) ji aapke aaj ke DNA pe हमने cigrate kurban कर दी
leaved cigarette right now
Translation: For your today’s DNA (News
Episode), I sacrificed cigarettes. Left cigarette
right now.

(b) Coffee with karan and pandya yaad hai na next
will be manoj tiwari coffee with kejriwal लख कर
ले लो
Translation: You remember Coffee with Karan
and Pandya, right? Next will be Manoj Tiwari’s
Coffee with Kejriwal.

5. Discussion
5.1. Agreement between Script and Language
In English and Hindi contexts, the insertions mostly have an
agreement between the script and the language (the tweets

have words that are in Natural script). The cases where
that is not true are when English words in the English con-
text are written in Devanagari (11%) and Hindi words in the
Hindi context are written in Roman (7.8%). As we already
discussed, these cases could be due to the predictive key-
boards that may erroneously transform a word to a wrong
script. In the Natural script case, the majority of insertions
(named entities, acronyms, etc) are nouns. The cases where
they could not be a noun or a noun phrase are quotes (in the
English context) and frozen expressions (in Hindi context).
However, it should be noted that these phrases are being
used as nominal entities. Their identity in these scenarios
closely mimics that of a noun phrase.
In code-mixed context, 75% of the tweets are in Natu-
ral script. However, only 19% of the tweets have Intra-
sentential mixing. The rest of the 56% are inter-sentential
code-switched tweets. Within these true code-mixed sen-
tences (such as 2 (a) and 2 (b) in Section 4.3.), we observe
that if there are short insertions within the sentences, they
are mostly nouns.
Overall, it is observed that mostly a mixed-script tweet is
in Natural script when the insertions are short nouns/noun
phrases or nominal entities.

5.2. Script Choice and Borrowing
Script choice can also be an indicator of whether a word is
borrowed (a concept introduced by Bali et al. (2014) and
later expanded on by Patro et al. (2017)).
As opposed to code-switching, where the switching is in-
tentional and the speaker is aware that the conversation in-
volves multiple languages, a borrowed word loses its orig-
inal identity and is used as a part of the lexicon of the lan-
guage (Patro et al., 2017). However, as the authors say, it is
very hard to ascertain whether a word is borrowed or not.
We hypothesize that if a word is borrowed from English to
Hindi, it will have a higher propensity of being represented
in the Devanagari script (as opposed to Roman) in mixed-
script tweets in the Hindi context, and vice versa.
For instance, consider these three categories of words,

• Words native to Hindi as a baseline (such as ‘Dharma’
- धमर्)

• English words that are likely borrowed (such as ‘Vote’
- वोट and ‘Petrol’ - पेट्र ोल)

• English words that are not likely borrowed (such as
‘Minister’ - िमिनस्टर)

We measure the propensity of these words being written in
Devanagari by calculating the ratio of their frequencies in
the two scripts. Ps(w) is the propensity of the word w be-
ing written in script s which, in our case, is equal to the
frequency of w in s in the mixed-script tweets.

Pdev(dharma)
Prom(dharma)

> Pdev(vote)
Prom(vote)

> Pdev(minister)
Prom(minister)

236.0 > 7.8 > 0.7

The greater the ratio is compared to 1.0, the more likely it is
that the word is borrowed from English to Hindi. The ratios
for ‘vote’ (7.8) and ‘petrol’ (6.0) therefore suggest that they
are probably borrowed, whereas ‘minister’ is not (0.7).
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5.3. Script as a Tool for Emphasis
In the English context (Section 4.1.), we observe that many
Devanagari insertions are used for emphasizing a certain
nominal entity within the sentence.
For example,

1. All the nationalist nd most importantकट्टर िहन्दूcan give
me their ids i will follow nd retweet all of ur tweets
Translation: All the nationalists and most impor-
tantly, staunch Hindus can give me their IDs and I will
follow and retweet all of your tweets

The phrase ‘कट्टर िहन्द’ू refers to staunch Hindu nationalists.
It is used here as a borrowed nominal entity due to the un-
availability of a popular English equivalent and has been
written in Devanagari for emphasis.

2. I also do not want to be a शकार of this propaganda
movie.
Translation: I also do not want to be a prey of this
propaganda movie.

Although there exists a translation equivalent for ‘ शकार’
(‘prey’), the Hindi word is used for an idiomatic effect and
is written in Devanagari for stronger emphasis.

3. थू I dont have anything else for you.
Translation: Thoo (Shame), I don’t have anything
else for you.

This is an interesting example where the Hindi expression
for conveying disgust (‘थू’) has been written in Devanagari.
‘थू’ has no direct equivalent in English and the closest one
(‘shame’) does not convey the intensity or the idiomatic ef-
fect conveyed by it. It has been written in Devanagari for
emphasis and also for eliminating any ambiguity since ‘थ’ू
in Roman would be written as either ‘thu’ or ‘thoo’ which
can be mistaken for a misspelling of ‘the’ or a slang version
of ‘though’.
Hence, choosing to write a word in a specific script can
serve two purposes,

• It can be used to emphasize certain entities.

• It can be used to explicitly disambiguate the sense of
certain confusing words.

5.4. Script Inversion for Sarcasm
We also find examples where the native script is inverted
for English and Hindi (cross-script representation). The in-
version is ironic and is done for adding a dramatic effect to
the sarcastic tone.
For example,

1. aree aree द ग्रेट ऑटो कैड ग्यानी
Translation: Hey, hey, the great Auto-Cad expert.

2. ट्यबूलाइट ye bhi dkh le kabhi gadhe
Translation: Tubelight (slang for ‘fool’), sometimes
look at this too, idiot.

6. Conclusion
In this work, we present an analysis of script-mixing for all
possible permutations of the scripts (Roman and Devana-
gari) and languages (Hindi and English) in Twitter. We
present a thorough qualitative and quantitative analysis of
the mixed-script tweets and discover many patterns that can
allow for a rich and concise understanding of the phenom-
ena.
We note that consideration of context is essential when deal-
ing with mixed-script code-mixed sentences. A word-level
approach can not capture the complexity of the problem.
It is observed that in most cases, script-mixing is intentional
(with the use of acronyms, named entities, quotes, etc) and
only in a few cases can it be deemed as noise (such asCross-
script tweets). We believe the noise could be due to the
predictive keyboards that sometimes erroneously transform
a word to a wrong script.
It is interesting to note that the majority of insertions
(acronyms, named entities, quotes, phrases, etc) across all
the three contexts are either nominal entities themselves
or are being used as one. As discussed in Section 5.1.,
an agreement between script and language mostly exists in
cases where the insertions are short nominal entities. There-
fore, it can be seen that an agreement exists in a majority of
tweets (89% in English Context, 92.2% in Hindi Context
and 75% in code-mixed context).
Moreover, script choice can be an indicator of whether a
word is borrowed. Examples suggest that a borrowed word
from English to Hindi has a higher propensity of being rep-
resented in the Devanagari script (as opposed to Roman) in
mixed-script tweets in the Hindi context.
We also see how script can be used as a tool for empha-
sizing nominal entities and for disambiguating word senses
explicitly. It is found that certain words are written in their
native script regardless of the context for an idiomatic ef-
fect (such as ‘ शकार’ in example 2 of Section 5.3.). We then
see examples of how script can be used as a tool for making
sarcasm more pronounced.
Our analysis has a wide coverage of the different cases
script-mixing can occur in. However, it is limited to the
Hindi-English bilingual scenario. Future studies can focus
on checking how well this set of analyses generalizes to
code-mixing in other languages from other regions in the
world such as French-Arabic, Kannada-English, etc.
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Abstract
This paper investigates the use of unsupervised cross-lingual embeddings for solving the problem of code-mixed social media text
understanding. We specifically investigate the use of these embeddings for a sentiment analysis task for Hinglish Tweets, viz. English
combined with (transliterated) Hindi. In a first step, baseline models, initialized with monolingual embeddings obtained from large
collections of tweets in English and code-mixed Hinglish, were trained. In a second step, two systems using cross-lingual embeddings
were researched, being (1) a supervised classifier and (2) a transfer learning approach trained on English sentiment data and evaluated
on code-mixed data. We demonstrate that incorporating cross-lingual embeddings improves the results (F1-score of 0.635 versus a
monolingual baseline of 0.616), without any parallel data required to train the cross-lingual embeddings. In addition, the results show
that the cross-lingual embeddings not only improve the results in a fully supervised setting, but they can also be used as a base for distant
supervision, by training a sentiment model in one of the source languages and evaluating on the other language projected in the same
space. The transfer learning experiments result in an F1-score of 0.556 which is almost on par with the supervised settings and speak to
the robustness of the cross-lingual embeddings approach.

Keywords: sentiment analysis, code-mixed text, Hinglish, cross-lingual word embeddings, transfer learning

1. Introduction
Code-mixing is a frequent phenomenon in user-generated
content on social media. In linguistics, code-mixing
traditionally refers to the embedding of linguistic units
(phrases, words, morphemes) into an utterance of another
language (Myers-Scotton, 1993). In that sense, it can
be distinguished from code-switching, which refers to
a “juxtaposition within the same speech exchange of
passages of speech belonging to two different grammatical
systems or subsystems” (Gumperz, 1982), where the
alternation usually takes the form of two subsequent
sentences. In the proposed research, code-mixing is con-
sidered as a phenomenon where linguistic units in Hindi
are embedded in English text, or the other way around, but
this can take place both at the sentence and word level.
As a consequence, we will use the term code-mixing as
an umbrella term that can imply both linguistic phenomena.

The phenomenon of code-mixing frequently occurs in
spoken languages, such as for instance a combination
of English with Spanish (so-called Spanglish) or En-
glish with Hindi (so-called Hinglish). More recently,
due to the rise of the web 2.0 and the proliferation of
user-generated content on the internet, it is increasingly
used in written text as well. This social media content
is very important to automatically analyse the public
opinion on products, politics or events (task of sentiment
analysis), to analyse the different emotions of the public
triggered by events (task of emotion detection), to observe
trends, etc. Code-mixing is, however, very challenging
for standard NLP pipelines, which are usually trained on
large monolingual resources (e.g. English or Hindi). As
a result, these tools cannot cope with code-mixing in the
data. In addition, social media language is characterized by
informal language use, containing a lot of abbreviations,

spelling mistakes, flooding, emojis, emoticons and wrong
grammatical constructions. In the case of Hinglish, an
additional challenge is added because people do not only
switch between languages (e.g. English and Hindi), but
also use English phonetic typing to write Hindi words,
instead of using the Devanagari script.

In this paper, we propose a sentiment analysis approach for
Hinglish tweets, containing a mix of English and translit-
erated Hindi. To this end, cross-lingual word embeddings
for English and transliterated Hindi are constructed. The
proposed research has been carried out in preparation
of experiments for the SemEval 2020 shared task on
sentiment analysis in code-mixed social media text (Das et
al., 2020). This task consists of predicting the sentiment
(positive, negative, neutral) of a given code-mixed tweet.
Whereas the SemEval task is designed for both English-
Hindi and English-Spanish, we will only investigate
sentiment analysis for English-Hindi code-mixed tweets in
this research.

The remainder of this paper is organized as follows. In Sec-
tion 2., we summarize relevant related research, whereas
Section 3. gives an overview of the data set used to train
and evaluate the system. Section 4. describes our approach
to sentiment analysis for code-mixed Hinglish data. In sec-
tion 5., we report on the results and provide an analysis of
the performance, while Section 6. concludes this paper and
gives directions for future research.

2. Related Research
Related research on computational models for code-mixing
is scarce because of the rarity of the phenomenon in
conventional text corpora, which makes it hard to apply
data-greedy approaches. Previous research, however, has
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tried to predict code-switching in English-Spanish (Solorio
and Liu, 2008a; Solorio and Liu, 2008b) and Turkish-
Dutch (Nguyen and Seza Dogruoz, 2013) text corpora.
More recently, research has been performed to study code-
switching on social media from a computational angle.
Vyas et al. (2014) have compiled an annotated corpus for
Hindi-English from Facebook forums, and performed ex-
periments for language identification, back-transliteration,
normalization and part-of-speech tagging on this corpus.
They identify normalisation and transliteration as very
challenging problems for Hinglish. Similar work has been
carried out by Sharma et al. (2016), who developed a shal-
low parser for Hindi-English code-mixed social media text.
Rijhwani et al. (2017) introduce an unsupervised word-
level language detection technique (using a Hidden Markov
Model) for code-switched text on Twitter that can be ap-
plied to different languages.
Pratapa et al. (2018) compare three bilingual word
embedding approaches, bilingual correlation based embed-
dings (Faruqui and Dyer, 2014), bilingual compositional
model (Hermann and Blunsom, 2014) and bilingual
Skip-gram (Luong et al., 2015), to perform code-mixed
sentiment analysis and Part-of-Speech tagging. In addition,
they also train skip gram embeddings on synthetic code-
mixed text. Their results show that the applied bilingual
embeddings do not perform well, and that multilingual em-
beddings might be a better solution to process code-mixed
text. This is mainly due to the fact that code-mixed text
contains particular semantic and syntactic structures that
do not occur in the respective monolingual corpora.

Seminal work in sentiment analysis (SA) of Hindi text was
done by Joshi et al. (Joshi et al., 2010), who built a sys-
tem containing a classification, machine translation and
sentiment lexicon module. Bakliwal et al. (2012) created
a sentiment lexicon for Hindi, and Das and Bandyophad-
hyay (2010) created the Hindi SentiWordNet.
Joshi et al. (2016) introduce a Hindi-English code-mixed
dataset for sentiment analysis and propose a system to
SA that learns sub-word level representations in LSTM
(Long Short-Term Memory) (Subword-LSTM) instead of
character- or word-level representations.

Due to the unavailability of NLP tools for Hinglish code-
mixed data, we cannot apply a standard sentiment analysis
pipeline. To overcome this, we propose a novel method
to SA for Hinglish code-mixed tweets that applies cross-
lingual word embeddings. To this end, we train monolin-
gual embeddings for code-mixed data using independently
gathered Twitter data, and then align the said monolingual
embeddings with pre-trained English embeddings. This en-
ables our models to learn from the encapsulated knowledge
in pre-trained English embeddings without having much in-
formation about the code-mixed structure. Not only does
this allow us to build a system that can perform sentiment
analysis on bilingual data, but it also enables us to build a
transfer learning based system that can derive information
from a model trained in one language, to perform predic-
tions in another language.
Most past work building cross-lingual sentiment models

does so using translation systems (Zhou et al., 2016) or
cross-lingual signals in another form, such as parallel
corpora or bilingual dictionaries (Chen et al., 2018).
However, since we work with code-mixed (transliterated)
Hinglish Twitter data, there are no available resources
like parallel corpora or bilingual dictionaries. Moreover,
the ever evolving nature of social media text and various
spelling alternatives in code-mixed data would make data
greedy approaches like parallel corpora redundant.

In the proposed research, we thus build upon the recent re-
search in constructing unsupervised cross-lingual embed-
dings by exploiting the inherent spacial structural similar-
ity of word embeddings. Mulitple approaches use adver-
sarial learning to learn these mappings with different ideas
for optimization. While Zhang et al. (2017) choose to use
Earth Mover’s Distance as a similarity metric between two
embedding spaces, Conneau et al. (2017) opt for the Pro-
crustes solution to refine the mappings. In our experiments,
we compare the results obtained when applying (1) the ap-
proach of Artexte et al. (2018), which uses Singular Value
Decomposition and synthetic bilingual dictionary induction
using similarity distributions, and (2) the approach of Con-
neau et al. (2017). We demonstrate that aligning code-
mixed social media text with an anchor language like En-
glish helps to increase the performance in both a supervised
and transfer learning setting.

3. Data
To train and evaluate our sentiment analysis system for
Hinglish, we use the training data provided for the SemEval
2020 shared task on sentiment analysis in code-mixed so-
cial media text (Das et al., 2020). This dataset for Hinglish
contains 15,131 instances, which have been labeled as
positive, negative, or neutral. Besides the sentiment labels,
the organisers also provide the language labels at the
word level, consisting of the following tags: en (English),
hi (Hindi), mixed and univ (e.g., symbols, @ mentions,
hashtags). Table 1 shows some examples of the Hinglish
code-mixed data, whereas Table 2 lists the statistics of the
data set used for the sentiment analysis experiments.

As mentioned before, the data set contains a mixture of
English and romanized or transliterated Hindi. This pro-
duces an additional challenge, as this romanized code-
mixed data contains non-standard spellings like aapke and
apke (“your”), non-grammatical constructions like “Wow
the amusement never ends even after the election Daily
soap bana ke rakh diya” which combines an English sen-
tence with a Hindi sentence mid-way, and words which
combine an English word with a Hindi alteration like Jungli
(“wild”) and Filmy (“glamorous”). Although the data set is
tagged with a language label for every word, we did not
use this information in our experiments as our aim was to
build a common bilingual model that would be applicable
for other code-mixed data sets as well.

4. Sentiment Analysis for Hinglish
This research aims to investigate the effectiveness of cross-
lingual embeddings to perform sentiment analysis for code-
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Tweet @ Atheist Krishna JCB full trend me chal rahi hai Label
Language Tag Univ En Univ En En En En En Hi Hi Hi Positive

Tweet @ tamashbeen Well chara Chor ke chele this news is a year old ... Label
Language tag Univ En Univ En Hi Hi Hi En En En En En En En Univ Negative

Tweet @ ur boi kdo Most unpractical and cool sword I ’ ve seen Label
Language Tag Univ Hi Univ Hi Univ Hi En En En En En En Uni En En Neutral

Table 1: Some Examples from the SemEval 2020 Code-Mixed Hinglish Challenge Dataset

Language Labels
English Words 27,594
Hindi Words 28,167
Universal Symbols 2,792

Sentiment Labels
Positive Tweets 5,034
Negative Tweets 4,459
Neutral Tweets 5,683

Table 2: Overview of the statistics of the data set used to
perform Hinglish code-mixed sentiment analysis.

mixed data. Since the objective is to demonstrate the via-
bility of cross-lingual embeddings over the simpler, mono-
lingual embeddings, the experimental protocol dictates that
the same classifier must be used to evaluate the systems.
For the purpose of classification, we opted to use a Bi-
LSTM encoder followed by a Softmax layer. Pre-trained
crosslingual or monolingual embeddings were fed to the
LSTM, the size of the hidden layer was 128 and we in-
corporated 4 layers in our model. This was followed by
a single linear layer and the whole system was trained
with Cross-Entropy Loss optimized with Stochastic Gra-
dient Descent (SGD). Each of the models was trained and
evaluated with 5-fold cross-validation, and an internal 5-
fold cross-validation was performed on the training parti-
tion for hyper-parameter optimization.
We investigated two different methods to train our senti-
ment analysis system for Hinglish code-mixed tweets and
compared them with monolingual baseline systems, result-
ing in the following three experimental setups:

1. Baseline Monolingual Systems: Models exclusively
trained using monolingual embeddings

2. Supervised Classification: Models incorporating
cross-lingual English-transliterated Hindi embeddings

3. Transfer Learning: Models trained with no supervi-
sion on the Hinglish data set but deriving knowledge
from the English sentiment data sets

4.1. Baseline Systems with Monolingual
Embeddings

Our baseline models were trained with monolingual em-
beddings in both languages, viz. code-mixed Hindi (Base-
line H) and English (Baseline E). To train these monolin-
gual embeddings, we first scraped tweets by means of the

Twitter API in both English and transliterated Hindi. For
English 141,566 tweets were scraped, while 252,183 tweets
were scraped for Hindi. Hinglish tweets were obtained
from the API by querying Hindi tweets and then filtering
out tweets containing any Devanagari characters. We were
left with 138,589 tweets for Hinglish after removing these
‘Devanagari’ tweets. Subsequently, monolingual embed-
dings were trained for both of the above mentioned cor-
pora with a continuous bag-of-words FastText model (Bo-
janowski et al., 2017), and used to train a bi-directional
LSTM (as explained above).

4.2. Supervised Sentiment Analysis with
Cross-lingual Embeddings

Cross-lingual embeddings rely on the inherent similari-
ties in language structure and composition to project mul-
tiple monolingual embeddings into the same space, en-
abling tasks which require knowledge of more than one
language (Conneau et al., 2018). This kind of embed-
dings have been used to solve a variety of tasks like word-
to-word translation (Chen and Cardie, 2018), evaluating
sentence similarity (Bjerva and Östling, 2017) and detect-
ing cognates across languages (Labat and Lefever, 2019).
Most methods to project two or more monolingual embed-
dings into a shared space require a parallel seed dictio-
nary to initialize an alignment which can then be improved
upon (Upadhyay et al., 2016). The latter approach is not
feasible, though, in this particular setting, as we aim to align
English words with code-mixed (transliterated) Hinglish
words, which often have no standardised spelling, but on
the contrary occur with many variations in social media
data. In recent research, however, a number of methods
have been explored that seek to create a projection with-
out any seed dictionary by relying on certain basic char-
acteristics of a language in an embedding space. For our
experiments, we evaluated two of these methods, namely
the Multilingual Unsupervised and Supervised Embeddings
(MUSE) Python library1 and the VecMap toolkit2, to cre-
ate cross-lingual embeddings. We selected these methods
in particular because of high performance in a number of
downstream cross-lingual tasks and the lack of parallel data
required to train the cross-lingual embedddings.
The MUSE ((Multilingual Unsupervised and Supervised
Embeddings) toolkit (Lample and Conneau, 2019) uses a
domain-adversarial setting to compensate for the lack of su-
pervision. If the mapping matrix is referred to as W, and the

1https://ai.facebook.com/tools/muse/
2https://github.com/artetxem/vecmap
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Figure 1: Transfer Learning based Sentiment Analysis for Hinglish, using cross-lingual embeddings

respective monolingual embeddings are referred to as X and
Y, then the discriminator is trained to distinguish between
WX and Y, whereas W is trained to prevent the discrimina-
tor from making accurate predictions by aligning WX and
Y as closely as possible. Moreover, an iterative refinement
tool using the Procrustes solution is used to further improve
the alignment using synthetic dictionaries created from the
most frequent words.
The VecMap toolkit (Artetxe et al., 2018), on the other
hand, starts from the principle that if a similarity matrix
of all words in a vocabulary was to be created, then every
word would have a unique distribution and that this distri-
bution would be consistent across languages. This principle
is used to induct an initial seed dictionary. Optimal orthog-
onal mappings are then computed using Singular Value De-
composition while iteratively using the improved seed dic-
tionary created by the current mapping. Multiple tweaks
to the method, like bi-directional induction of the seed dic-
tionary and symmetric re-weighting of the target language
embeddings according to cross-correlation, further improve
the quality of the mappings.
For our experiments, we tested two variants of both the
VecMap and MUSE cross-lingual embeddings: (1) em-
beddings aligned with an entirely unsupervised dictionary
induction method and (2) embeddings aligned using
numerals and common tokens like “https” as a bilingual
seed dictionary. This methods is especially interesting to
look at as there is a decent overlap between the vocab-
ulary of both embeddings as Hinglish is a derivative of
English. The classifiers were then trained and tested by
means of 5-fold cross-validation on the SemEval 2020 data.

4.3. Transfer Learning with Cross-lingual
Embeddings

Approaches like VecMap and MUSE allow us to find
an alignment which transforms monolingual embedddings
into a shared space. Since this projection is done with
no supervision (or minimal supervision in the case where
numerals and identifiers are used as a seed dictionary),
it should also be possible to train sentiment models for
one of the languages and evaluate them on the other lan-
guage. This can work if we assume that the model learns

the sentiment-related information in the shared space in
which both languages reside. To test these assumptions,
we train a bi-directional LSTM on the English sentiment
data of the SemEval-2016 “Sentiment Analysis in Twit-
ter” task (Nakov et al., 2016) using English embeddings in
the same shared space as code-mixed Hinglish embeddings.
We then evaluate the model on the SemEval-2020 Hinglish
data set, using the Hinglish embeddings pre-aligned with
English embeddings.
Figure 1 illustrates the intuition behind this experiment.
Since the model learns to associate particular words to par-
ticular sentiments in English during the supervision step,
it should ideally also pick up the corresponding words and
their sentiments in the code-mixed data due to the shared
space, and by consequence be able to perform sentiment
analysis with no direct supervision in the code-mixed data.
As in the supervised setting (see Section 4.2.), we test for
embeddings aligned with VecMap and MUSE, using both
(1) the completely unsupervised (Unsupervised) and (2) the
numerals and special characters seed methods (SeedDict).

5. Classification Results
Table 3 gives an overview of the results for supervised sen-
timent analysis when incorporating monolingual and var-
ious flavours of cross-lingual embeddings, while Table 4
shows the results when training a sentiment analysis sys-
tem on English data (SemEval-2016) and applying it on the
code-mixed data set (SemEval-2020). The experimental re-
sults for both system architectures reveal a number of inter-
esting outcomes.
Firstly, it can be noted that the SeedDict VecMap approach
consistently outperforms other types of cross-lingual
embeddings. While for the supervised experiments, the
cross-lingual embeddings do not outperform classical
embeddings by a large margin, there are small improve-
ments which can be accounted for by the fact that we can
use both English as well as code-mixed embeddings to
classify a sentence, whereas only one of those can be used
at a time in standard monolingual approaches. While the
quality of the embeddings may have diminished due to the
alignement process, the results are still better due to the
increased vocabulary at our disposal.
A tweet like “One India sabka saath sabka vikas sabka
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Positive Negative Neutral Macro-Average
Experiment Prec Rec F-score Prec Rec F-score Prec Rec F-score Prec Rec F-score
English (Baseline E) 0.734 0.574 0.645 0.625 0.633 0.629 0.501 0.595 0.544 0.620 0.600 0.606
Code-Mixed (Baseline H) 0.719 0.620 0.666 0.627 0.656 0.641 0.521 0.566 0.543 0.622 0.614 0.616
MUSE Unsupervised 0.750 0.539 0.627 0.612 0.735 0.668 0.511 0.557 0.533 0.624 0.610 0.609
MUSE SeedDict 0.759 0.540 0.631 0.732 0.528 0.614 0.500 0.744 0.598 0.663 0.604 0.614
VecMap Unsupervised 0.693 0.691 0.692 0.570 0.804 0.667 0.565 0.378 0.453 0.609 0.624 0.604
VecMap SeedDict 0.702 0.684 0.693 0.669 0.622 0.645 0.546 0.590 0.567 0.639 0.632 0.635

Table 3: Precision (Prec), Recall (Rec) and F1-score for all three sentiment classes for the Bidirectional LSTM mod-
els trained with various embedding flavours incorporated in a supervised system architecture for sentiment analysis for
Hinglish.

Positive Negative Neutral Macro-Average
Experiment Prec Rec F-score Prec Rec F-score Prec Rec F-score Prec Rec F-score
MUSE Unsupervised 0.570 0.577 0.573 0.523 0.670 0.588 0.428 0.327 0.371 0.507 0.524 0.510
MUSE SeedDict 0.603 0.621 0.612 0.507 0.789 0.618 0.449 0.239 0.312 0.519 0.549 0.514
VecMap Unsupervised 0.580 0.716 0.641 0.548 0.688 0.610 0.457 0.268 0.338 0.528 0.557 0.529
VecMap SeedDict 0.688 0.529 0.598 0.541 0.748 0.628 0.469 0.423 0.444 0.566 0.566 0.556

Table 4: Precision (Prec), Recall (Rec) and F1-score for all three sentiment classes for the transfer learning sentiment
systems trained on the SemEval-2016 English Twitter Data and evaluated on the SemEval-2020 code-mixed Hinglish Data.

visvas”(One India, with togetherness, progress and trust)
is misclassified by the model incorporating monolingual
english embeddings as “Neutral” since it cannot pick
up the positive code-mixed Hindi words, while a tweet
like “FF Have a great weekend” is misclassified by the
monolingual code-mixed embeddings because of lack of
knowledge of English words. Both of these tweets are,
however, correctly classified by the VecMap embeddings
using a seed dictionary.

It can also be observed that our transfer learning based
model is able to perform sentiment analysis with accept-
able accuracies without needing code-mixed supervision of
any degree. This is a very promising outcome for low(er)-
resourced languages, where large dedicated data sets for
NLP tasks such as sentiment analysis are lacking. Regard-
ing the baseline approaches, it is also worth noting that the
Code-Mixed Baseline does not perform a lot better than
the English baseline as one would expect. This can proba-
bly be attributed to the quality of the monolingual embed-
dings, since the English embeddings were trained on the
vast Common Crawl data while the Code-Mixed embed-
dings were trained on a little more than 100,000 scraped
tweets. While the classification is understandably accurate
for tweets containing a majority of English words like “Ex-
clusive censor reports of Bharat is world class Words like
movie of the year” and less reliable for sentences predom-
inantly containing code-mixed words like “YouTube views
ko vote samjhne wale agar is bar Nahi jita to Kabhi Nahi
jitega”, the performance could be improved with better
alignments and possibly a hybrid approach with minimal
supervision.

6. Conclusion
This paper presents various approaches to sentiment anal-
ysis for Hinglish code-mixed tweets. Two different system

architectures were researched: a supervised classification
model incorporating cross-lingual embeddings for English-
transliterated Hindi data and a transfer learning approach
trained on English sentiment data and cross-lingual embed-
dings and applied to code-mixed data. Our results show that
incorporating cross-lingual embeddings increases the per-
formance from the baseline monolingual systems. In fact,
the cross-lingual embeddings are so robust that even in a
transfer learning setting, the system obtains an F1-score of
0.556, which is comparable to the supervised classification
scores of 0.606 and 0.616.

As these were first experiments to apply cross-lingual em-
beddings for sentiment analysis for code-mixed Hinglish
data, there is still a lot of room for improvement. First, we
believe the cross-lingual embeddings can still be improved,
as the embeddings constructed now are generic and can
be further tailored with domain information to increase
performance. In addition, the cross-lingual embeddings
could also be post-processed with the monolingual embed-
dings to make them more robust and less susceptible to
degradation. Additionally, more advanced classifiers like
character-based convolution networks and Transformers,
can be experimented with to produce better results out of
the current embeddings. Finally, both the supervised and
transfer learning approaches could be combined to further
improve the results by providing multiple learning sources.

To conclude, we believe transfer learning incorporating
cross-lingual embeddings is a viable approach to sentiment
analysis for code-mixed data. As code-mixing is a com-
mon phenomenon in multilingual societies (Parshad et al.,
2016), and the issue of transliteration exist in many South-
Asian languages and other languages such as Arabic, the
challenges addressed in this paper also hold for many other
languages and tasks. As a result, the presented approach
can be used for code-mixed text processing tasks in a va-
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riety of languages, and could be an important contribution
to solve the data-acquisition bottleneck for NLP for code-
mixed data.
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Abstract
We present an analysis of semi-supervised acoustic and language model training for English-isiZulu code-switched ASR using soap
opera speech. Approximately 11 hours of untranscribed multilingual speech was transcribed automatically using four bilingual
code-switching transcription systems operating in English-isiZulu, English-isiXhosa, English-Setswana and English-Sesotho. These
transcriptions were incorporated into the acoustic and language model training sets. Results showed that the TDNN-F acoustic models
benefit from the additional semi-supervised data and that even better performance could be achieved by including additional CNN
layers. Using these CNN-TDNN-F acoustic models, a first iteration of semi-supervised training achieved an absolute mixed-language
WER reduction of 3.4%, and a further 2.2% after a second iteration. Although the languages in the untranscribed data were unknown,
the best results were obtained when all automatically transcribed data was used for training and not just the utterances classified as
English-isiZulu. Despite reducing perplexity, the semi-supervised language model was not able to improve the ASR performance.

Keywords: code-switched speech, under-resourced languages, semi-supervised training, TDNN, CNN

1. Introduction

South Africa is a multilingual country with 11 official lan-
guages, including highly-resourced English which usually
serves as a lingua-franca. The largely multilingual popu-
lation commonly mix these geographically co-located lan-
guages in casual conversation. An ASR system deployed in
this environment should therefore be able to process speech
that includes two or more languages in one utterance.
The study and development of code-switching speech
recognition systems has recently attracted increased re-
search attention (Li and Fung, 2013; Yılmaz et al., 2018b;
Adel et al., 2015; Emond et al., 2018). Language
pairs that are of current research interest include English-
Mandarin (Li and Fung, 2013; Vu et al., 2012; Zeng et al.,
2018), Frisian-Dutch (Yılmaz et al., 2018b; Yılmaz et al.,
2018a) and Hindi-English (Pandey et al., 2018). In South
Africa, code-switching most often occurs between highly
resourced English and one of the nine under-resourced,
officially-recognised African languages.
In previous work, we showed that multilingual acous-
tic model training is effective for English-isiZulu code-
switched ASR if additional training data from closely re-
lated languages is used (Biswas et al., 2018a). However,
the 12.2 hours of training data provided by combining all
our code-switching data is still too little to develop robust
ASR systems.
A related study indicated that increasing the pool of
in-domain training data using semi-supervised training
achieved a significant improvement over the baseline
acoustic model (Biswas et al., 2019). These findings mo-
tivated us to further optimise semi-supervised acoustic and
language modelling training. Specifically, the effect of
multiple iterations of semi-supervised training along with
the application of a confidence threshold to filter the semi-
supervised data was considered. We focus our investiga-
tion on one language pair, English-isiZulu, to allow for a
detailed analysis of various aspects of the semi-supervised
training despite the limited computational resources at our

disposal.

2. Multilingual Soap Opera Corpus
The multilingual speech corpus was compiled from 626
South African soap opera episodes. Speech from these
soap operas is typically spontaneous and fast, rich in code-
switching and often expresses emotion, making it a chal-
lenging corpus for ASR development. The data con-
tains examples of code-switching between South African
English and four Bantu languages: isiZulu, isiXhosa,
Setswana and Sesotho.

2.1. Manually Transcribed Data
Four language-balanced sets, transcribed by mother tongue
speakers, were derived from the soap opera speech (van der
Westhuizen and Niesler, 2018). In addition, a large but
language-unbalanced (English dominated) dataset contain-
ing 21.1 hours of code-switched speech data was cre-
ated (Biswas et al., 2019). The composition of this larger
but unbalanced corpus is summarised in Table 2.1.. Note
that all utterances in the development and test sets contain
code-switching and that the balanced data is a subset of the
unbalanced data.

Language Mono (m) CS (m) Subtotal (m) Word tokens Word types

Train

English 755.0 121.8 876.6 194 426 7 908
isiZulu 92.8 57.4 150.0 24 412 6 789
isiXhosa 65.1 23.8 88.8 13 825 5 630
Sesotho 44.7 34.0 78.6 22 226 2 321
Setswana 36.9 34.5 71.4 21 409 1 525

Dev EZ – 8.0 8.0 1 572 858

Test EZ – 30.4 30.4 5 658 3711

Total 994.4 271.5 1304.4 283 520 24 933

Table 1: Duration, in minutes (m), word type and word
token counts for the unbalanced soap opera corpus. Both
monolingual and code-switched (CS) durations are given.

2.2. Manually Segmented Untranscribed Data
In addition to the transcribed data introduced in the previ-
ous section, 23 290 segmented but untranscribed soap opera
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utterances were generated during the creation of the multi-
lingual corpus. These utterances correspond to 11.1 hours
of speech from 127 speakers (69 male; 57 female). The
languages in the untranscribed utterances are not labelled.
Several South African languages not among the five present
in the transcribed data are known to occur in these seg-
ments.

3. Semi-Supervised Training
Semi-supervised techniques were used to transcribe the
data introduced in Section 2.2. (Yılmaz et al., 2018b; Nal-
lasamy et al., 2012; Thomas et al., 2013), starting with our
best existing code-switching speech recognition system. In
this study the manually-segmented data was transcribed
twice, as illustrated in Figure 1. After each transcription
pass, the acoustic models were retrained and recognition
performance was evaluated in terms of WER.
We distinguish between the acoustic models used to tran-
scribe data (AutoT) and those that were used to evaluate
WER (ASR) on the test set introduced in Table 2.1.. These
two models differ in the composition of their training sets.
The acoustic models indicated by AutoT1 in Figure 1 were
trained on all the manually transcribed (ManT) data de-
scribed in Section 2.1. as well as monolingual data from the
NCHLT Speech Corpus (Barnard et al., 2014). These were
the best available models to start semi-supervised training.
The ManT and NCHLT data were subsequently pooled with
the transcriptions produced by the AutoT1 models to train
an updated set of acoustic models (AutoT2 in Figure 1)
which were used to obtain a new set of transcriptions of
the untranscribed data for semi-supervised training. In con-
trast, the acoustic models ASR1 and ASR2 were trained by
pooling only the ManT and AutoT soap opera data; no out-
of-domain NCHLT data was used.
Separate AutoT and ASR acoustic models are maintained
because we use only in-domain data for semi-supervised
training. This is computationally much easier, since the
out-of-domain NCHLT datasets are approximately five
times larger than the in-domain sets. However, it was found
that better performance can be achieved in the second pass
of semi-supervised training if the acoustic models maintain
a similar training set composition to that used in the first
pass. Hence, AutoT1 and AutoT2 were purpose-built, in-
termediate systems used solely to generate semi-supervised
data.
Figure 1 also shows that each untranscribed utterance was
decoded by four bilingual ASR systems. The highest con-
fidence score was used to assign a language pair label to an
utterance. In initial experiments, we added only EZ data
identified in this way to the pool of multilingual training
data. However, it was found that better performance could
be achieved when all the AutoT data was added, and this
was therefore done in the experiments reported here.
Two ways of augmenting the acoustic model training set
with automatically-transcribed data were considered. First,
all automatic transcriptions were pooled with the manually-
labelled data. Second, utterances with a recognition confi-
dence score below a threshold were excluded. The average
confidence score across each language pair was used as a
threshold. A larger variety of thresholds was not considered

for computational reasons, but this remains part of ongoing
work. Confidence thresholds were applied in three ways.

1. No threshold applied in either iteration 1 or 2 of semi-
supervised training. The ManT data (21.1 h) was
pooled with the AutoT1 data to train ASR1 and with
the AutoT2 data to train ASR2. The duration of both
AutoT1 and AutoT2 was 11.1 h.

2. Threshold applied only in iteration 1. In this case only
a subset of the AutoT1 data (4.2 h) was pooled with
the ManT data to train ASR1. All 11.1 h of AutoT2

data was used to train ASR2.

3. Threshold applied in both iteration 1 and iteration 2.
This resulted in a 4.2 h subset of AutoT1 used to train
ASR1 and a 4.3 h subset of AutoT2 used to train ASR2.

These three scenarios are indicated by NT , TP1 and TP1P2

respectively in Table 3., which shows the number of utter-
ances assigned to each language pair. The total number of
utterances and corresponding duration of the data included
in the training set is shown in the last column.

Pass EZ EX ES ET TOTAL

1
NT

7 951 3 796 11 415 128 23 290 (11.1 h)
2 9 347 2 145 5 415 6 381 23 290 (11.1 h)

1
TP1

3 704 1 731 5 338 58 10 831 (4.2 h)
2 7 888 1 756 8 798 4 869 23 290 (11.1 h)

1
TP1P2

3 704 1 731 5 338 58 10 831 (4.2 h)
2 3 686 834 4 115 2 320 10 955 (4.3 h)

Table 2: Number of utterances assigned to each language
pair for automatically transcribed (AutoT) data.

4. Experiments
4.1. Language Modelling
The English-isiZulu vocabulary consisted of 11 292 unique
word types and was closed with respect to the training, de-
velopment and test sets. The SRILM toolkit (Stolcke, 2002)
was used to train a bilingual trigram language model (LM)
using the transcriptions described in Section 2.1. This LM
was interpolated with two monolingual trigrams trained on
471 million English and 3.2 million isiZulu words of news-
paper text, respectively. The interpolation weights were
chosen to minimise the development set perplexity. The re-
sulting language model was further interpolated with LMs
derived from the transcriptions produced by the process il-
lustrated in Figure 1 to obtain a semi-supervised LM.

4.2. Acoustic Modelling
All ASR experiments were performed using the Kaldi
toolkit (Povey and others, 2011) and the data described
in Section 2. The automatic transcription systems were
implemented using factorized time-delay neural networks
(TDNN-F) (Povey et al., 2018). For multilingual training,
the training sets of all four language pairs were combined.
However, the acoustic models were language dependent
and no phone merging across languages took place.
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Figure 1: Semi-supervised training framework for English-isiZulu code-switched (CS) ASR.

A context-dependent GMM-HMM was trained to provide
the alignments for neural network training. Three-fold
data augmentation was applied prior to feature extraction
(Ko et al., 2015) and the acoustic features comprised 40-
dimensional MFCCs (without derivatives), 3-dimensional
pitch features and 100-dimensional i-vectors for speaker
adaptation.
We used two types of neural network-based acoustic model
architectures: (1) TDNN-F with 10 time-delay layers fol-
lowed by a rank reduction layer trained using the Kaldi
Librispeech recipe (version 5.2.164) and (2) CNN-TDNN-
F consisting of two CNN layers followed by the TDNN-F
architecture. TDNN-F models have been shown to be ef-
fective in under-resourced scenarios (Povey et al., 2018).
The locality, weight sharing and pooling properties of the
CNNs have been shown to benefit ASR (Abdel-Hamid et
al., 2014). The default recipe parameters were used during
neural network training. In a final training step the multi-
lingual acoustic models were adapted with English-isiZulu
code-switched speech.

5. Results and Discussion
5.1. Language Modelling
Table 5.1. shows the test set perplexities (PP) for the LM
configurations described in Section 4.1. The baseline lan-
guage model, LM0, was trained on the English-isiZulu
acoustic training data transcriptions as well as monolingual
English and isiZulu text (Biswas et al., 2018b). LM0 was
also interpolated with trigram LMs trained on the 1-best
and 10-best outputs of AutoT2 respectively. MPP indicates
monolingual perplexity and is calculated over monolingual
stretches of text only, omitting points at which the language
alternates. CPP indicates code-switch perplexity and is cal-
culated only over language switch points. Therefore CPP
indicates the uncertainty of the first word following a lan-
guage switch.
Table 5.1. shows that, relative to the baseline, adding au-
tomatically generated English-isiZulu transcriptions to the
language model training data improves the overall perplex-
ity for both the development and test sets. The per-language
results show that this improvement is due to a lower isiZulu

LM PP (dev) PP MPPE MPPZ MPP CPP

LM0 (baseline) 425.8 601.7 121.2 777.8 358.1 3 292.0
LM0 + 1-best 416.1 587.4 123.1 743.6 351.1 3 160.3
LM0 + 10-best 408.2 583.6 124.4 722.8 346.9 3 205.2

Table 3: Perplexity of bilingual English-isiZulu trigram
LMs.

perplexity, while English suffers a small deterioration. CPP
is reduced when incorporating the 1-best automatic tran-
scriptions but less so when incorporating the 10-best. This
indicates that the code-switches present in the 1-best out-
puts are more representative of the unseen test set switches
than those present in the 10-best output.

5.2. Acoustic Modelling
ASR performance was evaluated on the English-isiZulu test
set for various configurations of the ASR1 and ASR2 sys-
tems.

5.2.1. ASR1

Table 5.2.1. reports WER results for different configura-
tions of ASR1. Previously-reported results using a balanced
subset of the corpus described in Section 2.1. are repro-
duced in rows 1 and 2. Language specific WERs are pro-
vided for the test set but not the development set.
The results in row 4 of the table show that, when the
TDNN-F network is preceded by two CNN layers, test
set recognition performance improves by 1.9% absolute.
Row 5, on the other hand, shows that the inclusion
of the automatically-transcribed English-isiZulu utterances
reduces the test set WER of the TDNN-F models by 1.8%
absolute. This improvement increases by an additional
0.8% absolute when including all the automatically tran-
scribed data and not just the English-isiZulu utterances, as
shown in row 6. Row 7 shows that the performance of the
CNN-TDNN-F system is also enhanced by including the
automatically transcribed data. In all the above cases, the
WER improvements are seen not only overall but also in
the English and isiZulu language-specific error rates.
Finally, the results in row 8 illustrate the impact of apply-
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ing a confidence threshold to decide which automatically-
transcribed utterances to include in the training set. The
values in the table indicate that the mixed WER deterio-
rates marginally and that the English WER improves at the
cost of a higher isiZulu WER.

System configuration Dev Test WERE WERZ

1
ManT (balanced)

TDNN-LSTM (Biswas et al., 2018a)
47.4 55.8 50.0 60.1

2
ManT (balanced)
TDNN-BLSTM (Biswas et al., 2018b)

47.1 53.1 47.6 57.2

3
ManT (baseline)
TDNN-F

41.3 47.4 41.8 51.8

4
ManT
CNN-TDNN-F

40.8 45.6 40.0 49.9

5
ManT + AutoT1 (EZ,NT )
TDNN-F

41.2 45.7 39.6 50.3

6
ManT + AutoT1 (All,NT )
TDNN-F

39.5 44.9 38.9 49.6

7
ManT + AutoT1 (All,NT )
CNN-TDNN-F (Biswas et al., 2019)

38.2 44.0 37.9 48.7

8
ManT + AutoT1 (All,TP1)
CNN-TDNN-F

38.8 44.2 36.6 50.1

Table 4: WER (%) on the English-isiZulu development
(dev) and test sets for different configurations of ASR1.

5.2.2. ASR2

The results for the second iteration of semi-supervised
training are reported in Table 5.2.2.. In all cases the ManT
data was pooled with all the AutoT data and not just the
EZ sub-set as was done in row 5 of Table 5.2.1.. Only
the results using the CNN-TDNN-F acoustic models are
shown, since this gave consistently superior performance
in Table 5.2.1..

Training data LM Dev Test WERE WERZ

1
ManT + AutoT2

(NT)
LM0 38.6 42.5 36.2 47.6

2
ManT + AutoT2

(TP1)
LM0 38.0 43.1 37.5 47.4

3
ManT + AutoT2

(TP1P2)
LM0 40.1 43.9 34.2 51.3

4
ManT + AutoT2

(NT, tuned)

LM0 36.5 41.9 33.0 48.8
5 LM0 + 1-best 36.5 41.8 33.9 47.9
6 LM0 + 10-best 36.7 42.0 34.0 48.1

Table 5: WER (%) on the English-isiZulu development
(dev) and test sets for different configurations of ASR2.

A comparison between row 1 in Table 5.2.2. and row 7 in
Table 5.2.1. reveals that a second pass of retraining affords
a further 1.5% absolute reduction in test set WER. This was
found to be statistically significant at more than 95% confi-
dence level using bootstrap interval estimation (Bisani and
Ney, 2004). Retraining ASR2 with a threshold applied only
to the output of AutoT1 results in a slightly higher WER on
the test set (row 2). Applying thresholds in both passes (row
3) improved the English WER but resulted in a substan-
tial deterioration in isiZulu WER. This result suggests that,
for the threshold value used here, English benefits from the
exclusion of low-confidence automatically transcribed data
while isiZulu does not. Thus, further study on the optimum
threshold configuration is required.

The results in row 4 of Table 5.2.2. show that a further 0.6%
absolute WER reduction can be achieved for the test set by
tuning the learning rate during adaptation. Rows 5 and 6
show that retraining the LM on text that includes automatic
transcriptions hardly influences recognition performance.
Thus, although semi-supervised training led to apprecia-
ble improvements in the acoustic models, the correspond-
ing positive effects on the language model were marginal.
A detailed analysis of different ASR outputs is shown in
Table 5.2.2.. The analysis confirms that semi-supervised
training resulted in substantial improvements in the English
and isiZulu word correct accuracy. The results also reveal a
substantial improvement in bigram correct accuracy at the
1 464 code-switch points occurring in the test set, where
bigram correct accuracy (%) is defined as the percentage of
words correctly recognised immediately after code-switch
points.

Accuracy (%)
Table 4
(Row 3)

Table 4
(Row 4)

Table 4
(Row 7)

Table 4
(Row 8)

Table 5
(Row 4)

Eng token correct 59.8 61.5 64.5 65.4 68.8
Zul token correct 50.1 51.4 53.2 51.6 53.5
Word correct after switch 53.4 55.6 58.3 57.6 60.9
Zul word correct after switch 49.7 51.4 53.6 51.6 54.4
English word correct after switch 56.7 59.3 62.5 62.9 66.7
Language correct after switch 76.8 76.9 79.1 79.0 81.6
Code-switch bigram correct 29.0 30.8 33.3 32.2 35.6

Table 6: Detailed analysis of ASR accuracy for different
acoustic models.

6. Conclusion
We have applied semi-supervised training to improve ASR
for under-resourced code-switched English-isiZulu speech.
Four different automatic transcription systems were used
in two phases to decode 11 hours of multilingual, manu-
ally segmented but untranscribed soap opera speech. We
found that by including CNN layers, CNN-TDNN-F acous-
tic models outperformed TDNN-F models on the code-
switched speech. Furthermore, semi-supervised training
provided a further absolute reduction of 5.5% in WER for
the CNN-TDNN-F system. While the automatically tran-
scribed English-isiZulu text data reduced language model
perplexity, this improvement did not lead to a reduction
in WER. By selective data inclusion using a confidence
threshold, approximately 60% of the automatically tran-
scribed data could be discarded at minimal loss in recog-
nition performance. A more thorough investigation of this
threshold remains part of ongoing work. We also aim to
further extend the pool of training data by incorporating
speaker and language diarisation systems to allow auto-
matic segmentation of new audio.
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Abstract
In this paper, we explore the methods of obtaining parse trees of code-mixed sentences and analyse the obtained trees. Existing work has
shown that linguistic theories can be used to generate code-mixed sentences from a set of parallel sentences. We build upon this work,
using one of these theories, the Equivalence-Constraint theory to obtain the parse trees of synthetically generated code-mixed sentences
and evaluate them with a neural constituency parser. We highlight the lack of a dataset non-synthetic code-mixed constituency parse trees
and how it makes our evaluation difficult. To complete our evaluation, we convert a code-mixed dependency parse tree set into “pseudo
constituency trees” and find that a parser trained on synthetically generated trees is able to decently parse these as well.

Keywords:Parse Trees, Constituency Parsing, Code-mixing

1. Introduction
Code-mixing is a phenomenon observed in multilingual so-
cieties all throughout the world. Although it started off as
mainly a spoken phenomenon, the need for computational
methods for processing code-mixed text is ever growing as
people are now code-mixing on social media and other on-
line platforms more and more (Rijhwani et al., 2017).
Most work focusing on computational methods for code-
mixing have been on tasks like LID (Solorio et al., 2014; Se-
quiera et al., 2015), NER (Aguilar et al., 2018) and POS tag-
ging (Vyas et al., 2014). Although there are some works on
code-mixed dependency parsing (Partanen et al., 2018; Bhat
et al., 2018), there is no work that has focused on obtaining
parse trees and the task of constituency parsing.
Having parse trees and a constituency parser for any language
is extremely useful. It can be used for understanding the syn-
tax of a sentence and checking whether a sentence is gram-
matically valid or not. Parse trees can also be used to build a
probabilistic context free grammar (PCFG) that would help
us understand the usage of different grammatical elements.
The work in this paper makes 3 contributions to the area of
code-mixed parsing. Firstly, we propose a technique that
modifies existing linguistic theory based code-mixed sen-
tence generation processes to obtain parse trees of the sen-
tences. The trees produced are also annotated in a manner
that captures the parallels between the mixed languages that
are used during the generation process. Secondly, we use
these synthetic trees to train a neural constituency parser and
evaluate the parser on synthetic and non-synthetic trees. This
evaluation was not straightforward as there doesn’t exist a set
of non-synthetic code-mixed constituency trees. To address
this issue, as the third contribution of the paper, we convert
code-mixed dependency trees into what we call as “pseudo
constituency trees” and show that the parser is able to parse
these as well.
The rest of the paper is organized as follows. Section 2 talks
about linguistic theories for code-mixing and how they can be
used to obtain code-mixed parse trees. Section 3 talks about
neural constituency parsers and the parsing technique chosen
for our testing. Section 4 describes the evaluation method
for the parser and results on synthetic data. Section 5 talks

Author can be contacted at anirudhsriniv@gmail.com

about further evaluating the parser using non-synthetic data
and Section 6 concludes our discussion.

2. Obtaining Code-Mixed Parse Trees
2.1. Background
Researchers in linguistics have proposed multiple theories
that aim to model code-mixing from a linguistics perspec-
tive. (Poplack, 1980; Sankoff, 1998; Joshi, 1982; Milroy,
1995; Di Sciullo et al., 1986; Belazi et al., 1994). On the
whole, these theories draw parallels between the parse trees
of a pair of parallel sentences in 2 languages and model code-
mixing as the substitution of a subtree in one language with its
equivalent in the other language, assuming that a set of con-
ditions are satisfied. One of these theories is the Equivalence
Constraint (EC) theory (Poplack, 1980; Sankoff, 1998). The
work of Bhat et al. (2016) and Pratapa et al. (2018) make
use of the EC theory to generate synthetic code-mixed sen-
tences given a pair of parallel sentences. They show that us-
ing these generated sentences in language modeling showed
an improvement in perplexity on a test set of non-synthetic
sentences.

2.2. Generating Synthetic Code-Mixed Sentences
The method for generating code-mixed sentences in Bhat et
al. (2016) first obtains equivalent parse trees of the parallel
sentences in their respective languages. The method is briefly
described here. The paper can be referred to for a detailed
explanation. Assuming that L1 and L2 are the 2 languages,

1. Obtain a sentence inL1, its equivalent inL2 and a word
level alignment between the two sentences

2. Obtain the parse tree of either of the sentences. If L1,
is English, this can be done using a tool like the Stanford
Parser (Klein and Manning, 2003)

3. Once the L1 tree is obtained, use the word level align-
ments to project the L2 words onto the L1 tree in a
bottom-up manner. In this manner, the L2 tree is ob-
tained

Figure 1a and 1b show monolingual trees for L1 and L2.
Having these equivalent trees, EC theory allows the substitu-
tion of any number of words in the L1 tree with their equiv-
alents in L2 tree as long as set of constraints are satisfied.
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(e) Valid code-mixed tree

Figure 1: Monolingual and intermediate code-mixed trees. L1 is English and L2 is Hindi. Figure 1d is an invalid tree. The
production being applied at the V P marked with * is the English production, which means that only the English productions
can be applied for the terms on its RHS. However, the NP node on its RHS (marked with *) is deriving a Hindi word, which
it is not allowed to, resulting in the tree being invalid. Had the English word been there (today, instead of आज), it would have
been a valid sentence. Figures 1c and 1e are valid trees.

These constraints are detailed in the aforementioned paper.
We will elaborate on one of these constraints in the next sec-
tion. Since we are working at the parse tree level, we directly
obtain the parse tree of the generated sentence every time we
make substitutions. Figures 1c, 1d and 1e depict intermedi-
ate code-mixed trees obtained by making substitutions. The
tree in Figure 1d is invalid and we explain why at the end of
the next section.

2.3. EC Theory: Word Order
We focus on one of the EC theory constraints, as this will
help us in better annotating the parse trees we obtain. For
every production u0 → u1u2...un in the L1 tree, there must
exist an equivalent production v0 → v1v2...vn in the L2 tree
such that

• u0 and v0 are the same non-terminal

• There exists a unique one-one mapping from the
non-terminals in u1, u2, ...un to the non-terminals in
v1, v2, ...vn

This simplifies down to 2 conditions: the LHS of the both
the productions are the same and the RHS of both the pro-

ductions have the same set of terms, possibly in a different
order.

Given these definitions, we describe one of the constraints
that are verified on the intermediate code-mixed tree (ob-
tained after substitution of words from one language to the
other). Starting in a bottom up manner, each non-terminal is
assigned 2 language tags, one based on the word order of the
production it’s derived from and one based on the word or-
der of the production being applied at it. If these tags match,
this check continues up the tree. If the tags don’t match at
any point, the sentence is considered to be invalid.

This simplifies down to each production in the tree having a
word order in its RHS that is either the L1 order or the L2
order, and that order determining which production (L1 or
L2) can be applied for each term on the RHS. If the word or-
der is same for both L1 and L2, either language’s production
can be applied for the terms on the RHS. Figure 1d shows an
invalid code-mixed tree. TheNP marked with * is assigned
the tag of h from below as it is deriving a Hindi word and the
tag e from above as the English word order is being applied at
its parent node V P (marked with *), leading to a mismatch
and making the sentence invalid.
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Figure 2: The final annotated code-mixed parse tree for tree
in Figure 1e.

2.4. Annotating CM Parse Trees
We obtain the code-mixed trees directly each time we make
substitutions in the monolingual trees. However, these simple
trees do not capture the information provided by EC theory
used in generating the tree. To address this, we annotate each
non-terminal in the tree with a tag. This tag is determined by
the language whose production (word order) was applied at
that non-terminal. For leaf nodes, this would be the language
of the word that takes it’s place. For intermediate nodes, we
added ‘_e’ or ‘_h’ depending on whether the L1 or L2 pro-
duction was applied. This will ensure that the parser trained
on these trees will learn the differences in word order for the
productions in different languages. In cases where the word
order is same for both languages, we do not add a tag. This
is so that a parser will learn that the word order for that pro-
duction would be same in both languages. Figure 2 shows the
final tree generated by the process for the tree in Figure 1e.

3. Constituency Parsing
3.1. Background
Constituency parsing is the task of generating a valid parse
tree given a sentence as input. One of the simplest methods
for this task is the CKY algorithm (Younger, 1967). This al-
gorithm takes in a set of CFG productions and builds up a
tree for a sentence using a dynamic programming algorithm.
There are variations of this algorithm that work with a Prob-
abilistic CFG as well (Booth and Thompson, 1973).
Most of the early neural network parsers were simple
encoder-decoder approaches where the sentence would be
taken in by the encoder and the decoder would have to out-
put the tree with no extra information being provided about
a tree structure (Vinyals et al., 2015). These later evolved
into methods where the decoder was constrained to output
tokens that conformed to a valid tree structure (Ballesteros et
al., 2015; Dyer et al., 2016). One negative aspect of these
early neural methods is that they required extensive feature
engineering to perform well (Thang et al., 2015).

3.2. Span Based Constituency Parsing
Span based parsing methods use a function to assign scores to
spans in the sentence and use the CKY algorithm to build up

Dataset Size Height RHS Length
En-Hi Train 421710 7.05 (1.96) 2.22 (2.34)
En-Hi Synth. Test 2740 7.10 (2.02) 2.21 (2.28)
En-Hi Real. Test 1381 5.40 (1.06) 3.38 (1.60)
En-Es Train 421710 8.16 (2.31) 1.75 (1.16)
En-Es Synth. Test 2542 8.13 (2.24) 1.73 (1.12)

Table 1: Statistics about Train and Test Datasets. Mean and
Standard deviation (in brackets) reported for tree height and
length of right hand size of productions.

the tree given these scores. Finkel et al. (2008) use Condi-
tional Random Fields (CRFs) for the scoring purpose. More
recently, there has been a line of work where neural networks
have been used to score the spans, starting off with Dur-
rett and Klein (2015) where a fixed-window based method
is used. Stern et al. (2017) build upon this work by us-
ing RNNs instead of a fixed-window for the scoring and Ki-
taev and Klein (2018) use a transformer instead of the RNN.
These methods achieve performance that is superior to the
early neural network parsers without the complex feature en-
gineering associated with most of them.

3.3. Choice of Parser
We chose the span-based parser of Kitaev and Klein (2018)1
for evaluating our trees. We chose this method as it requires
only a set of trees as input for training and no information
about the grammar of the language(s). This method achieves
near state of the art performance on the Penn Treebank WSJ
set.
This model runs the embedding of each token in the sen-
tence through a transformer layer to produce contextual em-
beddings for each token, which are used to compute embed-
dings for each span in the sentence. This is then run through
a scoring layer to produce scores for each span. These scores
are used in a modified CKY-style parser to build up the most
probable tree. For computing initial embedding of each to-
ken, we experiment with word embeddings over the com-
bined vocabulary space of both languages and with multilin-
gual BERT2 (Devlin et al., 2019) (mBERT), which produces
subword level embeddings. Lastly, the parsing model also
learns to predict POS tags of tokens (using it while parsing),
so we also report the POS tagging accuracy.

4. Evaluation
We created train, dev and test sets of synthetic trees from in-
dependent sets of parallel sentences, so there is no overlap in
the trees between the 3 sets. Table 1 contains some statistics
about the datasets. For both language pairs, we obtained par-
allel corpora by taking English sentences and running them
through Bing Translator to obtain the parallel sentences. This
allows us to perform this technique for languages that do not
have large parallel corpora available for them. Since we are
using an MT system, we end up with parallel sentences that
are less likely to be semantic equivalents of each other and

1https://github.com/nikitakit/
self-attentive-parser

2https://github.com/google-research/bert/
blob/master/multilingual.md
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Hindi-English Spanish-English
Model Synth. Test Synth. Test

F1 POS F1 POS
Word 38.22 96.07 33.20 90.23
mBERT 40.70 99.18 40.32 96.41

Table 2: Parsing F1 scores and POS tagging accuracies on
Hindi-English and Spanish-English.

more likely to have one-one mapping between the words of
both languages.
For Hindi-English, we used the sentences from the IITB Hi-
En corpus (Kunchukuttan et al., 2018) which consists of sen-
tences from multiple domains. For Spanish-English, we used
the sentences from the corpus by Rijhwani et al. (2017) that
mainly consists of sentences from social media (Twitter). We
report parsing F1 scores for both these languages along with
POS tagging accuracies. We call these test sets as “Synth.
Test” as they contain synthetically generated trees. We re-
port these results in Table 2.

4.1. Results
For Hindi-English we find that on our synthetic test set, we
are able to get a F1 score of 38.22 using word embeddings.
Using mBERT, we are able to get an increase of 2 points in
the score. Both models are able to achieve high accuracies on
POS tagging. For Spanish-English, similar to Hindi-English,
using mBERT causes a boost in the F1 measure for parsing.
For reference, we report results for English from (Kitaev and
Klein, 2018) (which happens to be near state of the art), in
which they obtain an F1 score of 92.67 using this same pars-
ing technique.

4.2. Monolingual - Code-Mixed Performance
Gap Analysis

Given that there is a big gap in the performance of our code-
mixed parser and a state of the art (SOTA) parser on English,
we perform a series of experiments with the aim of finding
out the following: How much does each of the steps of our
generation method contribute to the drop in the parser’s per-
formance? The processing done by our method can be di-
vided into 3 stages:

1. Parsing the English sentence using the Stanford parser

2. Using alignments to project the English tree to obtain
the L2 tree and an equivalent English tree

3. Substituting between the two trees to obtain a code-
mixed tree

We already have the parsing results for trees produced after
Step 3. We obtain trees produced after Step 1 and 2, train
the parser on these trees and report the results on a test set.
These trees are monolingual as code-mixing is done only in
Step 3. We report results on the English trees that were used
for Spanish-English code-mixing. These results are in Table
3.
We observe that there is a 20% drop in F1 comparing Step
1 to the SOTA English performance. This drop is due to

Parsing English Sentence
Model F1
Word 67.98
mBERT 69.31

Obtaining equivalent English
and L2 trees using alignements
Model F1
Word 47.55
mBERT 50.93

Code-Mixing
Model F1
Word 33.20
mBERT 40.32

Table 3: Parsing F1 scores and POS tagging accuracies after
every step of our method. The first 2 tables are on mono-
lingual (English) trees, while the third one is on code-mixed
(Spanish-English) trees.

the errors introduced by using the Stanford parser to parse
the English sentences. When we move from Step 1 to Step
2, we observe another 20% drop. This is the result of our
method of projecting the English tree using alignments to
obtain the L2 tree. The drop from Step 2 to Step 3 is around
10%. This is the actual complexity introduced to the parser
by code-mixing, a much smaller difference than the 50% es-
timate from before.
We can draw the following conclusions from this analysis.
The complexity introduced by code-mixing brings in only a
10% drop in performance of the parser. The major reasons
for the drop are the steps that obtain the parse trees for En-
glish and L2. Improvements to this technique can help in
obtaining much better code-mixed parse trees.

5. Further Evaluation

5.1. Better Evaluation Methods: Using
Non-Synthetic Trees

Evaluating the parser on synthetically generated trees alone
is not sufficient. To get a thorough estimate of the useful-
ness of our synthetically generated trees, we have to take a
parser trained on these trees and evaluate it on non-synthetic
(real) trees. To accomplish, one would need a dataset of con-
stituency parse trees of code-mixed sentences and to the best
of our knowledge, such a dataset does not exist.
To address this and perform a more complete evaluation of
our trees, we use of the work by Bhat et al. (2018) to come
up with an evaluation technique. Their work proposes a
Hindi-English code-mixed dependency parsing dataset. De-
pendency parse trees have a structure that is very different
to constituency parse trees (see Figure 3). We convert these
dependency trees to pseudo constituency trees and evaluate
the parser with them.
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(a) A dependency parse tree
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(b) The converted constituency parse tree

Figure 3: A dependency parse tree and the constituency tree obtained by the conversion technique used.

5.2. Converting Dependency Trees to
Constituency Trees

Although there has been a lot of recent work on convert-
ing dependency trees to constituency trees (Xia et al., 2008;
Wang and Zong, 2010; Lee and Wang, 2016), most of these
works require having the golden constituency tree for a de-
pendency tree and train a machine learning based algorithm
on such a golden tree set to learn the conversion. Since these
resources are something not available for our case, we fo-
cus on the works of Collins et al. (1999) and Xia and Palmer
(2001). These works propose an algorithm that will convert a
dependency tree to a constituency tree in a deterministic fash-
ion, outputting the structure alone of the constituency tree.
This algorithm does not assign labels to intermediate nodes
in the tree, a step that the aforementioned machine learning
based algorithms try to achieve using labelled data.

5.3. Evaluation Methodology
We make use of Algorithm 2 from Xia and Palmer (2001)
to convert the dependency trees in the train set of Bhat et al.
(2018) (1381 tweets) to constituency trees. One aspect to
note is that while this dataset is from Twitter, our synthetic
trees are from a multiple-domain dataset. We assign the non-
terminals without labels (all non-terminal except leaf level
ones) the label ‘D’ and refer to the produced trees as pseudo
constituency trees. Figure 3 shows a dependency parse tree
and the pseudo constituency tree obtained by converting it.
We use this as a test set on our trained parsers along with a
metric we call “Unlabelled F1”. This metric is needed as we
don’t have the labels for intermediate non-terminals, resulting
in skewed scores being produced if we used the F1 score as
per its original definition.
As per its original definition, the F1 score for parsing is cal-
culated using precision and recall computed over successes
and failures in the following manner: success is when a par-
ticular span in the sentence contains the same parent in the
gold and the generated trees with the parent labels being the
same, failure being otherwise. For our Unlabelled F1 mea-
sure, we relax the criterion of checking if the parent’s labels
match. We report this F1 score and POS accuracies in Table
4 under the Real Test column. We also calculate the Unla-

Model Real Test Synth. Test
F1* POS F1* POS

Word 30.32 40.25 46.93 96.07
mBERT 30.60 41.31 49.98 99.18

Table 4: *Unlabelled F1 and POS accuracies on the Hindi-
English set of converted dependency trees.

belled F1 score for our Synth. Test set and report it and the
POS accuracies(same value as in 2) for reference. Since we
do not have English-Spanish dependency trees, we do not re-
port any results on a Real Test set for that language pair.

5.4. Results & Error Analysis
We observe that the neural parser is able to perform decently
on the Real Test set. There is a performance gap between the
performance on this and on the synthetic test set. We also
note that there is a huge gap in the POS tagging accuracy be-
tween the 2 sets. The domain mismatch between Real. Test
and Synth. Test could contribute to the performance differ-
ence. We elaborate below on another possible reason.
Observing the distributions of tree height and production
RHS length in Table 1, we observe a difference between the
Train/Synth Test and Real Test sets. Given that these values
(height, production RHS length) are integers and not contin-
uous values, a difference of even 1 for their mean values is
significant. We theorize that this is the side-effect of the algo-
rithm used to convert dependency trees to constituency trees.
In their work, Xia and Palmer (2001) refer to Algorithm 2,
the algorithm that we’ve used, as the “Flattest Possible” al-
gorithm, producing trees that are flatter (less in height) and
wider (longer RHS of productions). This is clearly visible in
our case, as the mean height is lesser and mean RHS length
is more when comparing Real Test to both Train and Synth
Test. Given this difference in the distribution between the
train and test, the parser is not able to perform as well.

5.4.1. Error Analysis
We performed an analysis of where the parser makes errors
and have listed some observations below. Appendix A con-
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tains the gold tree from Real Test and the parser’s predictions
with more detailed explanations on how the parser is failing.

1. POS tag errors cause the parser to not capture smaller
subtrees well

2. Longer sentences result in the parser not being able to
capture any tree structure at all (i.e the root node derives
most of the leaf nodes directly)

6. Conclusion
We present a technique to generate code-mixed parse trees
given a pair of parallel sentences. We train a neural parser on
these trees and report parsing F1 scores on a test set of gen-
erated trees. We also look into obtaining an evaluation set of
non-synthetic trees and highlight the lack of such a resource
in the community. Using an existing dependency parse re-
source, we evaluate our parser and observe that it is able to
parse non-synthetic sentences as well, albeit not as well as it
is able to perform on a set of synthetic sentences. The lack
of code-mixed constituency parse set is something we’ve had
to work around and the computational linguistics community
would really benefit if such a resource exists.
A neural parser capable of performing on code-mixed sen-
tences is a useful tool to have. Such a parser could be used to
analyze code-mixed corpora and obtain statistics much more
useful than values like Code-Mixing Index (CMI), Switching
Point Fraction(SPF) etc.., statistics like what grammatical el-
ements are likely to be switched more frequently and what
are likely to be not. This information could further be used
to sample from a set of large generated sentences to obtain
more realistic sentences.

7. Bibliographical References
Aguilar, G., AlGhamdi, F., Soto, V., Diab, M., Hirschberg,
J., and Solorio, T. (2018). Named entity recognition
on code-switched data: Overview of the CALCS 2018
shared task. In Proceedings of the Third Workshop on
Computational Approaches to Linguistic Code-Switching,
pages 138–147, Melbourne, Australia, July. Association
for Computational Linguistics.

Ballesteros, M., Dyer, C., and Smith, N. A. (2015). Im-
proved transition-based parsing by modeling characters in-
stead of words with lstms.

Belazi, H. M., Rubin, E. J., and Toribio, A. J. (1994).
Code switching and x-bar theory: The functional head
constraint. Linguistic inquiry, pages 221–237.

Bhat, G., Choudhury, M., and Bali, K. (2016). Grammat-
ical constraints on intra-sentential code-switching: From
theories to working models.

Bhat, I., Bhat, R. A., Shrivastava, M., and Sharma, D.
(2018). Universal dependency parsing for hindi-english
code-switching. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, Vol-
ume 1 (Long Papers), volume 1, pages 987–998.

Booth, T. L. and Thompson, R. A. (1973). Applying prob-
ability measures to abstract languages. IEEE transactions
on Computers, 100(5):442–450.

Collins, M., Hajic, J., Ramshaw, L., and Tillmann, C.
(1999). A statistical parser for Czech. In Proceedings of
the 37th Annual Meeting of the Association for Compu-
tational Linguistics, pages 505–512, College Park, Mary-
land, USA, June. Association for Computational Linguis-
tics.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2019). BERT: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings of the
2019 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota, June. Association
for Computational Linguistics.

Di Sciullo, A.-M., Muysken, P., and Singh, R. (1986). Gov-
ernment and code-mixing. Journal of linguistics, 22(1):1–
24.

Durrett, G. and Klein, D. (2015). Neural CRF parsing. In
Proceedings of the 53rd Annual Meeting of the Associa-
tion for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing (Volume
1: Long Papers), pages 302–312, Beijing, China, July. As-
sociation for Computational Linguistics.

Dyer, C., Kuncoro, A., Ballesteros, M., and Smith, N. A.
(2016). Recurrent neural network grammars. In Proceed-
ings of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human
Language Technologies, pages 199–209, San Diego, Cali-
fornia, June. Association for Computational Linguistics.

Finkel, J. R., Kleeman, A., and Manning, C. D. (2008). Ef-
ficient, feature-based, conditional random field parsing. In
Proceedings of ACL-08: HLT, pages 959–967, Columbus,
Ohio, June. Association for Computational Linguistics.

Joshi, A. K. (1982). Processing of sentences with intra-
sentential code-switching. In Coling 1982: Proceedings of
the Ninth International Conference on Computational Lin-
guistics.

Kitaev, N. and Klein, D. (2018). Constituency parsing with a
self-attentive encoder. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 2676–2686, Melbourne,
Australia, July. Association for Computational Linguistics.

Klein, D. and Manning, C. D. (2003). Accurate unlexical-
ized parsing. In Proceedings of the 41st Annual Meeting of
the Association for Computational Linguistics, pages 423–
430, Sapporo, Japan, July. Association for Computational
Linguistics.

Kunchukuttan, A., Mehta, P., and Bhattacharyya, P. (2018).
The IIT Bombay English-Hindi parallel corpus. In Pro-
ceedings of the Eleventh International Conference on Lan-
guage Resources and Evaluation (LREC 2018), Miyazaki,
Japan, May. European Language Resources Association
(ELRA).

Lee, Y.-S. and Wang, Z. (2016). Language independent de-
pendency to constituent tree conversion. In Proceedings of
COLING 2016, the 26th International Conference on Com-
putational Linguistics: Technical Papers, pages 421–428,
Osaka, Japan, December. The COLING 2016 Organizing
Committee.

62



Milroy, J. (1995). One speaker, two languages: Cross-
disciplinary perspectives on code-switching. Cambridge
University Press.

Partanen, N., Lim, K., Rießler, M., and Poibeau, T. (2018).
Dependency parsing of code-switching data with cross-
lingual feature representations. In Proceedings of the
Fourth International Workshop on Computational Linguis-
tics of Uralic Languages, pages 1–17, Helsinki, Finland,
January. Association for Computational Linguistics.

Poplack, S. (1980). Sometimes i’ll start a sentence in span-
ish y termino en espanol: toward a typology of code-
switching1. Linguistics, 18(7-8):581–618.

Pratapa, A., Bhat, G., Choudhury, M., Sitaram, S., Danda-
pat, S., and Bali, K. (2018). Language modeling for code-
mixing: The role of linguistic theory based synthetic data.
In Proceedings of the 56th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long Pa-
pers), pages 1543–1553, Melbourne, Australia, July. As-
sociation for Computational Linguistics.

Rijhwani, S., Sequiera, R., Choudhury, M., Bali, K., and
Maddila, C. S. (2017). Estimating code-switching on
twitter with a novel generalized word-level language detec-
tion technique. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Volume
1: Long Papers), pages 1971–1982, Vancouver, Canada,
July. Association for Computational Linguistics.

Sankoff, D. (1998). The production of code-mixed dis-
course. In Proceedings of the 17th international conference
on Computational linguistics-Volume 1, pages 8–21. Asso-
ciation for Computational Linguistics.

Sequiera, R., Choudhury, M., Gupta, P., Rosso, P., Kumar,
S., Banerjee, S., Naskar, S. K., Bandyopadhyay, S., Chit-
taranjan, G., Das, A., et al. (2015). Overview of fire-2015
shared task on mixed script information retrieval.

Solorio, T., Blair, E., Maharjan, S., Bethard, S., Diab, M.,
Ghoneim, M., Hawwari, A., AlGhamdi, F., Hirschberg,
J., Chang, A., and Fung, P. (2014). Overview for the first
shared task on language identification in code-switched
data. In Proceedings of the First Workshop on Computa-
tional Approaches to Code Switching, pages 62–72, Doha,
Qatar, October. Association for Computational Linguis-
tics.

Stern, M., Andreas, J., and Klein, D. (2017). A minimal
span-based neural constituency parser. In Proceedings of
the 55th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages 818–
827, Vancouver, Canada, July. Association for Computa-
tional Linguistics.

Thang, L. Q., Noji, H., andMiyao, Y. (2015). Optimal shift-
reduce constituent parsing with structured perceptron. In
Proceedings of the 53rd Annual Meeting of the Associa-
tion for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing (Volume
1: Long Papers), pages 1534–1544, Beijing, China, July.
Association for Computational Linguistics.

Vinyals, O., Kaiser, Ł., Koo, T., Petrov, S., Sutskever, I., and
Hinton, G. (2015). Grammar as a foreign language. In
Advances in neural information processing systems, pages
2773–2781.

Vyas, Y., Gella, S., Sharma, J., Bali, K., and Choudhury,
M. (2014). POS tagging of English-Hindi code-mixed
social media content. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Processing
(EMNLP), pages 974–979, Doha, Qatar, October. Associ-
ation for Computational Linguistics.

Wang, Z. and Zong, C. (2010). Phrase structure parsing
with dependency structure. In Coling 2010: Posters, pages
1292–1300, Beijing, China, August. Coling 2010 Orga-
nizing Committee.

Xia, F. and Palmer, M. (2001). Converting dependency
structures to phrase structures. In Proceedings of the First
International Conference on Human Language Technology
Research.

Xia, F., Rambow, O., Bhatt, R., Palmer, M., and
Misra Sharma, D. (2008). Towards a multi-
representational treebank. LOT Occasional Series,
12:159–170.

Younger, D. H. (1967). Recognition and parsing of context-
free languages in time n3. Information and control,
10(2):189–208.

63



A. Error Analysis on Trees
Depicted below are 3 trees from Real Test and the parser’s prediction for these trees. Gold trees are on the left and the parser’s
predictions are on the right. Errors made by the parser and possible reasons for the same have been mentioned along with the
trees. The parsing F1 score for each tree is also reported, and the trees are ordered in descending order of this score.
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Figure 4: F1: 100.0: The parser predicts one of the POS tags incorrectly, but otherwise predicts the tree structure correctly.
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Figure 5: F1: 66.67: The parser predicts the POS tag for पे incorrectly, leading to the subtree (D→ NOUN ADP) not being
captured properly.
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Figure 6: F1: 40.0: There are a few POS tag errors in this case. As sentences get longer, the parser struggles to capture the
tree structure of the original sentence and outputs a tree where the root node derives (almost) all the leaf nodes directly.
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Abstract
Code-mixed grapheme-to-phoneme (G2P) conversion is a crucial issue for modern speech recognition and synthesis task, but has been
seldom investigated in sentence-level in literature. In this study, we construct a system that performs precise and efficient multi-stage
code-mixed G2P conversion, for a less studied agglutinative language, Korean. The proposed system undertakes a sentence-level
transliteration that is effective in the accurate processing of Korean text. We formulate the underlying philosophy that supports our
approach and demonstrate how it fits with the contemporary document.
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1. Introduction
Grapheme-to-phoneme (G2P) conversion is an essential
process for speech recognition and synthesis. It converts
textual information called grapheme into phonetic informa-
tion called phoneme. The graphemes, represented by sym-
bols that let the language users pronounce, are not real au-
dio data, nor do not have a necessary correspondence with
the genuine sound. For example, ‘apple’ sounds more like
æpl, while ‘America’ sounds like 9mérik9. This process
implies that the character ‘a’ does not have a direct corre-
spondence with the sound ‘æ’ or ‘9’; instead, the appro-
priate symbol to transcribe each pronunciation might have
been ‘a’. This is influenced by that the English alphabet is
a segmental script, but other writing systems do not neces-
sarily guarantee greater correspondence. For example, in
the case of logograms such as Chinese characters, there is
little relationship between the composition of the charac-
ter (bushu) and the pronunciation of the symbol (Figure 1,
top).
In a little different viewpoint notwithstanding, Hangul rep-
resentation of Korean is a featural writing system (Daniels
and Bright, 1996) in which each sub-characters of morpho-
syllabic blocks corresponds to a phonetic property (Figure
1, bottom) (Kim-Renaud, 1997). For instance, in a syllable
khak placed at the right end of the bottom of Figure 1, the
three clock-wisely arranged characters kh, a, and k, which
sound khiukh (among 19 candidates), ah (among 21 candi-
dates), and kiyek (among 27 candidates), refers to the first,
the second and the third sound of the given character, re-
spectively (Cho et al., 2019). This is a unique feature of the
Korean writing system, which distinguishes Hangul from
Chinese characters that do not have a direct relationship
with syllable pronunciations. Also, Hangul is more deli-
cately decomposed compared to mora-level Japanese Kana.
Due to the above characteristics, the process of transform-
ing grapheme in Korean to phoneme is widely performed
by using the Korean alphabet itself (Jeon et al., 1998; Kim
et al., 2002), that is, the Hangul sub-character Jamo, un-
like cases such as Chinese pinyin that borrows the English
alphabet (Figure 1, top). For this reason, even though the
widely used Korean G2P sometimes uses English expres-
sions (Cho, 2017), the full phoneme sequence is primarily

Figure 1: Comparing the Chinese language written with
Hanzi (along with pinyin, top) and the Korean language
written with Hangul, the featural writing system (along
with Yale romanization, bottom).

written in Hangul Jamo, to reflect the Korean pronunciation
system. This property, the grapheme and phoneme set shar-
ing the same symbols, allows Korean G2P a phonological
approach within the language itself.
Currently, Korean G2P systems in use (Cho, 2017; Park,
2019) follow the pronunciation rules of the National In-
stitute of Korean Language in principle, and we can con-
firm that the conventional modules perform well on a rule-
based basis. However, in this study, we implement a pre-
processing module for challenging code-mixed G2P, which
regards co-existing Korean and non-Korean expressions
(Shim, 1994), considering the case where the basis cannot
be found in the monolingual rule. In specific, we deal with
the English alphabet and Chinese characters, and mainly
on the former1, concerning that environment in which En-
glish is mixed with text often exist in modern scripts such
as technical reports or scripts (Shim, 1994; Sitaram et al.,
2019).

1Depending on the configuration and arrangement of Chinese
characters, the duration of the syllable may change or a particular
consonant may be inserted, but this is a task to handle in G2P after
converting to a Hangul once and not a target here. Also, Japanese
Kana is seldom used among Korean text.
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Due to the human language being arbitrary, there are lim-
itations in obtaining phoneme sequences using only the
rules in some cases. Firstly, because code-mixing is not
restricted only to two languages (ko-en), that English let-
ters co-existing with Chinese characters and numbers are
also observable. Second, various acronyms with non-
deterministic pronunciation exist and are frequently uti-
lized (e.g., word2vec, G2P), usually not spoken in a code-
switched way. Finally, due to the agglutinative property
of the Korean language, it is often vague to decide which
phrase to transform within a sentence. Accordingly, we
decided to fully utilize the information given by exist-
ing libraries and dictionaries to implement a sentence-level
transliteration for Korean/English code-mixed G2P, taking
into account the syntactic property of decomposed tokens.
The contributions of this study and demonstration are as
follows:

• Easily adjustable multi-stage system for a sentence-
level code-mixed Korean G2P; detecting foreign ex-
pressions and replacing them with Hangul terms

• Suggesting morphological and phonological tricks
that can handle the pronunciation of cumbersome non-
Korean expressions

The system and code is to be publicly available2.

2. Background
Sentence-level transliteration may seem simple, but it is in-
volved in all phonetics, phonology, and morphology. In
other words, at least the background in the Korean writ-
ing system, morphological analysis, Korean-English code-
mixed writing is essential for implementing en-ko code-
switching G2P (Kim et al., 2002). Phonetically, the Ko-
rean language is a language pronounced as a sequence of
syllables, and the related phonemes locally correspond to
graphemes represented by morpho-syllabic blocks (Kim-
Renaud, 1997). The grapheme consists of a block as a
single character, and is decomposed to sub-characters of
first to third sound; CV(C). They are spoken straightfor-
wardly in singleton cases, but when two or more characters
are contiguous, the pronunciation differs from that of the
single one (Jeon et al., 1998).
A code-mixed sentence, in this paper, is a Korean utter-
ance (mainly written in text), where the syntax follows the
Korean grammar, but some content phrases (non-functional
expressions) are replaced by non-Korean terms, includ-
ing English, Chinese and some numbers (Figure 2) (Shim,
1994). These expressions are often not promising in pro-
nunciation for users of the same language, and acronyms
are often confusing to resolve even when the source lan-
guage is known (e.g., LREC as el-rec, or AAAI as triple-A-
I). Therefore, for G2P, the biggest problem that code-mixed
sentences bring is the difficulty of applying a rule for gener-
ating a phoneme sequence for speech processing, especially
speech synthesis (Chandu et al., 2017). This, in turn, is di-
rectly related to the difficulty of transliteration (Sitaram et
al., 2019).

2https://github.com/warnikchow/translit2k

Figure 2: Given that the modern Korean writing system
does not utilize Chinese characters, the sentence above
is a code-mixed Korean sentence with Chinese characters
(green), English words (blue), and numbers (yellow). The
translation is: “From the point of view of G2P, the biggest
problem with code-mixed text is that it is difficult to apply
the rules for generating existing phonetic sequences in the
use of text for speech processing, especially for speech syn-
thesis.”

There has been a lot of work on word-level transliteration
process and its evaluation (Kang and Kim, 2000; Oh and
Choi, 2002; Oh and Choi, 2005; Oh et al., 2006), but little
on the sentence-level processings. Unlike in English, where
each word consists of either source or target language that
arbitrary word can be transliterated into the source lan-
guage, In Korean code-mixed sentences, it is usual that the
foreign expressions are augmented with the functional par-
ticles, in a truly code-mixed format in morphological level
(Figure 2). It looks like a pidgin language, but is fully com-
prehensible by native readers since the symbols are distin-
guished. It is assumed that many industrial units are ap-
plying various heuristics to handle them, but we could not
find an established academic approach for this issue. Built
on the preceding discussions on code-mixed sentences and
transliteration, we provide a detailed description of our res-
olution afterward.

3. Proposed Method
As the main contribution of this paper, we will implement
a sentence-level code-mixed G2P that operates efficiently.
For this, we took two methods into account.

(1) On training a transformation module that maps
Korean/non-Korean code-mixed raw text directly to Korean
phoneme sequence

(2) Multi-stage method of primarily changing non-Korean
vocabulary to Korean pronunciation in code-mixed text and
applying separate G2P module

The method of (1) is very suitable for utilizing neural
network-based training and the implementation of end-to-
end speech recognition/synthesis system, but usually, the
number of Korean lexicons is significantly higher than the
English vocabulary size. In other words, as long as Korean
sentences are used for speech recognition or synthesis, a
large amount of artificially made code-mixed sentences are
required for reliable learning, of which the effectiveness is
not guaranteed. In addition, it does not seem data-efficient
in that Korean text dominant in the dataset may deter the en-
hancement of transliterating arbitrary foreign expressions.
These issues can result in the degradation of G2P precision
and the performance of recognition/synthesis.
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Figure 3: A brief diagram of the proposed code-mixed transliteration system. The translation is: “Why don’t we write a
NeurIPS or ICML paper this year?”, and the non-Korean terms NeurIPS and ICML are identified and transformed.

On the other hand, in (2), non-Korean expressions are
transliterated into Korean primarily, and then rule-based
precise Korean G2P is performed. For the latter part of
the process, a well-used module already exists (Cho, 2017;
Park, 2019), so we can concentrate on performing the for-
mer task, the transliteration to Korean. In this study, we
adopt (2), mainly enhancing the transliteration process by
detecting English and other non-Korean expressions (in-
cluding Chinese characters and numbers) in code-mixed
sentences and transforming them into Korean pronuncia-
tion. The specific procedure using the method of (2) is as
Following (Figure 3).

1. Detecting phrases with code-mixed expressions: First
of all, in the result of merely splitting a sentence into white
space, detect an eojeol (Korean term for a whitespace-split
word) containing an English or non-Korean (Chinese char-
acters, numbers) expressions. In this process, Unicode in-
formation is exploited. The tokenization is done basically
by a morphological analyzer, and each eojeol is considered
as a chunk of morphemes.

2. Separating context: Subsequently, use the eojeols of
interest as the target of transformation, except for the func-
tional particles (if present). In this process, the outcome of
the morphological analyzer above is adopted.

3. Hybrid transliteration: Finally, transliterate the de-
tected English/non-Korean expressions into Korean pro-
nunciation. It is viable to use a dictionary or train a neu-
ral network-based model, but we want to mix the two ap-
proaches. In more detail, one can collect a variety of En-
glish loanwords, and list them with the commonly used
(lexicographical) Korean pronunciations, using it as a dic-
tionary. After the primary rule-based transliteration, a
trained transliteration system can be used for words that
do not fall into the pre-defined categories. In this process,
Chinese characters and numbers are all taken into account,
along with the context that is present in the rest of eojeol.
The tricks used here are:

• Trick 1. On Chinese characters: All Chinese char-
acters are replaced with corresponding Hangul sym-
bols, since such cases are Sino-Koreans which already

have an established pronunciation. Here, a subsequent
chunk of Chinese characters is tied and transformed
together to reflect the possible change of pronuncia-
tion regarding word-initial rules. If the Chinese char-
acter and numbers/English alphabet come together,
the Chinese characters are transformed first, followed
by the transliteration of other parts.

• Trick 2. On numbers: For lone case, the pronunci-
ation may follow the corresponding Chinese charac-
ter as default, and if not alone, the tokens nearby are
taken into account. If a number is placed between En-
glish words, consider using the result of transliteration
of English words into Korean (e.g., 2 = two > thu,
4 = four > pho). Even when a number is between
the English alphabet and Chinese/Korean at the same
time, the pronunciation may follow English, as in the
case of ‘number 3 kka-ci (till number 3)’. Otherwise,
between Chinese characters, the number is read as in
Trick 1. If the number between is followed by Ko-
rean Hangul, the cardinality, ordinality, or being Sino-
Korean of the number is determined upon a conven-
tion, which might change the pronunciation. This fol-
lows the conventions of the Korean language, and can
be modified based on the dictionary.

• Trick 3. On acronyms: Acronyms are easy to detect if
written in capital letters, but people do not necessarily
follow such the standard. Therefore, we added some
tricks for the ones that are not in the dictionary. If
they are all composed of consonants or have separate
symbols between characters, each consonant is subse-
quently pronounced in Korean. However, if there is a
corresponding English word, the dictionary output, or
the result that is yielded by the trained system is used.

In the above process, methods such as a recurrent neu-
ral network (RNN) or Transformer (Vaswani et al., 2017)
may be used for machine learning approach through train-
ing. The method using training means to make seq2seq
(Sutskever et al., 2014) model with alphabet input and
Hangul output using a parallel corpus of English and
transliterated English. However, it is not necessary to take
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a training-based approach to English words that are al-
ready in the dictionary. Thus, words in the codebook3 pro-
duce a precise output in the form of look-up tables, and
words not in the codebook are predicted by seq2seq mod-
els learned through parallel corpus (here it is the same as
the codebook). This allows the model to learn pronuncia-
tions for words that are not in the dictionary, and possibly
for acronyms, as many previous machine learning-based
transliteration modules did (Karimi et al., 2011; Finch et
al., 2016). Translating English into Korean first in this way
and then applying rule-based G2P allows the modeling of
the entire G2P to be more robust to Korean pronunciation
rules.
We note here that though the codebook we adopt already in-
corporates a precise transformation of many words (about
37K), we need to train a system that can pronounce words
that are not on the list. That is, we need to observe beyond
the rules of how the arrangement of English consonants and
vowels has determined Korean pronunciation. Once the
Hangul characters are padded sub-character-level, or jamo-
level, and compared with the English alphabet, the corre-
spondence between the two is not consistent. Beyond the
limitation of symbol representation, what makes this more
challenging are 1) the different sound produced by the Ko-
rean consonants that come to the first and third sound, and
2) the sound change that takes place when the third sound
meets the first sound of the next syllable. Moreover, 3) in
English, one needs to observe the vowels where the con-
sonant is located around, the vowel placement within the
word, and what unique phonetic properties the various bi-
gram/trigram characters have.
Therefore, in the implementation of a non-rule-based
transliteration system, the seq2seq approach is carried out
to character level in English and sub-character-level in Ko-
rean. Moreover, in characterizing Korean, the first sound
and the third sound, that are similarly the consonant, can
be represented distinctly. Using this, with about 37K pairs
of English word-Korean pronunciation pairs, we trained the
(attention-based) RNN encoder-decoder (Cho et al., 2014;
Luong et al., 2015), under the consideration that the Trans-
former would be too large-scale for just a word-level trans-
formation. The implementation detail is to be released
along with the model and system.

4. Experiment

The concept of sentence-level code-mixed Korean G2P has
been proposed in the previous section, and we aim to imple-
ment a fast and accurate code-mixed G2P that can be used
for practical speech recognition/synthesis, that integrates
other models in use. However, since standard translitera-
tion studies have sought for character/word-level accuracy,
mainly in word-level transformations, referring them might
not be suitable for direct comparison with this work. There-
fore, in this section, we will demonstrate the flexibility and
utility of our approach with a concrete example.

3In this paper, we interchangeably utilize codebook and dictio-
nary.

4.1. Implementation
For an efficient construction that divides and conquers the
sub-modules, we leveraged various open-source libraries in
our implementation. The sub-modules and corresponding
libraries are as follows:

• mixed g2p: Transforms a code-mixed sentence to
the phoneme sequence. Consists of sentranslit and
KoG2P/g2pK.

– KoG2P4: An easily employable Python-based
Korean G2P library that transforms the Korean
text to alphabetical symbols that represent the
Korean phonemes, based on a rulebook.

– g2pK5: An up-to-date Python-based open-source
G2P library for Korean, that transforms a Ko-
rean grapheme sequence to a Hangul syllable se-
quence that is more familiar with human reading.

• sentranslit: Performs sentence-level translit-
eration of code-mixed sentences. Consists of
align particles, trans eojeol (eojeol-level transliter-
ation), trans number, trans hanja, and trans latin.
Undertakes transliteration only if the string contains
non-Hangul expressions.

– hgtk6: A software that recognizes, decomposes,
and reconstructs Hangul/Jamo sequence. Also
detects if the string contains Chinese characters
or the Latin alphabet.

• trans eojeol: Controls the operation of trans number,
trans hanja, and trans latin, given the result of mor-
phological analysis.

– MeCab7: A statistic model-based Korean mor-
phological analyzer that performs fast and accu-
rate, which was first developed for the analysis of
the Japanese language. Here, we utilize python-
mecab8 for convenience, which is an easily ac-
cessible wrapper.

• trans number: Reads the numbers in Chinese style
(Korean pronunciation), in English (en-ko translitera-
tion), or in Korean (ordinal, cardinal, or Sino-Korean).

– Bases on the characteristics of the context tokens,
incorporating various exceptional cases.

• trans hanja: Reads Chinese characters in Korean
pronunciation, considering the word-initial rules.

– hanja9: A library that translates Chinese char-
acters into Korean syllables, also obeying word-
initial rules. This module is utilized in two parts
of the system; at the very first of the sentence
analysis and again in eojeol-level, to complement
the possible fail of Chinese character recognition.

• trans latin: Performs en-ko transliteration, with rule
and learning hybrid approach.

4https://github.com/scarletcho/KoG2P
5https://github.com/Kyubyong/g2pK
6https://github.com/bluedisk/hangul-toolkit
7https://bitbucket.org/eunjeon/mecab-ko-dic/src/master/
8https://github.com/jeongukjae/python-mecab
9https://github.com/suminb/hanja
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Figure 4: Demonstration for the sample sentence in Figure
2. Note that the code-mixed expressions in each eojeol are
transliterated based on the scheme and tricks in Section 3.

– transliteration10: Our utilized dictionary comes
from the pre-built dataset11 of this library, where
the results of learning-based en-ko transliteration
was previously published. We train a new system
based on this, and this module can be replaced
with whatever transliteration module that shows
sufficient performance.

4.2. Demonstration
Our demonstration with the sample sentence in Figure 2 is
suggested in Figure 4. Since the G2P conversion is straight-
forwardly performed, we discuss here the sentence-level
transliteration process.
There are mainly three points that show how our sys-
tem works. First, regarding Chinese code-mixed expres-
sions, some in sole words and others mixed with Korean
functional particles, our module (trans eojeol) detects the
terms and translate them into Korean pronunciation via
trans hanja, with the help of hanja library. Next, similar is
done for English expressions such as code, mix, sequence
and rule, possibly utilizing trans latin, where the dictio-
nary and training are engaged in. Lastly, for a challenging
term G2P, which may not be in the dictionary (and is at
the first place decomposed by the morphological analyzer),
the sub-modules above succeed to split them into G, 2, and
P, transliterating each of them to Korean pronunciation ci,
thu, and phi, given that g and p should be read as a single
alphabet (due to being sole consonant) and also 2 is read in
English concerning its surroundings. In this way, our mod-
ule divides and conquers the challenging task and finally
yields the desired output.

4.3. Discussion
Though our work is mainly on a code-mixed G2P, the
recently released library g2pK partially shares some fea-
tures with ours; various functions are inserted regarding
the pronunciation of English terms and numbers in Korean
sentences. We concentrate more on reading numbers and
acronyms in a code-mixed context, trying to make a rule-
learning hybrid approach for en-ko transliteration. On the

10https://github.com/muik/transliteration
11https://github.com/muik/transliteration/tree/master/data/source

other hand, in g2pK, such functions are implemented as a
utility, while G2P rules are main and quite thoroughly in-
vestigated. We claim that both systems are not mutually ex-
clusive, and rather might be complementary to each other.
Again, to be specific on the architecture, each of our sub-
modules can be replaced with whatever the user wants as
customization, without losing the additional flexibility of
the user-generated dictionary. For instance, as suggested in
transliteration library, one can define a new word list and
accumulate the wanted result to it. Making up a look-up
table can sometimes and inevitably be more efficient and
accurate. Also, since MeCab was basically proposed for
the analysis of the Japanese language, whose syntax a lot
resembles Korean, one who wants to implement a similar
module for Japanese code-mixed writings may benefit our
system. The above factors support the scalability and gen-
eralizability of our approach.

5. Application
The code-mixed G2P implemented in this paper can be
used for both research and industry. First of all, as em-
phasized, the application onto speech synthesis is very in-
tuitive. Korean corpus has many sentences that consist
only of Hangul characters, of course, but there may also be
enough code-mixed expressions in modern text, and espe-
cially in chat dialogues, which is close to being synthesized.
Therefore, if one can take advantage of this system well,
it might be possible to promote plausible code-mixed pro-
nunciation without regulating the generation of the script to
only one kind of language. Without a doubt, this does not
have a conflict with the option of not doing code-switching.
That is, merely preserving the pronunciation of the source
language is also recommended, if technically available.
The multi-stage approach we present can, of course, gen-
erate bottlenecks. However, it is expected to have signifi-
cant advantages over end-to-end learning, in other words,
using code-mixed text for training speech synthesis sys-
tems. For instance, the English language, once used with
Korean notation, hardly reflects the phonetic traits shared
with other Korean alphabets. This is primarily because the
structure of CV(C) is not clear in the English writing sys-
tem as in Hangul. Also, since agglutinative language usu-
ally displays functional particles after nouns or verbs, a cor-
pus configuration with insufficient English words does not
guarantee the performance of end-to-end architecture. It
is also challenging to ensure that doing so yields translit-
erated pronunciations that we pronounce in real life, nor
better than the transliteration modules that concentrate on
word-level seq2seq. Therefore, we believe that it is prac-
tically advantageous to detect non-Korean expressions first
and use hybrid transformation with some tricks.
The implementation of G2P for speech synthesis is a typi-
cal application, but besides, this algorithm can be exploited
in sentence correction, corpus refinement, script construc-
tion/pronunciation guidelines, and translation service qual-
ity improvement. Also, this methodology is expected to
apply not only to Chinese characters, English words, and
numbers in Korean sentences, but also to sentences and
code-mixed expressions in various agglutinative languages,
especially the ones that require morphological analysis.
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6. Conclusion
In this paper, we constructed a stable and efficient g2p by
presenting a hybrid transliteration method with rule and
training for code-mixed Korean sentences. To this end, we
detected words containing non-Korean expressions, sepa-
rated a grammatical part of the word from the rest content
via morphological analysis, and replaced the code-mixed
expressions with transliterated ones.
In this process, by using a statistical model-based mor-
phological analyzer with fairly high performance, we per-
formed non-Korean expression detection that is suitable for
colloquial context, with a less computational burden. Also,
by separating the grammatical part from the content part in
this process, the actual part that needs to be converted in
the code-mixed sentence is detected so that the expressions
that contain English/Chinese/number can be smoothly con-
verted into Korean pronunciation.
Our subsequent studies aim to improve the accuracy of han-
dling proper nouns in code-mixed text pre-processing by
collecting more commercial expressions. Also, we plan to
verify common pronunciation patterns through media/real-
life examples, exploiting the neural network structure with
external memory. As a result, research will be carried out
to enable controllable to-Korean transliteration by allowing
more user-specified stop-words to be reflected in the train-
ing of the systems and conversion process itself.
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