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Preface

These proceedings include the papers accepted for presentation at the 1st Workshop on Language
Technologies for Historical and Ancient Languages (LT4HALA: https://circse.github.io/
LT4HALA). The workshop was supposed to be held on May 12th 2020 in Marseille, France, co-
located with the 12th Edition of the Language Resources and Evaluation Conference (LREC 2020).
Unfortunately, the gravity of the Covid-19 pandemic prevented the conference from taking place.
However, since the spread of the pandemic started to rise at world-level when the reviewing process and
the notifications of acceptance/rejection of the proposals were just concluded, the organizers decided to
publish the proceedings of both LREC 2020 and the co-located workshops as planned in May 2020, to
valorize the work done by authors and reviewers, as well as to provide an overview of the state of the art
in the field.

The objective of the LT4HALA workshop is to bring together scholars who are developing and/or are
using Language Technologies (LTs) for historically attested languages, so to foster cross-fertilization
between the Computational Linguistics community and the areas in the Humanities dealing with
historical linguistic data, e.g. historians, philologists, linguists, archaeologists and literary scholars.
Despite the current availability of large collections of digitized texts written in historical languages,
such interdisciplinary collaboration is still hampered by the limited availability of annotated linguistic
resources for most of the historical languages. Creating such resources is a challenge and an obligation
for LTs, both to support historical linguistic research with the most updated technologies and to preserve
those precious linguistic data that survived from past times.
Historical and ancient languages present several characteristics, which set them apart from modern
languages, with a significant impact on LTs. Typically, historical and ancient languages lack large
linguistic resources, such as annotated corpora, and data can be sparse and very inconsistent; texts
present considerable orthographic variation, they can be transmitted by different witnesses and in
different critical editions, they can be incomplete and scattered across a wide temporal and geographical
span. This makes the selection of representative texts, and thus the development of benchmarks,
very hard. Moreover, texts in machine-readable format are often the result of manuscript digitization
processes during which OCR systems can cause errors degrading the quality of the documents. Another
peculiarity is that most of the texts written in historical and ancient languages are literary, philosophical
or documentary, therefore of a very different genre from that on which LTs are usually trained, i.e. news.
This is strictly connected to the fact that the final users of LTs for historical and ancient languages are
mostly humanists who expect a high accuracy of results that allows a precise analysis of linguistic data.

Such a wide and diverse range of disciplines and scholars involved in the development and use
of LTs for historical and ancient languages is mirrored by the large set of topics covered by the
papers published in these proceedings, including methods for automatic dating ancient texts and
performing semantic analysis, processes for developing linguistic resources and performing various
natural language processing (NLP) tasks, like lemmatization and semantic role labelling, and applications
of machine translation and distributional semantics, speech analysis and diachronic phonology, automatic
inflectional morphology and computational philology.

As large as the number of topics discussed in the papers is that of the either ancient/dead languages or the
historical varieties of modern/living ones concerned. In total, the languages tackled in the proceedings
are 21 (note that some papers deal with more than one language), namely: Latin (5 papers), French
(3), English (2), Hebrew (2), Italian (2), Spanish (2), Ancient Greek (1), Aramaic (1), Armenian (1),
Georgian (1), German (1), Norwegian (1), Old Chinese (1), Portuguese (1), Romanian (1), Serbian (1),
Slovene (1), Syriac (1), Vedic Sanskrit (1) and the unknown writing system of the so-called Voynich
manuscript (1).
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In the call for papers, we invited to submit proposals of different types, such as experimental papers,
reproduction papers, resource papers, position papers and survey papers. We asked both for long and
short papers describing original and unpublished work. We defined as suitable long papers (up to 8 pages,
plus references) those that describe substantial completed research and/or report on the development of
new methodologies. Short papers (up to 4 pages, plus references) were instead more appropriate for
reporting on works in progress or for describing a singular tool or project.
We encouraged the authors of papers reporting experimental results to make their results reproducible
and the entire process of analysis replicable, by distributing the data and the tools they used. Like for
LREC, the submission process was not anonymous. Each paper was reviewed but three independent
reviewers from a program committee made of 25 scholars (12 women and 13 men) from 15 countries.
In total, we received 23 submissions from 47 authors of 13 countries: China (7 authors), France (6),
Ireland (5), The Netherlands (5), Poland (5), United Stated (5), Malta (4), Belgium (3), Israel (2), Spain
(2), Estonia (1), Italy (1) and Switzerland (1). After the reviewing process, we accepted 15 submissions
(8 long and 7 short papers), leading to an acceptance rate of 65.22% .
Beside these 15 contributions, the program of LT4HALA would have featured also a keynote speech by
Amba Kulkarni (Department of Sanskrit Studies, University of Hyderabad, India) about the challenges
raised by the development of computational tools for Sanskrit. We had invited Professor Kulkarni to give
a talk on this topic, because Sanskrit holds a prominent position among historical and ancient languages,
being one of the oldest documented members of the Indo-European family of languages.

LT4HALA was supposed to be also the venue of the first edition of EvaLatin, the first campaign devoted
to the evaluation of NLP tools for Latin (https://circse.github.io/LT4HALA/EvaLatin).
Just because of the limited amount of data preserved for historical and ancient languages, an important
role is played by evaluation practices, to understand the level of accuracy of the NLP tools used to
build and analyze resources. By organizing EvaLatin, we decided to focus on Latin, considering its
prominence among the ancient and historical languages, as demonstrated also by the high number of
papers dealing with Latin in these proceedings. The first edition of EvaLatin focussed on two shared
tasks (i.e. Lemmatization and PoS tagging), each featuring three sub-tasks (i.e. Classical, Cross-Genre,
Cross-Time). These sub-tasks were designed to measure the impact of genre and diachrony on NLP tools
performances, a relevant aspect to keep in mind when dealing with the diachronic and diatopic diversity
of Latin texts, which are spread across a time span of two millennia all over Europe. Participants were
provided with shared data in the CoNLL-U format and all the necessary evaluation scripts. They were
required to submit a technical report for each task (with all the related sub-tasks) they took part in. The
maximum length of the reports was 4 pages (plus references).
In total, 5 technical reports of EvaLatin, corresponding to as many participants, are included in these
proceedings. All reports received a light review by the two of us, to check the correctness of the format,
the exactness of the results and ranking reported, as well as the overall exposition. The proceedings also
feature a short paper detailing some specific aspects of EvaLatin, like the composition, source, tag set
and annotation criteria of the shared data.

Although we are very sorry that the LT4HALA workshop and EvaLatin could not be held, as an exciting
opportunity to meet in person the authors who contributed to these proceedings, we hope that this will
give us a further argument to organize a second edition of both initiatives. Indeed, as demonstrated
by the good number of papers submitted to LT4HALA and participants of EvaLatin, the research field
concerned is wide, diverse and lively: we will do our best to provide the scholars working in such field
with a venue where they can present their work and confront with colleagues who share their research
interests.

Rachele Sprugnoli
Marco Passarotti
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Dating and Stratifying a Historical Corpus with a Bayesian Mixture Model

Oliver Hellwig
Department of Comparative Linguistics
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Abstract
This paper introduces and evaluates a Bayesian mixture model that is designed for dating texts based on the distributions of linguistic

features. The model is applied to the corpus of Vedic Sanskrit the historical structure of which is still unclear in many details. The
evaluation concentrates on the interaction between time, genre and linguistic features, detecting those whose distributions are clearly
coupled with the historical time. The evaluation also highlights the problems that arise when quantitative results need to be reconciled
with philological insights.

Keywords: Textual chronology, Bayesian mixture model, Vedic Sanskrit

1. Introduction
While the historical development of the classical Chinese
and European (Latin, Greek) literature is well understood,
the chronology of ancient corpora from the Near and Mid-
dle East (Sumerian, Egypt, Hebrew) as well as from South
Asia is often heavily disputed. The situation is especially
complicated for the Vedic corpus (VC) of ancient India.
Vedic is the oldest form of Sanskrit, an Indo-Aryan lan-
guage that is the predecessor of many modern Indian lan-
guages (Masica, 1991, 50–53). The VC presumably has
been composed between 1300 and 400 BCE, and consists
of metrical and prose texts that describe and discuss ritu-
als and their religious significance (Gonda, 1975; Gonda,
1977). Being a large sample of an old Indo-European lan-
guage, the VC often serves as a calibration point in di-
achronic linguistic studies. Moreover, it provides the foun-
dations for the major religious and philosophical systems
of India. Therefore, it is important to have a clear idea of
its temporal axis.
Studying the diachronic linguistic development of Vedic is
challenging, because external historical and archaeological
evidence is unclear, missing or has not been explored so
far (Rau, 1983; Witzel, 1995), and the texts do not provide
datable cross-references. The situation is further compli-
cated by the lack of reliable authorial information and of
old manuscripts or even autographs (Falk, 1993, 284ff.), as
well as by the fact that many, or even all, ancient Indian
texts, in their current form, have been compiled from dif-
ferent sources or may have originated from oral literature.
Moreover, even the Rigveda (R. V), the oldest Vedic text,
shows traits of an artificial language that was no longer in
active use (Renou, 1957, 10). While it is easy to distin-
guish Old from Middle English just by reading a few lines
of text, diachronic linguistic changes in post-Rigvedic San-
skrit are difficult to detect with philological methods. As a
consequence, dates proposed for individual texts in the sec-
ondary literature can differ by several hundreds of years or
are often not given at all.
In spite of these difficulties, 150 years of Vedic studies have
produced a coarse chronology of the VC. This paper intro-
duces a Bayesian mixture model called ToB (“time or back-
ground”) that refines and clarifies this chronology. While
most Bayesian mixture models with a temporal component

focus on deriving linguistic trends from known temporal
information (see Sec. 2.), the model proposed in this pa-
per takes the opposite approach and derives temporal infor-
mation from linguistic features. For this sake, it integrates
the current state of knowledge in the text-historical domain
as a subjective Dirichlet prior distribution, and models re-
fined dates of composition with a hidden temporal vari-
able. Non-temporal factors that may influence the linguis-
tic form of texts are modeled with a background branch
(Chemudugunta et al., 2007), and the decision between
time or background is based on the subtypes of linguistic
features.
This design choice is due to the philological and text-
historical orientation of the model: An important aspect
of its evaluation consists in finding linguistic features that
can serve as diachronic markers in Vedic. Most research
has concentrated on the R. V as the oldest Vedic document
and on rare linguistic features that disappear soon after
the Rigvedic language (e.g., the subjunctives of all tenses).
These studies are therefore of limited use for dating later
Vedic texts. This paper uses a broader range of features in-
cluding lexical as well as non-lexical ones, which are gen-
erally assumed to be less dependent from the topic of texts
(Stamatatos, 2009; Mikros and Argiri, 2007). By inspect-
ing the conditional distributions of the trained model, I will
show that simple linguistic features such as, for instance,
the frequencies of certain POS n-grams are good predic-
tors of time, as they reflect changing syntactic preferences
in late Vedic texts. The underlying syntactic developments
were discussed in linguistic studies (see Sec. 2.) as well as
in recent publications using quantitative frameworks (Hell-
wig, 2019).
Regarding the role of background distributions, the inter-
action between linguistic surface and non-temporal factors
such as the genre (Hock, 2000; Jamison, 1991) or the place
of origin of a text (Witzel, 1989) is well known, but has not
been assessed in a quantitative framework in Vedic stud-
ies so far. The design of the model discussed in the paper
provides a principled approach for distinguishing between
time-related features and those that are generated by non-
temporal factors. The latter can serve for extending future
versions of the proposed model with further non-temporal
hidden variables. Section 5.1. will show that the genre of
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Vedic texts is a prime candidate for such an extension.
The rest of the paper is structured as follows. After a
brief overview of related research in Sec. 2., Sec. 3.
sketches the model and Sec. 4. describes the data used
in this paper. The main part of this paper (Sec. 5.)
deals with the evaluation of the results. The problem
formulation itself – refining a disputed chronology of texts
– implies that there is no accepted gold standard for the
extrinsic evaluation of the model. Since the composition
of the R. V, the oldest and most famous Vedic text, has
been studied extensively in previous research, Sec. 5.4.
uses this text as a test case for a detailed philological
evaluation of the model results. Section 6. summarizes
this paper and discusses future extensions of the pro-
posed model. – Data and script are available at https:
//github.com/OliverHellwig/sanskrit/
tree/master/papers/2020lt4hala.

2. Previous Research
Vedic studies have examined the temporal structure of the
VC for more than 150 years, starting with a chronology
that is tightly coupled with the content of texts and implic-
itly still used in many publications (Levitt, 2003). Since
external historical evidence is not available, linguistic fea-
tures, the meter and the content were used as chronologi-
cal markers for studying the temporal structure of the R. V
(Avery, 1872; Lanman, 1872; Arnold, 1905). Large parts
of the post-Rigvedic corpus were only sporadically con-
sidered in diachronic studies. Most scholars concentrated
on limited sets of words (Wüst, 1928; Poucha, 1942) or
morpho-syntactic features they assumed to indicate the old
or young date of a text. These features include variations
in the frequencies of case terminations (Lanman, 1872;
Arnold, 1897a) or verbal moods (Arnold, 1897b; Hoff-
mann, 1967; Kümmel, 2000). Witzel (1989) extended the
set of diachronically relevant features and studied the rela-
tionship between geographical clues found in the texts and
their linguistic form. More recently, a limited number of
publications applied statistical (Fosse, 1997), information
theoretic (Anand and Jana, 2013), and discriminative ma-
chine learning methods (Hellwig, 2019). As the tempo-
ral granularity of quantitative results is often much coarser
than expected by philologists, reconciling these results with
traditional scholarship remains an open problem.
Many NLP papers that deal with diachronic data do not fo-
cus on the temporal information as such, which is assumed
to be known. Instead, they use it to detect, for example,
semantic changes in diachronic corpora (Kim et al., 2014;
Hamilton et al., 2016; Frermann and Lapata, 2016) or the
historical distribution of ideas (Hall et al., 2008). Several
authors have integrated temporal information into mixture
models either by imposing constraints on the mixture pa-
rameters (Blei and Lafferty, 2006) or directly sampling time
stamps of documents from a continuous distribution (Wang
and McCallum, 2006). As it is often difficult to decide if
linguistic variation inside a text is due to time or to differ-
ent authors, models for authorship attribution as proposed
by Rosen-Zvi et al. (2004), Seroussi et al. (2012) or, with
a Dirichlet process, Gill and Swartz (2011) are equally rel-
evant for this paper.

3. Model

Linguistic variation in historical corpora spanning a long
time range can be due to diachronic changes in the lan-
guage as well as to other factors such as different textual
styles, genres or geographic variation. The model proposed
in this paper accounts for these causes of linguistic varia-
tion by combining two admixture sub-models (see Fig. 1).
The first of these sub-models, which is responsible for sam-
pling the latent time variable t, obtains a subjective time
prior τ . The second sub-model is initialized with an unin-
formative prior α and represents background distributions,
which are meant to capture non-temporal trends in the data
(Chemudugunta et al., 2007).
When a token xdku of feature subtype k (e.g.
case=accusative) is sampled in document d, its fea-
ture type decides if it is drawn from the time related
distribution θtdku

or from a background distribution
ψsdku

. This approach differs from the one proposed by
Chemudugunta et al. (2007), where the sampling path is
chosen on the basis of document distributions. Since this
paper focusses on the diachronic distribution of features,
this design decision is considered a relevant part of the
model.
The latent discrete time variable t, which denotes the true
(but unknown) dates of composition of individual text sec-
tions, is split into 30 time bins. The size of these bins
corresponds to slices of approximately 35 years, a value
often assumed to span one generation of authors. Results
of previous text-historical research (see Sec. 4.) are inte-
grated using a section-wise subjective Dirichlet prior τ d of
the latent time variables t, which represents text-historical
knowledge about the approximate dates of composition of
each text section. For constructing this prior, text-historical
information, as listed in Sec. 4., is first encoded as a range
of section-wise lower and upper dates ld, ud. Value i of the
prior τd (representing the prior of time bin i for text section
d) is then modeled using the cumulative density function
(cdf) of a Normal distribution with µd = 1

2 (ld + ud) and
σ2
d = (ud −mud)/zd. The z-value zd is chosen such that
ld and ud represent the lower and upper limits of the 70%
confidence interval of the corresponding Normal distribu-
tion. The prior can now be calculated as the difference of
the cdfs of two adjacent time bins:

τdi = cdf
(
N (i|µd, σ2

d)
)
− cdf

(
N (i− 1|µd, σ2

d)
)

(1)

Using standard Dirichlet integration and the notation given
in Fig. 2, the posterior predictive for a collapsed Gibbs
sampler can be obtained from the joint distribution of all
variables by integrating out the variational parameters Ω =
{ω,φ,µ,θ,ψ} (see Fig. 1 for details):

p(tn, sn, gn|t−n, s−n,g−n, τ ,α,β,γ, δ)

= p(t, s,g|τ ,α,β,γ, δ)

=

∫

Ω

p(t, s,g,Ω|τ ,α,β,γ, δ)dΩ

∝ (B−n
km + βm)×

2



xdku

sdkutdku

ωdτ d φd

α

gdku

µk

β

θtδ ψs γ

T S

K

Ndk

K

D

Figure 1: Plate notation of the model proposed in this paper
(Eq. 2); see Fig. 2 for the notation.

• D Number of documents
• K Number of feature types (Ndk: of feature type k in docu-

ment d)
• T Number of time bins
• S Number of background distributions
• θ,ψ Time-feature and background-feature proportions
• ω,φ Document-time and document-background propor-

tions
• α,β,γ, δ, τ Dirichlet priors
• n := dku (document d, feature type k, occurrence u)
• Counters for the Gibbs Sampler:
Ads # genre s assigned to document d
Bkm # feature k generated by the time (m = 0) or the topic

(m = 1) distributions.
Csk # feature k generated by genre s
Dtk # feature k generated by time t
Edt # time t assigned to document d

Figure 2: Notation used in Fig. 1 and Eq. 2




E−n
dt +τdt∑T

u Edu+τdu
· D−n

tk +δk∑K
u D−n

tu +δu
if gn = 0

A−n
ds +αs∑S

u A
−n
du +αu

· C−n
sk +γk∑K

u C−n
su +γu

else
(2)

Since mixture models are often sensitive to the choice of
hyperparameters (Wallach et al., 2009; Asuncion et al.,
2009), α,β,γ, δ are updated after each iteration of the
sampler using the estimates described by Minka (2003).

4. Data and features
4.1. Linguistic features
The data are extracted from the Digital Corpus of Sanskrit
(DCS, Hellwig (2010 2020)), which contains more than
200 Sandhi-split texts in Vedic and Classical Sanskrit along
with manually validated morphological and lexical infor-
mation for each word.1 The Vedic subcorpus of the DCS, as

1Conllu files are available from https://github.
com/OliverHellwig/sanskrit/tree/master/dcs/

used in this paper, contains 35 texts with a total of 540,000
words. In contrast to previous philological work (see Sec.
2.), this paper uses a wide range of linguistic features (see
Hellwig (2019, 4-7)), including, among others, the counts
of the 1,000 most frequent words in the Vedic subcorpus of
the DCS, cases, POS tags, verbal classes, tenses and moods.
As post-Rigvedic Sanskrit was not in active daily use, pre-
vious research has claimed that most linguistic changes
took place in its vocabulary. Apart from the actual vocab-
ulary, this paper therefore pays special attention to etymol-
ogy2 and derivational morphology, two word-atomic fea-
ture types that reflect changes on the lexical level. It has
been claimed that post-Rigvedic Sanskrit incorporates an
increasing amount of non-Indo-Aryan words due to its con-
tact with substrate languages (Witzel, 1999), so that higher
ratios of words with a non-Indo-Aryan etymology may in-
dicate a later date of texts (Hellwig, 2010).
Derivational rules were used to derive new words (prefer-
ably nouns) from verbal stems and other nouns. Such pro-
cesses can be as simple as using the verbal root as a noun
or adjective (diś- ‘to show’→ diś- ‘indication, direction’),
but may also involve complex phonological transforma-
tions applied to already derived or compounded nouns (su-
kara- ‘easy-to do’→ saukārya- ‘the state of being easy to
do’). While Hellwig (2019) used only a limited amount
of derivational information, this paper inspects the distribu-
tion of 84 rules based on the treatment in Wackernagel and
Debrunner (1954). Lexicalizing compounds was another
popular method for deriving new words; e.g. saroruhāsana
= saras-ruha-āsana = ‘lake-growing-seat’ = ‘having a lotus
as his seat’ = ‘name of the god Brahman’. Previous research
has not used the number of elements in such compounds
systematically for studying the chronology of Sanskrit (a
few brief notes in Wackernagel (1905, 6-9, 24-26)). Cur-
rently, etymological or derivational information is available
for 61,5% of all Vedic word types. Derivational morphol-
ogy and lexical compounding are mutually exclusive and
are therefore subsumed under a single feature type “deriva-
tion”.
Apart from these word-atomic features, two multi-word
features are also considered. Recent research has provided
evidence for an increasing degree of configurationality in
Indo-Aryan, i.e. to use word order for marking grammat-
ical functions (Reinöhl, 2016). As a syntactic treebank is
only available for a small subset of Vedic texts (Hellwig
et al., 2020), the most frequent 500 bi- and trigrams of
POS tags are used as a coarse approximation of syntactic
chunks (Hellwig, 2019). The second multi-word feature
encodes the lengths of non-lexicalized compounds. While
compounds in the R. V and the AV have at most three mem-
bers (Wackernagel, 1905, 25-26), their length is not lim-
ited in Classical Sanskrit (Lowe, 2015, 80-83), so that, as a
working hypothesis, increasing counts of long compounds
may be indicative of late Vedic texts.
Each text is split into sections of 200 words. Since
each word contributes multiple atomic features (e.g. POS,
derivational information) and forms part of POS bi- and tri-

data/conllu.
2This term is used here in its restricted meaning as

“étymologie-origine”; see Mayrhofer (1992, IX-XIV).
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grams, each text section contains 440 data points on aver-
age.

4.2. Temporal priors
The model described in Sec. 3. requires temporal priors τ
(see Eq. 1) that encode chronological proposals made in
previous literature. Based on Renou (1957, 1-16), Witzel
(1989), and Kümmel (2000, 5-6), this paper uses a fivefold
temporal split of the VC:

Rigvedic (RV) 1300-1000 BCE; R. V 1-9

Mantra language (MA) 1100-900 BCE; R. V 10, Athar-
vaveda Sam. hitās, R. gveda-Khilāni, metrical parts of
the Yajurveda Sam. hitās

Old prose (PO) 900-700 BCE; Aitareya Brāhman. a 1-5,
Śatapatha Brāhman. a 6-9, 10.1-5; prose parts of the
Yajurveda Sam. hitās

Late prose (PL) 700-400 BCE; major Brāhman. as not
contained in PO, old Upanis.ads

Sūtra level (SU) 600-300 BCE; late Upanis.ads and
Brāhman. as (e.g., the Gopatha Brāhman. a), the ritual
handbooks called Sūtras

5. Evaluation
Section 5.1. studies the information that is encoded in the
background distributions of ToB. Section 5.2. compares
ToB with a baseline LDA model, using perplexity for the
intrinsic and temporal predictions for the extrinsic evalua-
tion. Here, the extrinsic evaluation is being complicated by
the fact that the only diachronic information at our disposal
is already encoded in the subjective priors τ . Section 5.3.
takes a closer look at features that are generated by the time
path of ToB, and discusses their philological relevance. The
concluding Sec. 5.4. examines the temporal predictions for
the R. V.

5.1. The role of the background distributions
The background distributions are expected to capture the
proportion of linguistic variation that cannot be explained
by diachronic changes. In order to determine the opti-
mal number of these background distributions, perplexity
and accuracy are measured on the held out sets of cross-
validations for varying numbers of background distribu-
tions.3 As discussed in Hellwig (2019), randomly assign-
ing text sections to the train and test sets underestimates
the error rates on the test set of a discriminative model, be-
cause the linguistic evidence from the train sections is of-
ten strong enough to cause overfitting. Therefore the same
splitting scheme as proposed in Hellwig (2019) (“textwise
CV”) is used in this paper. Here, each text is in turn used
as the test set, and the model is trained with the remaining

3Accuracy is a short-hand term for the probability that the
model prediction has been generated by the normal distribution
that is derived from the coarse Vedic chronology given in Sec.
4.2.; see the discussion of τ on p. 2. When the training is com-
pleted, section-wise date predictions for the left out text are ob-
tained using “folding in”.

Figure 3: Undirected graph resulting from textwise sim-
ilarities of background distributions; edge sizes are pro-
portional to the textwise similarities. The graph induces
a distinction between old metrical texts (top, green; R. V,
R. gveda-Khilāni, ŚS), prose texts (bottom left, blue; names
ending on B = Brāhman. as) and ritual handbooks (bot-
tom right, red; names ending on S[ūtra]). The Upanis.ads
(names ending on U and Up) mediate between prose and
Sūtras.

T − 1 texts. When varying the number S of background
distributions between 1 and 30, the setting S = 3 results in
the lowest perplexity and highest accuracy. This setting is
used for all following experiments.
In order to understand which type of linguistic variation is
encoded in the background, the counts of background as-
signments per text are accumulated and normalized, result-
ing in T distributions bt. The Euclidean distance between
bi and bj is chosen for calculating the distance between a
pair of texts (i, j). Using these Euclidean distances as edge
weights results in the undirected graph that is shown in Fig.
3. The structure of the graph indicates a threefold split of
the VC into early metrical texts (R. V, R. gveda-Khilāni, ŚS),
the works composed in prose and the ritual handbooks com-
posed in the elliptic Sūtra style, which differs significantly
from the style of other prose texts (Gonda, 1977, 629-647).
Major Upanis.ads (esp. the Chāndogya Up. [ChU] and the
Br.hadāran. yaka Up. [BĀU]) occupy an intermediate po-
sition between prose texts and Sūtras, although they were
originally part of Brāhman. a texts. The structure of the
graph therefore suggests that the background distributions
primarily encode stylistic and genre-specific linguistic vari-
ation, as the differences in content between the three main
groups go along with obvious differences in style.

5.2. Model comparison
While the evaluation of the background distributions (Sec.
5.1.) suggests that the text genre is a relevant factor when
studying linguistic variation in Vedic, it cannot be taken
for granted that ToB, the model proposed in this paper, is
best suited for detecting time-dependent linguistic varia-
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tion. ToB is therefore compared with a modified version
of LDA (Blei et al., 2003) in which the flat prior of stan-
dard LDA is replaced with the subjective temporal prior τ
of ToB.
For the intrinsic comparison, I perform textwise CVs (see
Sec. 5.1.), using an uninformative temporal prior for each
tested text, and compare the perplexities of the two mod-
els on the test texts using a pairwise Wilcoxon rank sum
test. Under the alternative hypothesis that ToB has a lower
perplexity than the baseline LDA, the test yields a highly
significant p-value of 3.62e−8. The lower perplexity (i.e.
higher likelihood) of ToB can be due to overfitting, as it has
more parameters than LDA. Therefore the Bayesian Infor-
mation Criterion (BIC; Schwarz (1978)), which penalizes
higher numbers of parameters and thus favors plain LDA,
is calculated for all tests. In around 70% of all cases, LDA
has a higher BIC than ToB and is thus more appropriate
than ToB according to this metric. Repeating the Wilcoxon
test with the BIC values, however, yields a p-value of 0.016,
which is not significant at the 1% level. When plotting the
BIC values of LDA against those of ToB (not shown in this
paper), it can be observed that for lower BICs ToB per-
forms better than LDA. The respective texts are, in general,
the earlier ones (R. V, ŚS), and they contain samples of the
Brāhman. a style, which may be more prone to textual in-
terpolation than the Sūtra texts for which LDA has a lower
BIC than ToB. A follow-up study should evaluate if this
apparent correlation between time, genre and the BIC is
systematic.
For performing an extrinsic comparison, it is evaluated how
well the temporal range of each text (see Sec. 4. and Fn. 3)
is predicted, again using uninformative temporal priors for
each tested text. It is important to emphasize once more that
these temporal ranges do not constitute a proper gold stan-
dard, because multiple historical strata can, in principle, oc-
cur in any text of the VC. A model that works correctly can
therefore generate temporal predictions for individual sec-
tions of a text that massively deviate from the temporal pri-
ors. Keeping these restrictions in mind, the priors are again
assumed to constitute Normal distributions (see Sec. 3.)
and the z-standardized value of each prediction given the
respective Normal distribution is calculated. In this sce-
nario, values closer to 0 correspond to a better model fit.
A Wilcoxon test that compares the z-values of both models
(alternative hypothesis: ToB generates lower z-values than
plain LDA) yields a p-value of less than 2.2e−16 and thus a
highly significant result.

5.3. Time-correlated features
A central motivation for developing ToB is to extend the
set of linguistic features that show systematic diachronic
variation and can thus be used for dating and stratifying
the VC (see Sec. 2.). The switch between temporal and
background distributions in ToB (variable g in Fig. 1) can
be used to find feature types that are predominantly gen-
erated by the time path of the model. When the feature
types examined in this paper are ordered by the proportions
with which they are generated by the time path of ToB, the
top position is occupied by compounds (only generated by
time), followed by infinite verbal forms (89,5%), lexical in-

formation (83,6%), tenses and modes (82,7%) and POS tri-
grams (76,5%). All remaining feature types are also prefer-
ably generated by the time path except for etymological in-
formation (39,2%).
The increasing use of compounds for expressing syntactic
constructions including coordination, nominal subordina-
tion, and exocentric relations has often been described in
secondary literature (Lowe, 2015). Since compounds with
more than two components only appear in larger numbers at
the end of the Vedic period (esp. in the Sūtra texts), this re-
sult is mainly relevant for dating texts composed in (early)
Classical Sanskrit.
The important role of the lexicon and of finite verbal forms
is not surprising, as these feature types have been used reg-
ularly in previous attempts to date early Vedic texts (e.g.,
Arnold (1905), Poucha (1942)). More interesting insights
are provided by the POS n-grams. When plotting the POS
type-token ratios (TTR) against the time slots predicted by
the model (see Fig. 4), it can be observed that the TTRs
of all POS n-grams are maximal for the R. V and later on
decrease with the predicted dates. This suggests that the
syntactic variability of post-Rigvedic Sanskrit decreases as
well, perhaps caused by processes of grammaticalization
and configurationality which are in effect in Middle- and
New Indo-Aryan languages (Heine and Reh (1984, 67),
Reinöhl (2016)). It is also instructive to inspect the POS
trigrams that are preferably associated with the two tem-
poral extremes of the VC. In the earliest layer we find, for
example, the sequence preverb – noun (in various cases) –
finite verb (CADP-NC.*-V), which represents tmesis (i.e.
separation of preverb and verb) in many passages such
as the Soma hymn R. V 9.86.31a (matching pattern un-
derlined): prá rebhá ety áti v´̄aram avyáyam “The husky-
voiced one [= the Soma] goes forth across the sheep’s
fleece” (Jamison and Brereton, 2014, 1324); or, more fre-
quently, with a noun in the accusative in central position
(R. V 10.67.12ab, about Indra’s deeds): índro mahn´̄a maható
arn. avásya ví mūrdh´̄anam abhinad arbudásya “Indra with
his greatness split apart the head of the great flood, of Ar-
buda” (Jamison and Brereton, 2014, 1490). Eventual mis-
assignments as at R. V 9.73.2b (ūrm´̄av ádhi ven´̄a avı̄vipan
‘the longing ones have made him (Soma) tremble on the
wave’), where ádhi- ‘on, in’ is used as a postposition, but
not as a preverb, could be avoided when a treebank of
the complete VC is available. At the other end of the
historical spectrum, late Vedic texts have a preference for
absolutive constructions of compound verbs in clause fi-
nal position (trigram NC.acc-CADP-CGDA), as at JUB
4.9.9: prān. ebhyo ’dhi mr. tyupāśān unmucya-athainam. ...
sarvamr. tyoh. spr. n. āti ‘having released the fetters of death
from his breaths, he releases him from all (kinds of) death’.

Temporal predictions for derivational features reflect many
diachronic trends described in previous literature. When
the derivational features are ordered by the mean date as-
signed to them, the first (= earliest) position is occupied by
the suffix -tāti, which is used to derive abstract nouns from
other nouns as in sarvá-tāti- ‘complete-ness’ (< sárva-
‘complete, all’) and known to be restricted to the old-
est parts of the VC (Wackernagel and Debrunner, 1954,
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Figure 4: Type-token ratios of POS n-grams (y-axis) depen-
dent from the predicted dates (x-axis). The curves demon-
strate the decreasing syntactic variability of post-Rigvedic
Sanskrit.

§464). Suffixes assigned to the latest time slots contain,
among others, the comparative suffix -tara (e.g., ks. ipra-
tara- ‘faster’), which replaces the older comparative suf-
fix -ı̄yas (e.g., ks. épı̄yas- ‘faster’, see Wackernagel and De-
brunner (1954, §450)), or the suffix -ika with vr.ddhi of the
first syllable, which is often used to derive adjectives from
(compounded) nouns (e.g., aíkāh-ika- ‘lasting one day’ <
eka-aha- ‘one day’ with vr.ddhi e → ai; see Wackernagel
and Debrunner (1954, §194 b β) for a historical sketch). As
often, results for the earliest Vedic strata are well known,
while features associated with intermediate and late time
ranges have the potential to promote philological research.
As mentioned on p. 3, lexicalized compounds are sub-
sumed under the feature type derivation. Conforming to
the general trend observed for compound formation (see
above), the model assigns an earlier average date to words
with two compound members (e.g., vanas-pati- ‘lord of
the wood, tree’) than to those with three (e.g., a-prajás-
tā- ‘childlessness’). It should, however, be noted that 63%
of the three-element compounds are inflected forms of the
word sv-is. t.a-kr. t- ‘offering a good sacrifice’, the name of a
special sacrifice to the god Agni (Mylius, 1995, 140), which
is almost exclusively discussed in the late Sūtra texts. Even
this brief overview shows the importance of derivational in-
formation for inducing the temporal structure of the VC.
Wüst (1928), who studied a related set of features for the
R. V, did not meet enthusiastic support in Vedic studies –
it may be worthwhile to reconsider his approach with new
quantitative methods.

5.4. Detail study: Temporal stratification of the
Rigveda

The R. V, the oldest work of Vedic Sanskrit, is a collection of
ten books of religious poetry composed by multiple authors
(Witzel, 1997, 261-264). Among all Vedic texts, the R. V has
been studied most intensively and can thus serve as a test
case for the temporal predictions made by ToB. On the basis
of linguistic criteria, citations, and the textual content, it is
generally assumed that R. V 10 is the youngest book of the
whole collection (Renou, 1957, 4). The so-called Family
Books (R. V 2-7) are usually considered to be old or even
to constitute the core of the R. V (Witzel, 1997, 262-264).
R. V 9 is also often accepted as old, while the status of R. V
1 and especially R. V 8 is disputed (Hopkins (1896), Gonda
(1975, 8-14), Jamison and Brereton (2014, 9-13)). Overall,
the split (1-9) (10) has emerged as the most widely accepted

Figure 5: Predicted dates for the R. V. The polygons show
the smoothed 50% and 90% quantiles, the black line is the
smoothed median, and the grey line is the unsmoothed me-
dian.

stratification of the R. V.
Figure 5 shows the median and two quantiles of the dates
predicted by ToB.4 The overall trend observed in Fig. 5
confirms the most frequently postulated stratification of the
R. V: While book 10 is late, there are no clear temporal sep-
arations between the remaining nine books. For deriving
a temporal ranking of the ten Rigvedic books, one-sided
Wilcoxon rank sum tests between pairs of books (i, j) are
performed. If the test for (i, j) is significant at the 10%
level, an ordering constraint i < j is recorded. When
a minimum location shift of one time step is assumed,
the resulting constraints induce the “canonical” ordering
(1 − 9) < (10). Leaving the location shift unspecified5

induces the ordering (4, 8) < (1 − 3, 5 − 7, 9) < (10),
which deviates from the most widely accepted split (1-9)
(10) by labeling RV 4 and 8 as the earliest books, as already
postulated for book 8 by Lanman (1872, 580) and Arnold
(1897a, 319) (strongly contested by Hopkins (1896)) and
for book 4 by Wüst (1928).
Further binomial tests are performed for all features that
are preferably assigned to the earliest time slots, assessing
if they are significantly more frequent in RV 4 and 8 than
in the rest of the text (RV 10 can be omitted as obviously
younger). These tests produce a list of 92 features, most
of which have been considered as archaic in previous re-
search: (1) perfect subjunctive and injunctive (see Arnold
(1905, 31)); (2) the suffixes -tave, -vane, -aye and -ase, all
of which form dative verbal nouns (Wackernagel and De-
brunner, 1954, s.v.); (3) the derivational suffixes -tvana (ab-
stracts) and -vat (in pra-vat- ‘elevation’; see Wackernagel
and Debrunner (1954, §530,703)); (4) five POS n-grams
containing, among others, the sequence noun-infinitive (as
in old constructions like jyók ca s´̄uryam. dr. śé ‘in order to
see the sun for a long time’); (5) and a list of 79 words.
In 1888, the scholar H. Oldenberg claimed that the hymns
in each book of the R. V are arranged according to the num-
bers of their stanzas, and that hymns violating this rule rep-
resent the youngest layer of Rigvedic poetry (“appendices”;
Oldenberg (1888, 191-197, 265)). As Oldenberg’s work is
still among the most frequently cited studies on the textual

4Continuous quantiles are calculated by interpolating the dis-
crete counts.

5Note that significant p-values can result from the mere sample
sizes in this setting.
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history of the R. V, it may be useful to compare his results
with the output of ToB. The 31 hymns identified as appen-
dices in Oldenberg (1888, 197-202, 222-223) are marked
by the rug plot at the bottom of Fig. 5, and obviously co-
incide with some of the peaks in the predicted times.6 A
Wilcoxon rank sum test that compares the times predicted
for Oldenberg’s appendices with those of the rest of R. V 1-7,
9 produces a highly significant p-value of less than 2e1−16,
which suggests that Oldenberg’s ideas are supported by the
output of ToB. A closer inspection, however, shows that this
strong effect is mainly caused by a few of Oldenberg’s ap-
pendices marked as especially young by the model. These
hymns comprise, among others, R. V 1.162-164 (including
the famous “riddle hymn” 1.164, which may be related to
the pravargya ritual; see Houben (2000)); the “frog hymn”
7.103, which shows traits of later religious ideas (Lubin,
2001); the Atharvanic hymn R. V 7.104 (Lommel, 1965,
203ff.); the Soma hymn 9.113, which foreshadows a con-
cept of heaven occurring in much later texts (Jamison and
Brereton, 2014, 1304) and notably mentions a group of
Gandharvas instead of a single Gandharva only, an idea
often considered as late (Oberlies, 2005, 106); 10.19, a
hymn composed in easy language that addresses cows who
have gone astray, but is found, somehow unfittingly, at the
end of a series of funeral hymns (Jamison and Brereton,
2014, 1401); and 10.60, which pays much attention to the
Atharvanic topic of healing. The remaining appendices,
esp. those contained in the Family Books R. V 2-7, are not
marked as particularly late by the model, but some of them
even as quite old as, for example, the “praise of giving”
(dānastuti-) in R. V 5.27, whose status as an appendix has
been challenged by Jamison and Brereton (2014, 688) on
metrical grounds.

6. Summary
This paper has introduced a Bayesian mixture model with a
temporal component that is used for chronological research
in Vedic literature. Although the VC is used as the text cor-
pus in this paper, the proposed method is not specifically
designed for Vedic Sanskrit, but can be applied to any cor-
pus with a disputed historical structure as long as linguistic
annotations for this corpus are available. As Sections 3. and
5. have shown, the actual challenge is rather the evaluation
of such a model than its design. While the underlying prob-
abilistic processes are well understood, the interpretation
of the model output requires a close interaction between
quantitative methods and text-historical scholarship, espe-
cially since the data with which the model are evaluated
do not constitute a proper gold standard (see Sec. 5.1. and
5.2.). The brief evaluation of the R. V in Sec. 5.4. func-
tions as a test case that indicates some possible approaches.
Although a closer inspection of the results for the R. V will
unveil more insights into its structure, more interesting can-
didates for in-depth studies are certainly found among the
post-Rigvedic texts as, for example, the two recensions of

6Only full hymns marked as appendices are considered in this
paper, i.e. R. V 1.104, 162-164, 179, 191; 2.42-43; 3.28-29, 52-
53; 4.48, 58; 5.27-28, 61, 87; 6.47, 74-75; 7.17, 33, 55, 103-104;
9.112-114; 10.19, 60.

the Atharvaveda (see Whitney and Lanman (1905, cxxvii-
xclii) and Witzel (1997, 275-284)) or early prose treatises
such as the Maitrāyan. ı̄-Sam. hitā (see Amano (2009, 1-6) on
the state of research).
On the mathematical side, the model proposed in this paper
is a prototype that can be extended in various aspects. Its
most serious drawback is the inflexible structure of the ad-
mixture models, which will be replaced by a Hierarchical
Dirichlet Process (HDP, Teh et al. (2005)) in a follow-up
study. In addition, the fixed size of the text windows (see
Sec. 4.1.) prevents textual strata from being directly in-
duced from the data (instead of constructing them in a post-
processing step). Combining HDPs with a Markov Random
Field, as proposed by Orbanz and Buhmann (2008) for im-
age segmentation, appears to provide a viable solution for
this challenge.
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Abstract
Aramaic is an ancient Semitic language with a 3,000 year history. However, since the number of Aramaic speakers in the world has
declined, Aramaic is in danger of extinction. In this paper, we suggest a methodology for automatic construction of Aramaic-Hebrew
translation Lexicon. First, we generate an initial translation lexicon by a state-of-the-art word alignment translation model. Then,
we filter the initial lexicon using string similarity measures of three types: similarity between terms in the target language, similarity
between a source and a target term, and similarity between terms in the source language. In our experiments, we use a parallel corpora
of Biblical Aramaic-Hebrew sentence pairs and evaluate various string similarity measures for each type of similarity. We illustrate
the empirical benefit of our methodology and its effect on precision and F1. In particular, we demonstrate that our filtering method
significantly exceeds a filtering approach based on the probability scores given by a state-of-the-art word alignment translation model.
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1. Introduction
A translation lexicon is a set of word pairs, where each
pair contains one word from the source language and its
translation equivalent (has the same meaning as, or can be
used in a similar context to) from the target. Translation
lexicons are an essential element of any statistical machine
translation (MT) scheme. Previous work on MT has shown
that, given sufficient parallel training data, highly accurate
word translations can be learned automatically (Koehn et
al., 2003; Chiang, 2007).
According to UNESCO, some 6,000-7,000 languages are
spoken worldwide today. Approximately 97% are spoken
by only 4% of the world population, while just 3% of the
world speaks 96% of all the remaining languages. Most
of those languages, mainly spoken by indigenous people,
will alarmingly disappear. Thus, the worldwide preserva-
tion, revitalization and promotion of indigenous languages
is urgent.
Aramaic is a member of the Afro-Asian language family’s
Semitic branch. Aramaic is an ancient language (closely
related to both Hebrew and Arabic) with a 3,000 year his-
tory. Experts believe that Aramaic was main language from
539 BC to 70 AD in the Middle East and probably spoken
by Jesus. However, as the number of speakers worldwide is
declining, Aramaic is threatened by extinction.
Aramaic is the language of the Biblical books of Daniel and
Ezra, and is the primary language of the Talmud (a key Jew-
ish text) and the Zohar (a foundational work in the literature
of Jewish mystical thought known as Kabbalah). To enable
future scholars to understand and learn from these ancient
texts in Aramaic, lexical resources, such as a dictionary,
must be developed.
In this study, we present an algorithmic scheme for au-
tomatic construction of Hebrew-Aramaic translation lexi-
con. In particular, we propose and investigate a filtering
process over an initial translation lexicon, generated by a
state-of-the-art word alignment translation model. Our fil-
tering method computes three types of string similarities,
similarity between terms in the target language, similarity
between a source and a target term, and similarity between

terms in the source language. We examine five string simi-
larity measures for the three types of similarity.
We demonstrate the empirical advantage of our scheme
over a parallel Aramaic-Hebrew Biblical corpora and eval-
uate its impact on accuracy and F1. We show that our filter-
ing method significantly outperforms a filtering approach
based on the probability scores provided by the word align-
ment translation model. The remainder of this paper is or-
ganized as follows: we start with a description of word-
based translation models that we utilize in our scheme and
a brief summary on Aramaic natural language process-
ing (NLP) (Section 2.). Then, we describe our Aramaic-
Hebrew parallel corpora in Section 3.. Our main contri-
bution of the algorithmic scheme is detailed in Section 4.,
followed by an evaluation in Section 5. and conclusions in
Section 6..

2. Background
This section describes word-based translation models that
we used in our experiments (Section 2.1.), followed by a
brief introduction to the applications of NLP on our extinct
language, Medium Aramaic, or ”post-classical” Aramaic
(Section 2.2.). We note that we also applied state-of-the-
art neural MT algorithms. However, they did not perform
well on our corpus, probably due to the limited amount of
data.

2.1. Word-based Translation Models
Word alignment corresponds to word-based translation
models (Brown et al., 1993), where the units of correspon-
dence between sentences are individual words. Formally,
we say that the objective of the word alignment task is to
discover the word-to-word correspondences in a sentence
pair (F J1 = f1...fJ , E

I
1 = e1...eI ) in which the source and

target sentences contain I and J words, respectively.
An alignment A of the two correspondences is defined as
(Och and Ney, 2003):

A ⊆ {(j, i) : j = 1, ..., J ; i = 0, ..., I} (1)

in case that i = 0 in some (j, i) ∈ A, it represents that the
source word j aligns to an “empty” target word e0.
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In statistical word alignment models, the probability of a
source sentence given target sentence is written as:

P (fJ1 |ei1) =
∑

aJ1

P (fJ1 , a
J
1 |ei1) (2)

in which aJ1 denotes the alignment on the sentence pair.
Several different parametric forms of P (fJ1 , a

J
1 |ei1) =

pθ(f
J
1 , a

J
1 |ei1) have been proposed, and the parameters θ

can be estimated using Maximum Likelihood Estimation
(MLE) on a training corpus (Och and Ney, 2003).

θ̂ = argmax
θ

S∏

s=1

∑

a

pθ(fs, a|es) (3)

The best alignment of the sentence pair, is called Viterbi
alignment.

âj1 = argmax
aJ1

pθ(f
J
1 , a

J
1 |ei1) (4)

The IBM Models (Brown et al., 1993) are a sequence of
word alignment models with increasing complexity, start-
ing with lexical translation probabilities, adding models
for reordering and word duplication. The IBM Models,
along with the Hidden Markov Model (HMM) (Vogel et
al., 1996), serve as the starting point for most current state-
of-the-art statistical machine translation systems.
One of the serious drawbacks of the IBM models is that
they create a one-to-many mapping. Their alignment func-
tion may return the same value for different input, but can-
not return multiple values for one input (many-to-one). To
resolve this and allow many-to-many mappings, various
methods for performing a symmetrization of the IBM di-
rected statistical alignment models are applied. Most of
the symmetrization methods apply a heuristic postprocess-
ing step that combines the alignments in both translation
directions (source to target, target to source). If we inter-
sect the two alignments, we get a high-precision alignment
of high-confidence alignment points. If we take the union
of the two alignments, we get a high-recall alignment with
additional alignment points. In SMT (Och et al., 1999), a
higher recall is more important (Och and Ney, 2000), so an
alignment union would probably be chosen.
Och and Ney (Och and Ney, 2003) investigated the space
between intersection and union with expansion heuristics
that start with the intersection and add additional align-
ment points. They trained an alignment model in both
translation directions and obtained two alignments aJ1 and
bI1 for each pair of sentences in the training corpus. Let
A1 = {(aj , j)|aj > 0} and A2 = {(i, bi)|bi > 0} denote
the sets of alignments in the two Viterbi alignments. They
combinedA1 andA2 into one alignment matrix A using the
following steps:

1. Determine the intersection A = A1 ∩A2.

2. Extend the alignment A iteratively by adding align-
ments (i, j) occurring only in the alignment A1 or in
the alignment A2:

(a) if neither fj nor ei has an alignment in A, or

(b) if both of the following conditions hold:

i. The alignment (i, j) has a horizontal neighbor
(i - 1, j), (i + 1, j) or a vertical neighbor (i, j -
1), (i, j + 1) that is already in A.

ii. The set A ∪ {(i, j)} does not contain align-
ments with both horizontal and vertical
neighbors.

In our experiments, we adopted this type of symmetrization
methods, which are also known as grow-diag-x heuristics.
Given this alignment method, it is quite straight-forward to
estimate a maximum likelihood translation lexicon.

2.2. Aramaic NLP
Not much research has been done on Aramaic NLP. Some
studies have used a corpus of ancient texts in mixed He-
brew and Aramaic language, the Responsa project. These
studies discussed different tasks like abbreviation disam-
biguation (HaCohen-Kerner et al., 2010; HaCohen-Kerner
et al., 2013), citations identification (HaCohen-Kerner et
al., 2011; Koppel and Schweitzer, 2014), temporal data
mining (Mughaz et al., 2017; Moghaz et al., 2019), and di-
achronic thesaurus construction (Zohar et al., 2013; Liebe-
skind et al., 2016; Liebeskind et al., 2019). Some of these
studies have provided insights into the Aramaic language.
However, since the main language of the Responsa project
is Hebrew, these studies did not directly focus on Aramaic
NLP.
Snyder and Barzilay (2008) presented a non-parametric
model that jointly induces a segmentation and morpheme
alignment from a multilingual corpus of short parallel
phrases from the Hebrew Bible and translations (Targum
Onkelos was used for the Aramaic (see Section 3.)). The
model uses Dirichlet process prior for each language and
for the cross-lingual links. Snyder and Barzilay (2008) ap-
plied their model to four languages: Arabic, Hebrew, Ara-
maic, and English. They showed that the joint model de-
creased error by up to 24% with respect to monolingual
models. When used in languages of the same family, the
model achieved better performance. However, since Snyder
and Barzilay (2008) did not have gold standard segmenta-
tion for the English and Aramaic part of the data, they re-
strict their evaluation to Hebrew and Arabic.
An exception is the recent work of Porat et al. (2018) on
identification of parallel passages in the Babylonian Tal-
mud corpus. In contrast to the Responsa project, the Tal-
mud main language is Aramaic. The method by Porat et
al. (2018) allows for changes between the parallel passages
on word level and on phrase level. On word level, they fo-
cused on the core of the words. First, the input corpus was
used to compute the frequency of the Hebrew letters. Then,
they identified for each word the two most rare letters and
represented the word by these two letters (keep the order of
two letters in the word). Since prefixes letters and matres
lectionis are the most common letters in the language, The
method by Porat et al. (2018) effectively eliminated most
of them. They assumed that since they aimed to find se-
quences of matching two-letter codes, the number of false
positives will be reduced later. On phrase level, they com-
pared both n-grams of length 4 and non-contiguous n-grams
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(termed skip-grams). They extracted all 4-word combina-
tions for every 5-word sequence in the text, which could
omit any of the last four words. Finally, to validate a given
match, they clustered matching skip-grams by generating a
two-dimensional graph. Each skip-grams match was plot-
ted on one axis according to the base skip-gram starting
word position, and on the other axis according to the cor-
responding skip-gram starting word position. Cases where
several skip-grams match a cluster on the graph on a more
or less diagonal line were considered valid. As the method
by Porat et al. (2018) constructs its list of potential matches
in a pre-processing step generated via a single pass, it is ca-
pable of processing text of any size in O(N) time.

3. Parallel Corpus
Translation lexicon construction requires parallel data for
learning. In a sentence-level parallel corpus, for every sen-
tence in the source language there is a translated sentence
in the target language. We used two Aramaic-Hebrew cor-
pora:

1. Targum Onkelos, the Jewish Aramaic Targum, is an
authentic translated text of the Pentateuch (Five Books
of Moses), which is believed to have been written in
the early 2nd century CE. Its authorship is tradition-
ally attributed to Onkelos, a well-known convert to Ju-
daism in the Tannaic era (c. 35−120 CE). The Tal-
mud story (Megillah 3a) tells that Targum Onkelos’s
content was first transferred to Moses at Mount Sinai
by God, but later forgotten and recorded by Onke-
los. Onkelos’ Aramaic translation is a literal word-by-
word translation, with very little additional material
in the form of non-legalistic exegetical texts (usually
where the original Hebrew is an idiom, a homonym,
or a metapho). However, in cases where biblical pas-
sages are difficult, Onkelos aims at minimizing obscu-
rities and ambiguities.

2. Targum Jonathan, the official eastern Aramaic trans-
lation to the Nevi’im (Prophets), the second main di-
vision of the Hebrew Bible. Its authorship is tradi-
tionally attributed to Jonathan ben Uzziel, a pupil of
Hillel the Elder. The Talmud (Megillah 3a) states that
”from the mouths of Haggai, Zechariah, and Malachi,”
suggesting Targum Jonathan was based on traditions
derived from the last prophets. Its overall style is
like Targum Onkelos, originated in the land of Israel
and was accepted in Babylonia in the third century.
Targum Jonathan was brought to the Diaspora by the
Babylonian Academies.

4. Methodology
Translation lexicons usually contain thousands of entries,
termed here source terms. Each entry holds a list of target
translated terms, which has the same meaning as, or may
be used in a similar context to the source term.
In this paper we assume that a sentence-level parallel cor-
pus is given as input, and run an IBM method to extract a
list of candidate target translated terms (termed candidate

translated terms). Then, we focus on the process of filter-
ing the candidate list and extracting a list of target translated
terms for each source term.
Our methodology was performed on a Aramaic-Hebrew
parallel corpus, but can be generically applied in other set-
tings.

4.1. Algorithmic Scheme
We used the following algorithmic scheme for translation
lexicon construction. Our input is a sentence-level paral-
lel corpus. First, we extract an initial translation lexicon
using an IBM word alignment algorithm. Next, to filter
incorrect translations, for each term in the initial lexicon
we retrieve all its translations and cluster them using some
measure of string similarity. For example, the translation
cluster of the Aramaic word !Nגברי (men) is ,אנשי!} !Mאנשי,
{איש! We consider clusters of more than one translation as
valid and further examine clusters of length 1. We compare
the similarity between the term and its single translation. A
high similarity score indicates the correctness of the trans-
lation. For example, the Aramaic word !Nאכלתו (eat) and
its translation { !Mאכלת}. Finally, to check the validity of
the remaining clusters (e.g. מדכר! (ram)) and avoid losing
cases like synonyms, we extract similar terms to the term
that we are testing (!Nדכרי) using some measure of string
similarity and cluster the translations of all these terms (
{ !Mאיל, !Mהאילי, ,איל! !Mאילי, !Mאיל}). If the cluster of the
tested translation ( (איל! is contained in one of the extracted
clusters, the translation is considered valid. The output is
a filtered translation lexicon consisting of the translations
which were judged valid by the algorithm.
The algorithm’s pseudo code is described in Algorithm 1.
String similarity measures are used (in four steps of the al-
gorithm) to calculate three types of similarities; (1) similar-
ity between terms in the target language (lines 4 and 13), (2)
similarity between a source and a target term (line 7), and
(3) similarity between terms in the source language (line
10).

4.2. String Similarity
Aramaic is a resource-poor language that lacks essential re-
sources, such as part-of-speech taggers, necessary for com-
putational linguistics. Thus, to calculate the similarity be-
tween two Aramaic words. we can not lemmatize them and
compare their lemmas, but we need to apply a string simi-
larity measure. Since Liebeskind et al. (2012) reported that
available tools for Hebrew processing perform poorly on
a diachronic corpus and our parallel corpora is of a sim-
ilar genre, we also investigate string similarity measures
for Hebrew. For word comparison in different languages
(Aramaic and Hebrew), a string similarity measure is also
required.
Table 1 lists the prior art string similarity measures consid-
ered in our work. Given two similar words with a different
orthography, our goal is to find a measure which maximizes
their similarity score or minimizes their distance score.
Although, in our corpora, the alphabet of both languages is
the Hebrew alphabet. the letter distribution differ between
the Aramaic and Hebrew. Figure 1 shows both the letters’
frequency in each of the languages. !N and א! are common

12



Algorithm 1: Methodology implementation
input : A sentence-level parallel corpus
output: A translation lexicon

1 IntialLexicon← IBM(parallel corpus);
2 foreach term t in IntialLexicon do
3 CandidateTransList←

GetCandTransList (t);
4 SimilarCandidateClusters←

GetSimCandCls(CandidateTransList);
foreach cluster c in
SimilarCandidateClusters do

5 if length(c)>1) then
6 add c to FilteredTransList

break;
7 if IsTermCandSim (t,c) then
8 add c to FilteredTransList

9 else
10 SimilarTermList←

GetSimilarTermList(t);
11 foreach term t2 in SimilarTermList do
12 CandidateTransList + =

GetCandTransList (t2)
13 SimilarCandidateClusters←

GetSimCandCls(CandidateTransList)
foreach cluster simc in
SimilarCandidateClusters do

14 if length(simc) > 1 & c ⊆ simc
then

15 add c to FilteredTransList

16 add < t,FilteredTransList > to
FilteredLexicon

Aramaic suffixes and ד! is a common Aramaic prefix. Thus,
they are more frequent in Aramaic than in Hebrew. On the
contrary, !M is a common Hebrew suffix and ה! and ש! are
common Hebrew prefixes, so they are more frequent in He-
brew.

5. Evaluation
5.1. String Similarity Evaluation
In our experiments, we investigated three types of similar-
ities (see Section 4.1.), namely, Hebrew-Hebrew (HE-HE),
Aramaic-Aramaic (AR-AR), and Aramaic-Hebrew (AR-
HB). To evaluate the performance of the various string sim-
ilarity measures presented in Section 4.2., we manually an-
notated word pairs of the three types. For each type, we
annotated word pairs that were tested by the algorithm in
the corresponding step. To avoid focusing on trivial cases
that can easily be determined by all the measures, we only
annotated pairs with at least two common letters, excluding
matres lectionis.
Table 2 compares the performance of five string similarity
measures for the three types of similarity by four commonly
used measures: precision (P), recall (R), F1, and accuracy
(Acc). For each configuration, we report the optimal thresh-
old results. The word-level (Porat et al., 2018) measure was

examined with the most two, three, and four rare letters,
obtaining the best results with two lettered items for all the
configurations.
In the sample of the annotated HE-HE pairs, there are 269
pairs, 187 positive (judged similar) and 82 negative (judged
dissimilar). In the sample of the annotated AR-AR pairs,
there are 559 pairs, 32 positive and 527 negative. In the
sample of the annotated AR-HE pairs, there are 429 pairs,
131 positive and 298 negative. The gap between the number
of positive and negative pairs of the corresponding configu-
rations in the AR-AR sample explains the gap between the
F1, which do not consider true negatives, and the accuracy,
which does consider them.
The best results were obtained by the Jaro similarity mea-
sure, using different thresholds, for all the three types of
pairs. The similarity thresholds were 0.67, 0.82, and 0.78
for HE-HE, AR-AR, and AR-HE, respectively.
To complete our investigation, we used the Hebrew part-
of-speech tagger (Adler and Elhadad, 2006) to lemmatize
the HE-HE pairs and compare their lemmas. We obtained
recall, precision, F1, and accuracy of 0.4, 0.48, 0.44, and
0.29, respectively.
Next, we evaluated the performance of our algorithmic
scheme. In all the reported results, for each similarity type,
we used the best similarity measure with its optimal simi-
larity threshold.

5.2. Algorithmic Scheme Evaluation
5.2.1. Evaluation Setting
The results reported in this paper were obtained from a sam-
ple of 108 randomly selected source terms from a list of
29,335 terms, generated by the state-of-the-art IBM model
4 using Giza++ (Och and Ney, 2003) open source toolkit1.
Only source terms with more than one appearance in the
corpora were selected. We manually annotated 287 source-
target word pairs with an average of 2.66 word pairs per
source term. Each source-target word pair was judged as
either correct or incorrect translation.
We assessed our algorithmic scheme by evaluating its abil-
ity to filter the state-of-the-art IBM model 4 translation lex-
icon and increase its accuracy. Additionally, we compared
our filtering process with a baseline filtering approach of
deleting translations with low probability score. We used
the probability (i.e. maximum likelihood) score that was
assigned by the IBM model.
We used four evaluation measures: precision (P), relative-
recall (RR), F1, and Accuracy (Acc). The scores were
micro-averaged. Since we do not have any pre-defined
translation lexicon, we evaluated the relative-recall. Our
relative-recall considered the number of correctly translated
source-target pairs from the output of state-of-the-art IBM
model as the full set of translated pairs.
Table 3 presents the results of the baseline filtering ap-
proach which deletes translations with low probability
score. We examined different probability thresholds. The
best results were obtained with a threshold value of 0.1,
which means almost no filtration. Once the filtering is more

1http://www.statmt.org/moses/giza/GIZA++.
html
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# String Similarity Measure Description

1
Levenshtein distance
(Levenshtein, 1966)

Counts the minimum number of operations (removal, insertion, or substitution
of a character) required to transform one string into another.

2
Hamming distance
(Hamming, 1950) Finds the total number of places one string is different from the other.

3
Jaccard similarity coefficient
(Jaccard, 1901)

Counts the number of common characters and divides it by the total number of
unique characters.

4
Jaro similarity
(Jaro, 1989)

Highly scores strings with the same characters, but at a certain distance from each
other, as long as the order of the matches is similar.

5
Word-level match
(Porat et al., 2018)

Represents the words by their n most rare letters (keeps the order of the letters in
the word) and requires an exact match.

Table 1: Prior art string similarity measures considered in our work

Figure 1: The frequency of the Aramaic and Hebrew letters.

Type Measure R P F1 Acc

HE-HE

Levenshtein 0.96 0.77 0.85 0.77
Hamming 0.75 0.73 0.74 0.64
Jaccard 0.8 0.9 0.85 0.8
Jaro 0.89 0.83 0.86 0.8
Word-level 0.65 0.9 0.75 0.71

AR-AR

Levenshtein 0.31 0.71 0.43 0.95
Hamming 0.25 0.73 0.37 0.95
Jaccard 0.41 0.5 0.45 0.94
Jaro 0.41 0.72 0.52 0.96
Word-level 0.19 0.26 0.22 0.92

AR-HE

Levenshtein 0.76 0.59 0.67 0.77
Hamming 0.76 0.35 0.48 0.5
Jaccard 0.65 0.72 0.69 0.82
Jaro 0.69 0.8 0.74 0.86
Word-level 0.49 0.79 0.61 0.81

Table 2: Performance of five string similarity measures for
the three types of similarity

significant, there is very little precision increase and a dra-
matic recall drop. We concluded that the probability score
is not sufficiently indicative to be used for filtering the ini-
tial lexicon and a different filtering scheme is required.

Threshold RR P F1 Acc
0.1 0.85 0.798 0.823 0.711
0.2 0.758 0.789 0.773 0.648
0.3 0.634 0.8 0.708 0.585
0.4 0.533 0.823 0.647 0.54
0.5 0.498 0.819 0.619 0.516
0.6 0.33 0.852 0.476 0.425
0.7 0.291 0.846 0.433 0.397
0.8 0.273 0.838 0.412 0.383
0.9 0.251 0.826 0.385 0.366

Table 3: Baseline filtering approach with different proba-
bility thresholds
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Table 4 compares the performance of our algorithmic
scheme with that of the best baseline and the state-of-the-
art IBM model 4. The state-of-the-art results corresponds
to the baseline without any filtering. In other words, the
IBM model classifies all the source-target pairs as positive.
Therefore, its precision and accuracy are the same. Since
we considered the correctly translated source-target pairs
from its output as the full set of translated pairs, its relative-
recall is 1.
Our algorithmic scheme increases both the F1 and the ac-
curacy of the state-of-the-art IBM model by 5 points and 10
points, respectively. The baseline filtering does not improve
the IBM model.

Method RR P F1 Acc
Our Algorithmic Scheme 0.87 1 0.93 0.89
Baseline Filtering 0.85 0.8 0.82 0.7
State-of-the-art model 1 0.79 0.88 0.79

Table 4: Results Comparison

5.2.2. Error Analysis
We analyzed the classification errors of our algorithm. In
Table 5, we present the classification confusion matrix.
Each column of the matrix represents the instances in a
predicted class while each row represents the instances in
an actual class.

Predicted True False
Actual
True 198 29
False 0 60

Table 5: The confusion matrix of our algorithm

All of the classification errors were due to incorrect classi-
fication of valid source-target pairs as invalid. In 34% of
these incorrect classifications were cases where the trans-
lation appeared in a single morphology form. For ex-
ample -כסותה! שמלתיו! (dress) and לאיש!-לאנשא! (to a man).
The remainder of cases (66%) were classified incorrectly
due to a low string similarity score. A low score was
obtained in a few simple ,ההר!-טורא!) בהר! (mountain)),
mediocre ,אחיו!-לאחוהי!) אח! (brother)) and more complex
cases ( ,החביאה!-אטמרת! נחבאת! (hide)). We note that the
string similarity measure can be improved by matching ter-
minal letters to regular letters as in the incorrectly classified
example of ,כשדימה!-כסדאי! !Mכשדי (Chaldean (person)).

6. Conclusions and Future Work
We proposed a methodological algorithmic scheme to con-
struct an Aramaic-Hebrew translation lexicon. First, by a
state-of-the-art word alignment translation model, we gen-
erated an initial translation lexicon. We then filtered the ini-
tial lexicon using three types of string similarity measures.
For each similarity type, we evaluated five string similarity
measures. Our algorithmic scheme significantly increased

both the accuracy of the F1 over the initial lexicon and a fil-
tered lexicon based on word alignment probability scores.
The scheme was investigated for Aramaic and Hebrew, but
can be generically applied for other languages.
At some stage, during learning or in feature functions, all
existing statistical machine translation (SMT) methods are
using word alignments. Therefore, we plan to integrate our
translation lexicon in a SMT scheme.
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Abstract
Automatic dating of ancient documents is a very important area of research for digital humanities applications. Many documents
available via digital libraries do not have any dating or dating that is uncertain. Document dating is not only useful by itself but it
also helps to choose the appropriate NLP tools (lemmatizer, POS tagger . . . ) for subsequent analysis. This paper provides a dataset
with thousands of ancient documents in French and present methods and evaluation metrics for this task. We compare character-level
methods with token-level methods on two different datasets of two different time periods and two different text genres. Our results show
that character-level models are more robust to noise than classical token-level models. The experiments presented in this article focused
on documents written in French but we believe that the ability of character-level models to handle noise properly would help to achieve
comparable results on other languages and more ancient languages in particular.

Keywords: Old documents, Text Mining, Document Dating, Corpus, Digital Humanities, Textual Document Dating

1. Introduction
Nowadays, a large number of historical documents is ac-
cessible through digital libraries among which we can cite
EUROPEANA 1 or GALLICA 2 among other Digital Hu-
manities (DH) digitization projects. This allows libraries
to spread cultural heritage to a large and various audience
(academics, historians, sociologists among others). It is
also a great opportunity to have such an amount of data
usable in various projects including NLP projects.
However, exploiting these documents automatically can be
difficult because of the their various quality, their imperfect
digitization, the lack of metadata or the fact that they exhibit
a great variety of languages (among which under-resourced
languages). Many documents will be difficult to access for
researchers since it is difficult to unite them in a corpus, to
rely on consistent metadata or to use NLP tools if the data
is too noisy.
In particular, it is difficult for DH researchers to use most
of available data since the quality of the Optical Charac-
ter Recognition (OCR) on ancient documents can make
them impossible to process properly with classical NLP
tools. Therefore, pre-processing and data cleaning is of-
ten mandatory to make them suitable for classical NLP
pipelines. This need increases the cost of treating new
corpora for DH researchers since choosing the appropriate
NLP tools can even be difficult. The problems encountered
can vary with respect to the languages used in the document
or the period were the document has been printed but it re-
mains an open problem. Therefore, the knowledge of the
date of the document is not only useful by itself but also be-
cause it helps to choose the appropriate OCR configuration
(Cecotti and Belaı̈d, 2005), the post-processing techniques
after the OCR phase (Afli et al., 2016) or the appropriate
NLP processing tools to use for a particular corpus (Sagot,
2019). Hence, we propose in this paper to investigate the
problem of document dating in noisy documents.
The contribution of this paper is three fold : (I) we pro-

1https://www.europeana.eu/
2https://gallica.bnf.fr/

pose a corpus of around 8,000 ancient documents in French
(published from 1600 to 1710), (II) we propose some meth-
ods to enrich the metadata and (III) we propose new ideas
to evaluate the quality of digitized data in order to put the
DH researcher in the center of the loop. In the experiments
part we will focus on the document dating task but we be-
lieve that the corpus we developed and the rationale of our
methods can be useful for other tasks.
In Section 2. we present related work on corpus construc-
tion and document dating. In Section 3. we present the
corpus made available with the article and in section 4. we
show some results on document dating on this corpus and
compare our method with other state-of-the-art datasets. Fi-
nally in Section 5. we give some words of conclusion and
present future orientations of this work.

2. Textual Document Dating
In this work we try to tackle the problem of document dat-
ing in the context of historical textual documents. One way
to tackle this task is to define it as a classification task, each
year (or another time granularity) being a class. (Niculae
et al., 2014) proposed a text ranking approach for solving
document dating. Temporal language models for document
dating use mainly a token-level representation. (Popescu
and Strapparava, 2013) develop the hypothesis that period
changes come with topics changes and written information
reflect these changes by used vocabulary. So, one can de-
limit epochs by observing the variation in word frequen-
cies or word contexts like in recent works about semantic
change (Hamilton et al., 2016).
In the same fashion, (de Jong et al., 2005) and (Kanhabua
and Nørvåg, 2008) used probabilistic models: the authors
assign each word a probability to appear in a time period.
Semantic change is therefore leveraged to give a time stamp
to a given document. Some authors proposed graph models
to extract relationship between events related in the docu-
ment in order to find the document focus time (Jatowt et al.,
2013) or compute an appropriate time stamp for the docu-
ment(Mishra and Berberich, 2016). Another interesting ap-
proach comes from (Stajner and Zampieri, 2013) who used
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four stylistic features to find appropriate document dating:
average sentence length, average word length, lexical den-
sity and lexical richness.
Several works on the subject of document dating involved
preprocessing of texts (e.g. tokenization, morphosynctatic
tagging or named-entity recognition) or external resources,
like Wikipedia or Google Ngram in order to detect ex-
plicit features that can characterize the date of a document :
named entities, neologisms or to the contrary archaic words
((Garcia-Fernandez et al., 2011); (Salaberri et al., 2015))
However, this implies to have access a clean plain text, or
a text without too much OCR errors in order to apply data
cleaning techniques. Indeed the majority of works exploits
newspapers’ articles, due to facility for collect them on web
and a high precision for dating, and few works use digitized
documents. In Section 3. we show how corpus construction
can be an issue for these token-level models and why the
corpus we wanted to process can be too noisy for them.

3. Corpus and Methodology
3.1. Corpus Construction
Corpus construction is a crucial aspect in Computational
Linguistics (CL) and Digital Humanities (DH) fields: the
corpus construction is one of the first steps in research. To
obtain relevant results, the used corpora must meet specific
criteria: genre, medium, topic among other criteria (see
(Sinclair, 1996) or (Biber, 1993) for other criteria exam-
ples). It must also be adapted with research objectives: a
classification task doesn’t require same data that a literary
analysis. Another question regarding corpus construction is
the following: what NLP tools can be used for processing
the corpus ?
With Internet one can easily access to a huge amount of
texts and corpora. Despite this, researchers must be careful
with the data sources : quality, authenticity, noisiness. Bar-
baresi (Barbaresi, 2015) mentions inherent problems with
a web scrapper method to collect corpus: repeated and/or
generated text, wrong machine-translated text, spam, multi-
language documents or empty documents. Documents ex-
hibiting this kind of problems can impair the efficiency of
classifiers or other NLP modules and force researchers to
rebuild a new corpus or to clean the data manually.
Digital libraries provide many and various textual archives,
easy to collect and often used in Digital Humanities in view
of topics. Indeed, these corpora are also diversified that do-
mains in Humanities and Social Sciences (HSS): 19th cen-
tury newspapers, middle-age manuscripts or early modern
prints,(Abiven and Lejeune, 2019).
However, these documents are not ”born-digital” and are
often available only in image format. The quality of the
text one can extract from these images is far from perfect.
So, OCR performances are lower than one can expect on a
modern document and this deterioration has an impact on
the usability of the data. Several works like (Traub et al.,
2015) or (Linhares Pontes et al., 2019) showed that OCR
errors has an important impact on NLP tools efficiency and
subsequent expert analysis.
Therefore, correcting automatically OCR has become an
important prior task to take more advantage of digitalized

Mean size (± stdev)
Decade # Docs (Ratio) Characters Words

1600 389 (5%) 24117 (± 25449) 3702 (± 3698)
1610 649 (8%) 20861 (± 21421) 3248 (± 3223)
1620 926 (12%) 18979 (± 18437) 3033 (± 2727)
1630 917 (12%) 20691 (± 22471) 3304 (± 3339)
1640 815 (10%) 21692 (± 20791) 3558 (± 3271)
1650 583 (7%) 28877 (± 27754) 4725 (± 4306)
1660 552 (7%) 33739 (± 26172) 5698 (± 4266)
1670 489 (6%) 29887 (± 22052) 5150 (± 3655)
1680 630 (8%) 28355 (± 21519) 5023 (± 3677)
1690 802 (10%) 29554 (± 23751) 5276 (± 4106)
1700 791 (10%) 34302 (± 30191) 5928 (± 5030)
1710 427 (5%) 31620 (± 29799) 5461 (± 5151)
All 7970 26276 (± 24577) 4407 (± 3998)

Table 1: Statistics on the GALLICA dataset

corpora ((Barbaresi, 2016) (Rigaud et al., 2019)). Automa-
tion of this post-processing may reduce financial and tem-
poral costs as compared to manual correction. It is a great
challenge for Digital Humanities since these costs can in
some cases constitute the biggest part of DH projects bud-
get.

3.2. A Dataset for Document Dating
The corpus we mainly use for our experimentations has
been collected on the French digital library GALLICA.
From GALLICA it is possible to access to a large amount of
digitized historical and various documents and we wanted
to see how we can apply NLP techniques to old documents
were the OCR makes a lot of errors. Some textual docu-
ments have also plain text access, in fact a non corrected
OCR output.
On the GALLICA website, advanced search’s tab allows a
search with different filters like date of publication, lan-
guage, type of document or theme. For this experiment, we
selected all Latin and French documents with plain text ac-
cess and dated between 1600 and 1720. It represents about
8,000 documents. With the search API we exported a re-
search report in CSV format and transformed it in a JSON
file. Each document has an unique identifier and has meta-
data among which title, author(s), editor, date and other de-
scriptions3.
We took advantage of this research report to download all
the documents in HTML. We developed a tool that scrapes
the text and sorts the documents according to different
kinds of metadata4. Four versions for each text are ex-
tracted by this tool in order to fulfill different needs : (i)
plain text with dates inside the documents; (ii) plain text
where dates have been removed (with regular expressions);
(iii) text with HTML tags and dates; (iv) text with HTML
tags and without date. For assuring that we have the ap-
propriate date for each document, we took advantage of the
date indicated in HTML metadata. Documents for which
the metadata exhibited an uncertain date like 16, 16??, 16..
or a time period (1667-1669) have been discarded.
Table 1 exhibits the statistics on the dataset we extracted

3Metadata present in the resource associated with this paper
4GITHUB repository to be made public
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from GALLICA. In order to perform comparisons with
other approaches we also used two other corpora of ancient
French documents of another period (1800-1950) which
had also OCR issues: Deft 2010 challenge on document
dating (Grouin et al., 2010) where the objective was to give
the good decade for a given text.

3.3. Training a Temporal model
We propose a method that takes advantage of noisy corpus
to enrich metadata. The rationale of our method is to be
as much independent of pre-processing steps because the
lack of language dedicated resources (few NLP tools exist
for ancient languages and their efficiency can be put into
question). This can help DH researchers to process more
easily new datasets since models robust to noise can avoid
research projects to use too much resources in data prepara-
tion. For the GALLICA corpus we split the data into a train-
ing set (70%) and a test set (30%) and maintained the im-
balance between the different classes. For the DEFT2010
corpora, the data was already separated between train and
test so we kept it in order to ease comparisons with previous
approaches.
We aim to find models suitable for noisy data so we got
inspiration from recent works that showed that character-
level models perform well for document dating (Abiven and
Lejeune, 2019). We compare character-level representation
to word-level representations in order to assess their respec-
tive advantages. We present our first results in Section 4..

4. Evaluation
In this Section, we first present results on the the Gallica
dataset, then we use the exact same configuration to train a
temporal model for the DEFT2010 challenge dataset.

4.1. Evaluation Metrics
For evaluation purposes, we use two different metrics.
First, we use macro f-measure rather than micro f-measure
to compare different models for document dating since the
corpus we built from GALLICA is quite imbalanced. Then,
since all the classification errors do not have the same im-
pact, in other words when we have a document from 1650
it is better to predict 1640 than 1630, we wanted to have
another measure. We choosed to use a Gaussian similarity
(here after Similarity), as defined by Grouin et al. (Grouin
et al., 2011) in order to measure how much there is a differ-
ence between the predicted decade and the real decade. It
is computed as follows (with pd being the predicted decade
and rd being the real decade):

Similarity(pd, rd) = e−π/10
2(pd−rd)2

This measure has the good property to highlight systems
that produce smaller errors: an error of two decades is worst
than two errors of one decade (see Table 2 for an excerpt of
this similarity measure outcome).

4.2. Results on the GALLICA Dataset
Table 3 shows an extract of the results we obtained. It ap-
peared that Decision Trees give good results and Random
Forest (with 10 estimators) even better ones. Character 1-
grams give good results and considering longer N-grams

|pd− rd| 0 1 2 3 4 5 6
SIMILARITY 1 0.97 0.88 0.75 0.60 0.46 0.31 . . .

Table 2: Similarity measure between pd the predicted
decade and rd the real decade

N-gram size Decision Tree Random Forest
1 ≤ N ≤ 1 F = 31.62 F = 35.32

S = 0.851 S = 0.877
1 ≤ N ≤ 2 F = 51.23 F = 58.86

S = 0.907 S = 0.931
1 ≤ N ≤ 3 F = 59.49 F = 66.436

S = 0.926 S = 0.947
1 ≤ N ≤ 4 F = 64.6 F = 71.43

S = 0.933 S = 0.950
1 ≤ N ≤ 5 F = 65.1 F = 69.8

S = 0.933 S = 0.945
2 ≤ N ≤ 2 F = 51.17 F = 58.30

S = 0.905 S = 0.928
2 ≤ N ≤ 3 F = 59.94 F = 67.16

S = 0.927 S = 0.948
2 ≤ N ≤ 4 F = 64.06 F = 70.53

S = 0.934 S = 0.948
2 ≤ N ≤ 5 F = 65.00 F = 70.87

S = 0.934 S = 0.948

Table 3: Extract of the results obtained on the GALLICA
dataset. Macro F-measure (F) and Similarity (S)

improves results until N = 4 . With N > 4 there is no im-
provement and at some point the results get even worse,
this observation is consistent with previous experiments
with this kind of features (Brixtel, 2015). Longer N size
seems to interfere with generalization. With a random for-
est classifier and token-level features (token n-grams with
1 <= N <= 3) we obtained at the best 0.85 in similarity if
we discard tokens that include non-alphanumeric characters
and 0.93 if we do not discard them. This shows that punctu-
ation, and in general short sequences of characters, are very
useful for this kind of task even if they offer worse perfor-
mances than character n-grams. Another interesting result
is that this token-level model achieves only a 46.3% score
in macro F-measure. These features exhibit more errors,
resulting in a worse F-measure, but the errors are closer to
the target.

Figure 1 exhibits the confusion matrix on the GALLICA
dataset with our best classifier. One can see that most clas-
sification errors are low range errors, this is consistent with
the high similarity score the classifier achieves. As pre-
sented before, this model outperforms the best token-level
model (Figure 2) in F-measure but the difference in similar-
ity is less significant. When comparing the first line of the
two confusion matrices one can see that the number of true
positives (first cell of the line) is logically higher with the
character-level model. However, the false negatives (rest of
the line) are in fact very close to the target class, the token-
level model shows a bit less errors of 3 decades and more.
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Figure 1: Character-level model (n-grams with 1 <=
n <= 4): confusion matrix for the best classifier (Random
Forest with 10 trees) on the GALLICA corpus, F-measure=
71.43, Similarity =0.950

Figure 2: Token-level model (n-grams with 1 <= n <=
2): confusion matrix for the best classifier (Random Forest
with 10 trees) on the GALLICA corpus, F-measure= 46.27,
Similarity =0.928

4.3. Results on the DEFT2010 dataset
In Figure 3 we present the results obtained with the same
classifier trained and tested on the DEFT2010 dataset. With
an F-measure of 32.8 its results are comparable to the best
performer (F=33.8) for that challenge which is promising
since we did not perform any kind of feature engineering
dedicated to this dataset, we just used the same kind of
features and the same classifier parameters. We can see

Figure 3: Character-level model (n-grams with 1 <=
n <= 4): confusion matrix for a Random Forest classifier
with 10 trees trained and tested on the DEFT2010 dataset,
F-measure= 32.81, Similarity =0.872

that most classification errors occur on the previous or next
decade. Two interesting things occur however, the 1870 is
the most prone to False Positives. It is interesting since this
class represent the middle of the period. The 1940 decade
does not contain any True Positive. This can be linked to
a historical reason since most of the newspapers of this pe-
riod were not authorized so that there is no clear tendency
regarding the printing methods used during this period, il-
lustrating a limit of the character-based models.

5. Conclusion and Perspectives

In this paper we proposed a dataset suited for ancient doc-
uments dating. This dataset contains more than 8k docu-
ments in French written between 1600 to 1710. The docu-
ments in this dataset exhibit a poor quality due to a bad and
not post-corrected OCR. Our results show that this should
not be a problem for document dating since noise in texts
does not seen to impair document dating results. To the
contrary, OCR errors seem to be good features to detect the
printing time of the original document. We showed that
a character-level model can take advantage of noise to im-
prove classification results as compared to a classical token-
level model. On a comparable dataset (DEFT2010) from a
different time period (1800 to 1940) we show that the exact
same features and classifier configuration achieved results
close to the state-of-the-art. We believe this is an important
result since post-correction of texts can be a very costly op-
eration. This result shows that one can perform NLP task
without requiring perfect datasets as input. In the future
it would be interesting to see in a larger scope what is the
impact of bad digitization on subsequent Natural Language
Processing tasks.
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Abstract
Classical Armenian, Old Georgian and Syriac are under-resourced digital languages. Even though a lot of printed critical editions or
dictionaries are available, there is currently a lack of fully tagged corpora that could be reused for automatic text analysis. In this paper,
we introduce an ongoing project of lemmatization and POS-tagging for these languages, relying on a recurrent neural network (RNN),
specific morphological tags and dedicated datasets. For this paper, we have combine different corpora previously processed by automatic
out-of-context lemmatization and POS-tagging, and manual proofreading by the collaborators of the GREgORI Project (UCLouvain,
Louvain-la-Neuve, Belgium). We intend to compare a rule based approach and a RNN approach by using PIE specialized by Calfa
(Paris, France). We introduce here first results. We reach a mean accuracy of 91,63% in lemmatization and of 92,56% in POS-tagging.
The datasets, which were constituted and used for this project, are not yet representative of the different variations of these languages
through centuries, but they are homogenous and allow reaching tangible results, paving the way for further analysis of wider corpora.

Keywords: POS-tagging, Lemmatization, Morphological Analysis, Classical Armenian, Old Georgian, Syriac

1. Introduction
Classical Armenian, Old Georgian and Syriac are still
poorly digitally resourced. Some major corpora already
exist, for instance the Digital Syriac Corpus (DSC) for
Syriac; Digilib, Arak29, Calfa and Titus for Classical
Armenian; and Titus and the Georgian Language Corpus
for Georgian1. These corpora, when they are really
specialized on the ancient state of these languages, are
mainly composed of plain texts or texts analyzed out of
context (all possible analyses are given for each token
and polylexical2 word-forms are not fully described). Ac-
cordingly, scholars are still waiting for corpora enhanced
with complete and reliable linguistic tags. Concerning
the modern state of these languages, the Universal De-
pendencies (UD) provide annotated corpora for Armenian
and Georgian, with the same limitations as described
above. Furthermore, the modern and the ancient states of
each language are usually quite different, so that digital
resources built for either are inadequate to process the other.

Usual techniques for the lemmatization of these corpora rely
on sets of rules and dictionaries. Such a method is unable to
handle unknown tokens, or to readily process data in con-
text. We have initiated experimentations to complete these
operations using a neural network (RNN) and purpose-built
corpora dedicated to this very task (Dereza, 2018). The
task is particularly complex for these aforenamed languages
due to their wealth of polylexical forms. In this paper, we
present experimental results achieved through the applica-
tion of state-of-the-art technologies to these languages. This

1We only quote here some freely available data.
2The word “polylexical” is used here as a very generic term

(but relevant for the three mentioned languages), referring to
word-forms combining more than one lexeme in a single graph-
ical unit (e.g. agglutinated forms).

research depends on the data and tools developed by both
the GREgORI (henceforth GP)3 and Calfa4 projects. The
texts all derive from the database of the GP, which consists
of texts written in the main languages of the Christian East
and already published in the form of critical editions.
The scope of this paper is limited to the three already quoted
languages. The datasets described below have all previ-
ously undergone automatic out-of-context lemmatization,
and manual proofreading (see infra 3. Data Structure).

2. Datasets
D-HYE: Classical Armenian is an Indo-European lan-
guage. This dataset contains 66.812 tokens (16.417 of
which are unique) originating from three different corpora:
Gregory of Nazianzus (Coulie, 1994; Coulie and Sirinian,
1999; Sanspeur, 2007; Sirinian, 1999) (GRNA), the Geog-
raphy of the Indian World (Boisson, 2014) (GMI), and the
Acta Pauli et Theclae (Calzolari, 2017) (THECLA). GRNA
gathers the text of the Armenian versions of Gregory of
Nazianzus’ Discourses, already published in the Corpus
Christianorum series. Gregory of Nazianzus (†390 AD) is
the author of 45 Discourses, more than 240 letters, as well
as theological and historical works in verse.
The Armenian version is anonymous and dates from 500-
550 AD; its style has been qualified as pre-Hellenophile

3The GP develops digital tools and resources aimed at produc-
ing tagged corpora, at first in Ancient Greek, but now also in the
main languages of the Christian East. Tagged textual data are pro-
cessed in order to publish lemmatized concordances and different
kinds of indexes. These tools are based on a stable standard of
lexical examination (Kindt, 2018).

4The Calfa project develops a complete database for Classi-
cal Armenian, as well as tools for corpora creation and annotation
(crowdsourcing interface and OCR technology for historical lan-
guages) (Vidal-Gorène and Decours-Perez, 2020).
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(Lafontaine and Coulie, 1983). THECLA contains the
Armenian version of a group of texts relating to the legend
of Thecla and the martyrdom of Paul (5th-14th c. AD),
while GMI is a very small text written around 1120 AD,
enumerating cities and trading posts of the Indian world.
GMI contains a lot of unique tokens, such as toponyms
and personal names. D-HYE primarily covers texts of the
Hellenophile tradition, which entails a large number of
neologisms and idiosyncratic syntactic constructions. As
such, for the time being, it is not entirely representative
of the Classical Armenian language (see infra 5. Perspec-
tives).

D-KAT: Old Georgian is a Kartvelian language. It contains
150.869 tokens (30.313 unique) from one unique corpus,
made up of the texts of the Georgian versions of Gregory
of Nazianzus’ Discourses already published in the Corpus
Christianorum series (Coulie and Métrévéli, 2001; Coulie
and Métrévéli, 2004; Coulie and Métrévéli, 2007; Coulie
and Métrévéli, 2011; Métrévéli, 1998; Métrévéli, 2000).
Several translations from Greek into Georgian are known.
The most important of which are those by Euthymius
the Hagiorite (10th c. AD) and Ephrem Mtsire (Black
Mountain, near Antioch, 11th c. AD) (Haelewyck, 2017b).

D-SYC: Syriac is a Semitic language. This dataset con-
tains 46.859 tokens (10.612 unique). It is themost heteroge-
nous dataset of this study, since the texts it contains relate
to a variety of topics: biblical, hagiographic, and histori-
cal texts, homilies, hymns, moral sayings, translations of
Greek philosophical works, etc. These texts have been lem-
matized by the collaborators of the GP: the Syriac version
of Discourses I and XIII by Gregory of Nazianzus, trans-
lated from Greek in the 6th-7th c. AD (Haelewyck, 2011;
Haelewyck, 2017b; Schmidt, 2002; Sembiante, 2017); the
Story of Zosimus, translated no later than the 4th c. AD
(Haelewyck, 2014; Haelewyck, 2015; Haelewyck, 2016;
Haelewyck, 2017a); the Syriac Sayings of Greek Philoso-
phers (6th-9th c. AD) (Arzhanov, 2018); the Life of John
the Merciful (Venturini, 2019); and some other texts dating
from the 4th to the 9th century, described on the GP’s web-
site.

Type D-HYE D-KAT D-SYC
different tokens 66.812 150.869 46.859
unique tokens 16.417 30.313 10.612
unique lemmata 5.263 8.897 2.957

Table 1: Composition of the datasets

These datasets do not embrace the whole lexicon of these
languages (as a reference, the Calfa dictionary contains
around 65.000 entries for Classical Armenian). We discuss
this shortcoming in parts 3. and 4.

3. Data Structure
The data have been prepared and analysed in the framework
of the GP. For each corpus, the following processing steps
were implemented:

1. Cleaning up the forms of the text (removal of upper-
case, critical signs used by editors, etc.). These forms
constitute the column “cleaned form” of the corpus
(see figure 1);

2. Morpho-lexical tagging, i.e. identifying a lemma and
a POS for every cleaned-up form (token) of the text.
This task is conducted through automatic comparison
of the clean forms of the texts to the linguistic re-
sources of the GP: dictionaries of simple forms and
rules for the analysis of polylexical forms (see infra);

3. Proofreading of the results, corrections and encoding
of missing analyses;

4. Enrichment of the linguistic resources for future pro-
cessing of other texts.

Syriac, Classical Armenian and Old Georgian contain a
large quantity of polylexical forms, combining words with
different prefixes (preposition or binding particle) and/or
suffixes (postposition or determiner). These forms are sys-
tematically (and automatically) segmented in order to iden-
tify explicitly each of its components. The different lexi-
cal elements are separated by an @ sign and divided into
the following columns: lemma, POS and morph (see table
4; displaying a short sentence from the Inscription of the
Regent Constantine of Papeṙōn (Ouzounian et al., 2012)).
The morpho-lexical tagging follows the rules laid out for
each language by the collaborators of the GP (Coulie, 1996;
Coulie et al., 2013; Coulie et al., 2020; Kindt, 2004;
Haelewyck et al., 2018; Van Elverdinghe, 2018). This auto-
mated analysis does not take the context into account. The
resulting data are proofread manually and the proofreaders
add the morphology according to the context (see table 4,
columns marked GP).

Figure 1: Raw output from the GP system

4. Method and Experiments
Up until now, the annotation has depended on a set of rules
and dictionaries, and the result has beenmanually corrected.
The main flaw of this approach lies in the fact that this anal-
ysis only concerns the forms attested in the corpus and al-
ready included in the lexical resources (< 40% for a rep-
resentative corpus of Classical Armenian like the NBHL
(Vidal-Gorène et al., 2019)) on the one hand, and that it
does not provide answers in case of lexical ambiguity on the
other hand. We have, hence, initiated experimentations to
complete the task of lemmatization and POS-tagging with
a neural network.
At present, the choice has fallen on PIE (Manjavacas et al.,
2019), which offers a highly modular architecture (using
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Train All token Ambiguous token Unknown token
D-ARM D-KAT D-SYC D-ARM D-KAT D-SYC D-ARM D-KAT D-SYC

accuracy 0.9307 0.9698 0.8877 0.9318 0.9354 0.8307 0.7210 0.8460 0.5914
precision 0.7067 0.8187 0.6475 0.5997 0.7104 0.5382 0.5350 0.7177 0.4131
recall 0.7076 0.8132 0.6503 0.6566 0.7367 0.5982 0.5361 0.7101 0.4094
f1-score 0.7071 0.8159 0.6489 0.6269 0.7233 0.5666 0.5355 0.7139 0.4117

Test All token Ambiguous token Unknown token
D-ARM D-KAT D-SYC D-ARM D-KAT D-SYC D-ARM D-KAT D-SYC

accuracy 0.9044 0.9628 0.8817 0.8620 0.8235 0.8460 0.6864 0.8220 0.6274
precision 0.6630 0.784 0.6211 0.4411 0.4261 0.6106 0.5074 0.6775 0.4112
recall 0.6711 0.7761 0.6215 0.5211 0.4928 0.6591 0.5118 0.6702 0.4072
f1-score 0.6670 0.7800 0.6213 0.4778 0.4570 0.6339 0.5096 0.6738 0.4092

Table 2: 1. Best scores for the training step of the lemmatizer on D-HYE, D-KAT and D-SYC; 2. Evaluation of the
lemmatizer on the D-HYE, D-KAT and D-SYC Test datasets

bidirectional RNN). PIE enables, in particular, to process
ambiguous or unknown forms by integrating contextual in-
formation, and to increase accuracy of the lemmatizer and
the POS-tagger (Egen et al., 2016). Even though PIE allows
simultaneous annotation of lemmata and POS, we have de-
cided here to conduct the tasks independently. We use the
default hyper parameters proposed by Manjavacas and ap-
plied on twenty different corpora from UD, without tailor-
ing them in any way to the dataset under consideration5.
For the lemmatization task, we have followed the default
structure provided by PIE. We are working at the char level,
and we include the sentence context. We use an attention
encoder-decoder.
For the POS-tagging task, we have compared the Con-
ditional Random Field (CRF) provided by LEMMING
(Müller et al., 2015) and the linear decoder implemented
in PIE.
We have divided D-HYE, D-KAT and D-SYC into three
sets: Train (80% of data), Validation (10%) and Test
(10%). The distribution was implemented automatically
on a sentence basis.

Results on lemmatization

The results achieved are consistent with the representative-
ness and the size of the corpora studied, and the results pro-
vided by Manjavacas on similar datasets (see infra 5. Per-
spectives). D-HYE is the most homogenous dataset, de-
spite the numerous unique toponyms. Thus, there is lit-
tle variation regarding vocabulary and expressions, which
is why we achieve a very good accuracy during training,
almost as good as with D-KAT, but for a corpus twice as
small. By contrast, D-SYC is more representative of all the
language state of Syriac.
The results on ambiguous and unknown tokens are quite
low, however they make it possible to already process au-
tomatically a larger number of cases.

5The hyperparameters we used are: batch size: 25; epochs:
100; dropout: 0.25; optimizer: Adam; patience: 3; learning rate:
0.001; learning rate factor: 0.75; learning rate patience: 2.

The train set for Armenian contains 17% of unknown to-
kens, due to the high proportion of proper nouns from GMI,
whereas the proportion of unknown tokens is 14% in Geor-
gian and 20% in Syriac, the latter being penalized twice, by
its size and this proportion of unknown tokens. The confu-
sion matrix reveals that mistakes are concentrated on homo-
graphic lemmata (e.g. mayr (mother) and mayr (cedrus)).
Besides, these languages exhibit numerous polylexical
forms: these are similar in form but they differ in their
analysis. We had identified the homographs beforehand,
in order to disambiguate them (e.g. իւր (իւրոց) and
իւր (իւրեանց)), but the lack of data results in a more
complex task for the network. Besides, 50% of mistakes
are localized on polylexical forms, such as demonstrative
pronouns or prepositions. This is made clear in table 4,
where no pronoun has been predicted. The same applies
for the task of POS-tagging.

Results on POS-tagging (crf / linear)

The Linear Decoder achieves better results for the task of
POS-tagging, except for the task of tagging ambiguous and
unknown tokens during training. Nevertheless, the lin-
ear decoder remains better than the CRF decoder (LEM-
MING) on the test datasets, except for unknow tokens in
Old Georgian and Syriac. The issue of the ambiguous to-
kens is the same as for the task of lemmatization. The confu-
sion matrix for D-HYE shows that mistakes are essentially
concentrated on common nouns (21%, generally predicted
as verbs) and verbs (12%, generally predicted as common
nouns). Vocalic alternation in Classical Armenian appears
to create ambiguities between declined and conjugated to-
kens.
As regards D-KAT, mistakes are essentially concentrated
on common nouns (30%) and V+Mas (12%)6, which are
generally confused with each other.
In D-SYC, mistakes are more diversified: adjectives
(11%), tokens composed by a particle followed by a name

6The tag “V+Mas” (“Masdar Verb”) is used for Georgian In-
finitives corresponding to the conjugated verbs.
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Train All token Ambiguous token Unknown token
D-ARM D-KAT D-SYC D-ARM D-KAT D-SYC D-ARM D-KAT D-SYC

accuracy 0.9403
0.9485

0.9773
0.9769

0.9203
0.9126

0.9418
0.9435

0.9452
0.9424

0.9330
0.9088

0.7794
0.6594

0.8923
0.8854

0.6970
0.6594

precision 0.7704
0.7725

0.7057
0.6993

0.6424
0.6612

0.7473
0.7528

0.7771
0.7390

0.8011
0.7151

0.4207
0.4159

0.4417
0.3935

0.4369
0.4159

recall 0.7242
0.7408

0.6536
0.6733

0.6133
0.6456

0.7417
0.7215

0.7284
0.6938

0.8026
0.7445

0.4100
0.4029

0.4504
0.3764

0.4047
0.4029

f1-score 0.7466
0.7563

0.6787
0.6861

0.6275
0.6533

0.7445
0.7368

0.7520
0.7157

0.8018
0.7295

0.4153
0.4093

0.4460
0.3848

0.4202
0.4093

Test All token Ambiguous token Unknown token
D-ARM D-KAT D-SYC D-ARM D-KAT D-SYC D-ARM D-KAT D-SYC

accuracy 0.9238 0.9718 0.8813 0.9145 0.8694 0.8775 0.7441 0.8632
0.8647*

0.6067
0.6463*

precision 0.6513 0.7604 0.5832 0.6306 0.5790 0.6516 0.2920 0.4215
0.4550*

0.3128
0.3433*

recall 0.6264 0.6979 0.5725 0.6501 0.5847 0.6884 0.3124 0.3991
0.4146*

0.3431
0.3495*

f1-score 0.6386 0.7278 0.5778 0.6402 0.5818 0.6695 0.3019 0.4100
0.4339*

0.3273
0.3464*

Table 3: 1. Best scores for the training step of the POS-tagger on D-HYE, D-KAT and D-SYC with a CRF decoder (a) and
a Linear Decoder (b); 2. Evaluation of the POS-tagger (linear decoder) on the D-HYE, D-KAT and D-SYC Test datasets.
For the “unknown token” on D-KAT and D-SYC, the CRF decoder (LEMMING) gives better results (displayed in the
table*)

token lemma GP lemma pred. POS GP POS pred. Morph. GP
շինեցաւ
šinec‘aw

շինեմ
šinem

շինեմ
šinem V V BÎJ3s

տաճարս
tačars

տաճար@ս
tačar@s

տաճար
tačar N+Com@PRO+Dem N+Com Ns@ø

սուրբ
surb

սուրբ
surb

սուրբ
surb A A Ns

փրկչին
p‘rkč‘in

փրկիչ@ն
p‘rkič‘@n

փրկիչ
p‘rkič‘ N+Com@PRO+Dem N+Com Gs@ø

և
ew

և
ew

և
ew I+Conj I+Conj ø

անապատս
anapats

անապատ@ս
anapat@s

անապատ
anapat A@PRO+Dem A Ns@ø

հրամանաւ
hramanaw

հրաման
hraman

հրաման
hraman N+Com N+Com Hs

և
ew

և
ew

և
ew I+Conj I+Conj ø

ծախիւք
caxiwk‘

ծախ
cax

ծախ
cax N+Com N+Com Hp

թագաւորահաւրն
t‘agaworahawrn

թագաւորահայր@ն
t‘agaworahayr@n

թագաւորահայր
t‘agaworahayr N+Com@PRO+Dem N+Com Gs@ø

կոստանդեայ
kostandeay

կոստանդին
kostandin

կոստանդեայ
kostandeay N+Ant N+Ant Gs

Table 4: Results of lemmatization and POS-tagging on a sentence from the Inscription of the Regent Constantine of Papeṙōn
and comparison with expected values manually proofread by GP

(9%), verbs (6%) and proper nouns (6%). At the moment,
tokens consisting of polylexical forms are the main cause
for such results (e.g. table 4).
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5. Perspectives
The problems affecting our results are due to two challenges
posed by the structure and the source of our data. Firstly,
the amount of data remains too small to ensure represen-
tativeness of the described languages. Secondly, the large
number of polylexical tokens makes processing more chal-
lenging. We intend to integrate the OCR developed by Calfa
for Syriac, Old Georgian and Classical Armenian with our
process, in order to increase drastically our datasets. These
data will be manually proofread and pre-tagged by the pre-
vious models for training.
As regards Classical Armenian, we intend to combine the
data of the NBHL on Calfa — composed in particular
of more than 1.3 million tokens (190.000 of which are
unique) and representative of the Armenian literary produc-
tion (compilation of several hundreds of classical and me-
dieval sources) — and lemmatized forms from the Gospels.
The NBHL has already been lemmatized and the proofread-
ing is being finalized (Vidal-Gorène et al., 2019; Vidal-
Gorène and Decours-Perez, 2020). Calfa also offers a
database of more than 65.000 headwords for Classical Ar-
menian and has generated a very large number of verbal and
noun forms that will be integrated into the training. Fur-
thermore, the GP is now producing a digital corpus of all
the Armenian, Georgian and Syriac texts published in the
Corpus Scriptorum Christianorum Orientalium series.
The results presented here are a first step in the development
of a lemmatizer and a POS-tagger for these languages. In
particular, we only provide the results of one single neu-
ral network, but we intend to conduct a comparison with
state-of-the-art technologies and rule-based approches, and
to include contextual tagging at the morphological level.
We already reach a mean accuracy of 91,63% in lemmati-
zation (84,28% for ambiguous tokens and 71,93% for un-
known tokens), and of 92,56% in POS-tagging (88,71% for
ambiguous tokens and 75,17% for unknown tokens). Nev-
ertheless, these results are not robust on a wide variety of
texts: resolving issue constitutes the chief objective of our
upcoming experiments.
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Abstract
Traditionally, historical phonologists have relied on tedious manual derivations to calibrate the sequences of sound changes that shaped
the phonological evolution of languages. However, humans are prone to errors, and cannot track thousands of parallel word derivations in
any efficient manner. We propose to instead automatically derive each lexical item in parallel, and we demonstrate forward reconstruction
as both a computational task with metrics to optimize, and as an empirical tool for inquiry. For this end we present DiaSim, a user-facing
application that simulates “cascades” of diachronic developments over a language’s lexicon and provides diagnostics for “debugging”
those cascades. We test our methodology on a Latin-to-French reflex prediction task, using a newly compiled dataset FLLex with
1368 paired Latin/French forms. We also present, FLLAPS, which maps 310 Latin reflexes through five stages until Modern French,
derived from Pope (1934)’s sound tables. Our publicly available rule cascades include the baselines BaseCLEF and BaseCLEF*,
representing the received view of Latin to French development, and DiaCLEF, build by incremental corrections to BaseCLEF aided by
DiaSim’s diagnostics. DiaCLEF vastly outperforms the baselines, improving final accuracy on FLLex from 3.2%to 84.9%, and similar
improvements across FLLAPS’ stages. .

Keywords: diachronic phonology, computerized forward simulation, regular sound change, Romance linguistics, French, Latin,
DiaSim

1. Introduction
When reconstructing the phonological history of a lan-
guage, linguists usually operate under the Neogrammarian
assumption that sound change operates on an input defined
by its phonetic characteristics, can be conditioned based
on its phonetic context, and results in a predictable out-
put, with no exceptions (excluding non-phonologically mo-
tivated phenomena such as analogy, homophony avoidance,
hyper correction, et cetera). This paradigm operationalizes
sound change as a classical function: an input maps to a
unique output. Aggregated, the ordered sequence (“cas-
cade”) of these sound change functions forms an algorithm.
Such an algorithmic phenomenon naturally lends itself to
automated simulation. There are ample theoretical under-
pinnings for using simulations – or computerized forward
reconstruction (Sims-Williams, 2018) (CFR) – to test the
accuracy of the cascade implied by any given understanding
of a language’s phonological history. However, for reasons
discussed in depth in 1.2., it failed to achieve widespread us-
age. Instead, current work has tended to analyse at high res-
olution the specifics of certain types of sound changes cross-
linguistically, and rarely explicitly and holistically tackles
how they fit together in the whole of any one language’s
phonological history. To verify our understanding of that
latter “bigger picture”, the diachronic phonologist would
have to either write or memorize the effects of thousands of
rules operating over millennia, mapping the forms of thou-
sands of reflexes. No wonder, then, that current work prefers
to “zoom in” on one phenomenon.
These typological discussions are greatly useful, but must
remain grounded by understanding the histories of the lan-
guages in question. The phonological histories of the ma-
jority of the world’s languages, which likely will not sur-
vive the next century, remain mysterious, and work on them
would certainly be more efficient if aided by computers.

While it could take months for a human to map thousands
of etyma across millennia, a computer can do so in seconds.
CFR furthermore greatly facilitates thorough coverage of
the lexicon. Building on the example of earlier now aban-
doned projects discussed in section 1.2., we present DiaSim,
a generalizable transparent forward reconstruction applica-
tion which offers various diagnostic capabilities, hoping to
improve the present situation.
We present our work in using DiaSim to “debug” the re-
ceived understanding of French phonological history, as
represented by Pope (1934). We additionally present our
newly compiled datasets FLLex and FLLAPs (described in
5.), with which we demonstrate the utility of CFR using
DiaSim. We present results on the measured performance
of baseline (derived from Pope (1934)) rule cascades Base-
CLEF and BaseCLEF*, and the “debugged” cascade Dia-
CLEF. While the baseline model was 3.2%accuracy (with-
out “uninteresting errors”, 30.3%), the corrected ruleset
achieved 84.9%accuracy, with the biggest improvement ob-
served in the (largely unattested) Gallo-Roman stage, as dis-
cussed at length in section 7..
All of these resources are made publicly available for use,
at the DiaSim github repo.

1.1. Related Work
1.1.1. French Phonological History
Romance philology is typically considered founded by
François-Juste Raynouard (Posner, 1996, p. 3), and formal-
ized by Diefenbach (1831) and Diez (1836), followed by a
work on work on French propelled by Neogrammarianism
(Thurot, 1881; Meyer-Lübke, 1899; Suchier, 1893; Mar-
chot, 1901; Nyrop, 1914); foundational early 20th century
work includes Fouché (1961), Martinet (1970), Brunot and
Charlier (1927), and, of course, Pope (1934). Of the exten-
sive subsequent work, we specifically note Adams (2007)’s
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work on regional (“Popular”) Latin inscriptions, work on
French historical sociolinguistics (Lodge, 2013; Lodge and
others, 2004; Lusignan, 1986), French orthographical his-
tory, and “protofrançais” (Noske, 2011; Banniard, 2001).
Traditional methodology balanced Neogrammarian inquiry
with the principle that, as Pope (1934) describes it, “the his-
tory of a language should be related as closely as possible to
the study of texts”. Such methodology often involved trac-
ing changes in spelling as it represented certain sounds and
morphemes (“flexion”) and taking the remarks of histori-
cal writers (especially grammarians) as objective evidence.
We, like other recent researchers (Posner, 2011; Fouché,
1961), take a more sceptical look at these writings, viewing
them not as descriptions of reality but rather prescriptions
for how French subjectively should be pronounced. We of-
fer an alternative to relying on these voices: the empirical
methodology described in section 3..
Since the beginning, work in French diachronic phonology
has functioned more or less to calibrate what is in effect the
diachronic cascade of French, with Pope’s meticulous 1934
opus still considered the “invaluable” (Posner and others,
1997, p. 3) baseline against which new theories in French
are being presented as improving upon (Short, 2013). Our
aim in this work is twofold. Alongside the goal of demon-
strating the power of CFR, we also aim to, like Pope before
us, provide a holistic account of French diachrony. Ulti-
mately, our vision is a publicly available cascade for every
language of interest that may be improved upon whenever a
correction becomes accepted in the field.

1.2. Computerized Forward Reconstruction
Not long after the mid-20th century emergence (Dunn,
2015) of computational historical linguistics (Jäger, 2019)
with the works of scholars like Swadesh and Gleason
(Swadesh, 1952; Gleason, 1959), the first published CFR
(coarsely) derived 650 Russian words from Proto-Indo-
European (Smith, 1969); the next derived Old French from
Latin in 1976 (Burton-Hunter, 1976). Others looked at Me-
dieval Ibero-Romance (Eastlack, 1977), Latin from Proto-
Indo-European (Maniet, 1985), Old Church Slavonic from
PIE (Borin, 1988), Bantu (Hombert et al., 1991), and Pol-
ish from Proto-Slavic (Kondrak, 2002). These systems were
not intended to be generalizable, lacked sufficiently expres-
sive rule formalisms, and used orthography rather than un-
derlying phones (Piwowarczyk, 2016), having “no notion
of phonology” (Kondrak, 2002). Generalizable rule for-
malisms have in fact been presented in related topics, such
as learning synchronic sound rules (Gildea and Jurafsky,
1995).
Phono, a phonologically-motivated and phoneme-mediated
forward reconstruction, appeared in 1996 and was applied
to Spanish and Shawnee (Hartman, 2003; Muzaffar, 1997),
but as far as we know, no further work using Phono was
published. Despite computational modeling seeing an “ex-
plosion”1 in other diachronic fields (Dunn, 2015) alongside
rapid improvements in computing, CFR fell out of fashion
by the late 20th century (Lowe and Mazaudon, 1994), and

1Including analogous work in closely related topics, such as
learning FST-based synchronic sound rules (Gildea and Jurafsky,
1995)

old CFR systems are now incompatible with modern com-
puters (Kondrak, 2002), Reasons for this decline are var-
ied, including dissent Neogrammarianism, and an unfor-
tunate association with supposedly “unprofessional” enter-
prises (Sims-Williams, 2018).

2. Contributions
We aim to show that a sufficiently generalizable CFR sys-
tem is a useful and professional research tool for diachronic
phonology. It is recognized (Sims-Williams, 2018) that hu-
man cognition simply has insufficient working memory to
track all the (likely millions of) implied calculations while
mapping sound rule functions spanning centuries or mil-
lennia across a language’s entire inherited lexicon. Ensur-
ing the accuracy of the tedious human calculations in this
scenario is itself extremely onerous and error-prone. On
the other hand, the task is trivial for a computer. Informa-
tion attained in this much more efficient and rigorous man-
ner can then be leveraged to improve our diachronic under-
standing of the languages in question, revealing new sound
laws and analogical patterns, refining existing ones, and re-
vealing new reflexes and cognates, all while ensuring holis-
tic coverage rather than cherry-picking for validation. This
improved efficiency and rigor could be crucial for advanc-
ing our critical understanding for less well studied and es-
pecially endangered language families — especially where
phylogeny, which often relies on diachronic phonology, is
concerned.
This paper contributes the following:

• DiaSim, an application that performs transparent2
CFR for rule cascades over any lexicon, offering ac-
curacy metrics and a diagnostics for analysis

• FLLex, a dataset pairing 1368 Latin etyma with their
known (“gold”) inherited French reflexes.

• FLLAPS, a dataset mapping gold reflexes of 310 Latin
etyma across five attested stages

• Two cascades based on the received understanding of
Latin > French sound change, and a “debugged” cas-
cade built using DiaSim with PATCH

• PATCH, a guideline for using CFR for inquiry

3. PATCH
We recommend PATCH as an empirically sound way to uti-
lize CFR for scientific inquiry in “debugging” rule cascades.
PATCH is described in the following prose, and summa-
rized in figure 1.
The baseline cascade ideally should reflect the latest avail-
able, but conservative, “least common denominator” for
which there is consensus. For French, such a baseline is
easily identifiable — and explicitly used as such still in cur-
rent research (Short, 2013) — as Pope (1934). In this way,
our inquiry can independently support or challenge findings
in subsequent literature.
PATCH is then performed on the “working cascade”, which
starts out as a copy of the baseline before it is progressively

2See section 4.1.
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Figure 1: The PATCH process, summarized.

1. “Debug” the working cascade3 by repeating the fol-
lowing steps:

(a) (P)inpoint – Isolate a source of error
(b) (A)mend – Try various solutions; choose the

one with the best accuracy, preferring simplicity
where there are statistical ties

(c) (T)est – is the selection justifiable?
i. If a new sound change is being added,

preferably ensure that it can be motivated
typologically/theoretically

ii. Ensure there are no adverse side effects
iii. Consult any relevant existing work, and rel-

evant data as appropriate: philology, di-
alectology, loans, etc.

(d) CHoose – If the proposal remains plausible,
commit it to the working cascade. Otherwise re-
calibrate it, or redact it entirely.

modified. We hold that when using CFR, a linguist should
initially make fixes based solely on Neogrammarian empiri-
cism, not prior knowledge (neither topical nor typological).
Thus the Pinpoint stage is performed “blind” regarding any
information not drawn from CFR results. Automated statis-
tical assistance such as DiaSim’s diagnostics is often useful
to pinpoint the source of error.
One likewise performs the second stage (Amend) “blinded”
of outside info: the researcher comes up with all reason-
able possible solutions to the problem identified in Pinpoint,
implements them on the working cascade, and records the
effects on performance. Of these, (s)he chooses the one
with the best performance; in cases where there is no sig-
nificant difference in performance, choose the fix that is the
“simplest”. By “simplicity”, we do not necessarily mean
“the least rules possible and the least specifications on each
rule”, although in practice the two are often similar. In-
stead, “simplicity” here refers to the simplest possible way
to explain the data. These are different, because leaving nu-
merous lexemes with plausibly related developments unex-
plained by any single rule is to be considered simpler only
if we have a “simple” and ideally single explanation, such
as systematic analogy, interference, or identifiable sociolin-
guistic effects. On the other hand, leaving them with no ex-
planation at all implies a “default” that they each have lexi-
cally explanations – which is the exact opposite of “simplic-
ity”, and to be avoided4. Then, implement the chosen “fix”
by amending the cascade at the proper point.
It is only in the third stage, Test, that outside info is weighed
against other factors, before a binding decision is made in
the final stage Choose, to either enshrine the solution in the
working cascade, enshrine a modified version, or redact it

4We except from this cases that are known to be predictably
lexically specific: homophony avoidance, onomatopoeia, and
spelling pronunciations.

entirely. Then, to find more fixes, the linguist iteratively
repeats this process.
We tried our best to follow PATCH building DiaCLEF.
However, we do not advocate brittle literal adherence to
PATCH, but rather suggest it as a guideline; we additionally
suggest some specific exceptions to its use. Firstly, at the
end of the Choose stage, if other fixes become clear with the
synthesis of data from the simulation and from other sources
(such as dated attested forms), they can also be fixed at the
time, as long as there is (a) robust corroboration in coverage,
and (b) no adverse side effects when checked with the entire
dataset. Secondly, fixing baseline rules so that they obtain
their stated intended effects when otherwise they clearly do
not 5 is exempt from PATCH. Lastly, fixing rules that have
already been changed (or moved), or have been created anew
by prior iterations of PATCH can be done without the entire
process, because this is really a revision of the re-calibration
aspect of Choose.

4. DiaSim
4.1. Transparent Large-Scale Cascade

Simulation
DiaSim transparently simulates a specified rule cascade for
every lexeme in parallel. The user must input at minimum
(1) a lexicon file, and (2) a cascade. The lexicon file includes
the input forms to forward reconstruction, and optionally
gold reflex forms for the final or intermediate results of CFR.
Each rule in the cascade is written in the conventional SPE
format (Chomsky and Halle, 1968). DiaSim implements the
subset of the SPE rule formalism that (Johnson, 1972) and
(Kaplan and Kay, 1981) showed to be formally equivalent
to finite state transducers (FSTs), while enabling users to ex-
plicitly modify sound laws in terms of conventional notation
rather than computer code6.
DiaSim can capture any and all regular relations between
strings in the specified symbol alphabet, whether that alpha-
bet is the provided IPA default, or another supplied by the
user. In between rules, the user may flag a stage, at which
the simulation state can be stored and retrieved. Flagged
stages may also be used as pivots during evaluation to help
detect long-distance interactions between rules.
Being able to observe the iterative realization of cascade
transparently (effects of each rule being “visible”) is quite
useful for illuminating relationships between involved pro-
cesses. One can see how the preconditions for later rules
may emerge, or be perturbed, or how they fail to do so
when expected. For such “transparency”, DiaSim can re-
trieve each time an etyma was changed (shown in figure 2),
its new form and by what rule, or all effects of any rule.

5I.e. the baseline source states one outcome but the rule for-
malism does not produce it. When using DiaSim, a quick way to
check this is to check the printouts of etymon-wise transparent
mutations for the sound change in question.

6DiaSim’s sound rule “grammar” handles all IPA except for
clicks and tones, can support all SPE notations including com-
plicated alpha functions, disjunction, and nested parenthetical op-
tional segments, and adds “@” for “any single phone” (anything
but the word bound #).
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Figure 2: Derivation of menace (< Latin MINACIA).

Figure 3: A context autopsy, one of DiaSim’s diagnostics.
Here the error is likely related to following /t͡s/.

4.2. Performance Metrics
For either the entire lexicon or a chosen subset, DiaSim can
supply the word-wise accuracy, the accuracy within one or
two phones, the word-wise average Levenshtein distance
between result and gold form (normalized for gold length,
hence forth mPED7), and the word-wise average length-
normalized feature edit distance (Mortensen et al., 2016;
Kondrak, 2003) (mFED) between result and gold forms. Fu-
ture work should incorporate a measure of implied complex-
ity8.
These metrics offer different information. Accuracy indi-
cates how much of the lexicon the rule cascade renders cor-
rect. On the other hand, mPED gives how wrong we are
if we treat phones as discrete tokens, whereas mFED indi-
cates mean phonetic result/gold distance between in terms
of phone-wise feature vector distance — on average, how
different is each wrong phone from the correct one?

4.3. Diagnostics
Aside from failure to consider how the rule cascade could
affect every word in the lexicon, significant sources of er-
ror could be missed, especially where rules interact, given
the multiplicity of all the factors at play. Additionally, what
is actually observed as one relatively acute error could ac-
tually be a sign of a much larger pattern of errors. To help
overcome these factors, DiaSim offers a suite of diagnostics.
If interactive mode is flagged at command line, at the end
of the simulation, and also any flagged gold stage, DiaSim
halts, gives basic performance metrics, and queries if the
user would like to run any diagnostic options. These diag-
nostics, including correlation of error with the presence of
segments at the same or different stages (the “context au-
topsy” diagnostic presented in 3 being an example), iden-
tification of particularly common correspondences between
errant and gold phones, among others, are enumerated in
more detail in the diagnostics README contained in the
package.

7(m)ean (P)honeme (E)dit (D)istance
8Considering the explicit cascade and the “implicit” complex-

ity of exception cases made for words considered non-regular and
thus excluded from calculation of all (other) provided metrics

Wherever phone-wise errors is involved, an alignment algo-
rithm based on minimizing feature edit distance (Mortensen
et al., 2016) measures phone-wise error. DiaSim’s diag-
nostics aims to help pinpoint where in the sequence of re-
alized shifts the critical error occurred. For example, the
final stage error correlated to a particular phone measures
how much error arises from failure to properly generate it
or its effects on neighbors. The same statistic observed for
an earlier pivot stage would instead indicate how much inac-
curacy comes from errant handling of its future reflexes and
their behavior. Meanwhile, error correlated with the result-
ing phone for an earlier “pivot” stage could instead reveal
the degree of error propagation caused by errant generation
of the said phone at the pivot stage. Likewise, when analyz-
ing specific errors between the gold and the result, DiaSim
can pinpoint for the user if the type of error happens to be
particularly common in certain contexts.
These sorts of diagnostics can be useful for identifying the
regularity of the contexts of a phenomenon that may have
otherwise appeared sporadic or inexplicable. Given that Di-
aSim, unlike previous models, is explicitly modeled using
phonological features, it is well-equipped to identify phono-
logical regularity that humans could easily miss. For exam-
ple, the traditional paradigm for French (Pope, 1934) holds
that the voicing of Latin initial /k/ to Gallo-Roman /ɡ/ was
simply sporadic, but as we demonstrate in section 7.1., we
were able to detect a plausible new regular rule to explain
them collectively.

4.4. Theoretical Grounding
DiaSim was constructed to be faithful to longstanding the-
ory while maintaining flexibility. It is built on the premise
that words consist of token instances of a bounded set
of phone types (alongside juncture phonemes), and that
phones are uniquely defined by value vectors for each of
a constant feature set (Chomsky and Halle, 1968; Hall,
2007; Hock, 2009). Each feature can be assigned one of
three values : positive (+), negative (-) or unspecified (0).
Which features are relevant for phonemic distinctions vary
by language. DiaSim allows the user to use a custom set
of feature-defined phones and/or of phone-defining features,
while providing holistic default sets for each.

5. Datasets
The dataset FLLex9 consists of 1368 Latin etyma paired
with their inherited modern French reflexes. These include
all 1061 inherited etyma in French (excluding some verb
forms) that are used in Pope (1934), as well as 307 etyma
recruited from Rey (2013) and from the online French philo-
logical resource, Trésor de la Langue Française informatisé
(TLFi) ATILF (2019a).
For inclusion, lexemes had to have been in continuous usage
throughout the relevant sixteen centuries. Words affected by
non-phonologically motivated phenomena such as analogy,
folk etymology, etc were excluded, but words with apparent
irregularity that could not be attributed to such processes
(such as cases of sporadic metathesis) remained included.
Each entry was checked with multiple sources (Pope, 1934;
Rey, 2013; ATILF, 2019a) to ensure it was indeed an etymon

9(F)rench from (L)atin (Lex)icon
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with continuous usage from Latin to French, unaffected by
non-phonologically motivated interference.
The period-indexed dataset FLLAPS10 is recruited from
Pope (1934)’s sound tables. FLLAPS has an intentional de-
gree of balance in phonological coverage, as Pope designed
her sound tables to have at least one etymon that was af-
fected by each notable sound change (FLLex, meanwhile,
is more proportionally representative of the overall phone-
mic frequencies of the French language). FLLAPS offers
gold forms derived from Pope’s philological work for each
of the four intermediate stages, including Late Latin in Gal-
lia (dated to circa 400 CE), Old French I ( EOFdate), Old
French II (circa 1325 CE), and Middle French (circa 1550
CE). A few corrections were made in order to adapt the set
for this task. For example, as Pope did not foresee this use
of her work, she sometimes omits finer distinctions (such
as lax/tense distinctions). When these concern segments
that are not of interest to the specific sound changes being
demonstrated, the sound changes described elsewhere in her
work for the period in question were regularly applied and
consistency enforced.

6. Rule cascades
In order to demonstrate both how DiaSim simulates long-
term and holistic Neogrammarian sound change, we de-
signed our baseline cascade, BaseCLEF 11 to include all
regular sound changes posited in (Pope, 1934), which repre-
sents the received view of French phonological history, and
remains the “indispensible”(Short, 2013) work that others
in the field build off of. The DiaCLEF12 cascade was then
built from a copy of BaseCLEF by exhaustively correcting
non-sporadic errors detected using DiaSim’s simulation and
evaluation functionalities.
We built BaseCLEF to include all regular sound changes
posited in (Pope, 1934), in the order specified. Where
Pope’s writing is ambiguous, the benefit of the doubt is
given as a general policy (that is, we assume the reading
that gives the correct output). There are numerous cases
where literal interpretation of Pope’s treatise leads to “non-
interesting” errors, mere omissions and the like because at
the time of writing were not essential, perhaps because Pope
didn’t foresee her work being converted into an explicit rule
cascade. For example, Pope states that modern French lacks
any phonemic length differences, but never states when it
was lost. To handle this, we made an additional ruleset,
BaseCLEF*, where these trivial omissions are corrected.

7. Results
As seen in table 1, the increase in accuracy obtained by “de-
bugging” via DiaSim is striking, with raw accuracy going
from 3.2%to 84.9%. The improvement in average feature
edit distance, a decrease from 0.518to 0.056, is also large,
even when we consider the baseline to be BaseCLEFstar
(with “uninteresting” errors already corrected as discussed
in section 6.), with 30.3%accuracy and 0.380mean FED.

10(F)rench from (L)atin (L)exicon by (A)ttested (P)eriod
(S)ublexica

11Baseline Classical Latin Etyma to French
12DiaSim-informed Classical Latin Etyma to French

Figure 4: Breakdown of “fixes” in DiaCLEF

Figure 5: Differences between different periods in number
and type of edits made to the cascade

In table 4, we see a breakdown of the sorts the corrections
that were done for DiaCLEF (excluding those also handled
in BaseCLEF*). The more radical sorts of changes include
rule deletion, rule creation, and re-orderings, constituted
48.7% of changes, leaving the rest to less radical amend-
ments such as extension of acknowledged phenomena, re-
calibration of rule contexts, and mergers and splits of exist-
ing rules.

As displayed in figure 5, the biggest volume of changes oc-
cur in the Gallo-Roman and Old French periods. There were
notable differences with regard to where changes that fun-
damentally challenge Pope’s understanding of French di-
achronology led to meaningful improvements. This is also
true of re-orderings, which are broken down by period and
type in figure 6. On the other hand, few changes were nec-
essary for the transition from Classical Latin to Late Latin,
and even fewer were necessary for early modern French.

This should come as no surprise. The Gallo-Roman pe-
riod (except in its very latest stages) is by far the least well-
attested – and therefore, the most like what we would be
dealing with if we were working with an understudied in-
digenous language.

Many of these new insights are discussed at length in (Marr
and Mortensen, 2020); we present just one here at length in
section 7.1. to demonstrate the empirical use of CFR with
PATCH.
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Table 1: Performance on FLLex
Metric BaseCLEF BaseCLEF* DiaCLEF
Accuracy 3.2% 30.3% 84.9%
Accuracy within 1 phone 26.3% 55.7% 94.8%
Accuracy within 2 phones 56.7% 79.9% 99.1%
Avg Normalized Levenshtein Edit Distance 0.518 0.380 0.056
Avg Normalized Feature Edit Distance 0.673 0.392 0.061

Figure 6: Corrections of ordering by period.

Figure 7: DiaSim’s Confusion Prognosis

7.1. Regular Explanation for “Sporadic” Onset
/k/ Voicing

We use the simple yet striking example of the plausible
regularity of Early Old French initial velar stop voicing to
demonstrate the use of CFR with PATCH to propose and
validate new rules. In this case, we are unable to find any
work in the past century and a half of research that treats this
plausible regularity as a unified phenomenon, instead giving
a number of unrelated explanations for affected etyma.
We begin our investigation ( Find in PATCH) with DiaSim’s
Confusion Prognosis (figure 7). In the top left, we see the
phones which have the highest ratio of occurrence in error
cases to correct cases, and in top right we see the overall
prevalence in error cases. In the bottom part of the Con-
fusion Prognosis, the most significant correspondences be-
tween specific errant and gold phones (“distortions”) are
displayed.13

13These calculations are done on the back of an alignment algo-

Here, the most problematic distortion is /k/:/ɡ/, where we
find /k/ for what should be /ɡ/, comprising 8% of all er-
rors. Furthermore, /k/ is the phone most correlated with
error. 100% of /k/:/ɡ/ distortions occur immediately after
the word onset, 86% of cases have the uvular fricative /ʁ/
immediately after, and for 71% of cases, the next phone is
/ɑ/. This suggests to the linguist that behind this error, a
regular rule may be hiding, and those statistics give an idea
of what its conditioning context likely is.
Clearly we are dealing with a case of onset voicing. French
fricative /ʁ/ reflects historic sonorant /r/, which is signif-
icant, as French lenition likewise happened regularly in
Gallo-Roman intervocalic consonant + sonorant clusters.
However, because we are consciously choosing to ignore
what we think we know about French (per PATCH), we ig-
nore this fact at this point so as not to bias our search, and
as seen we will end condition our rule not on specifically
sonorant consonants but instead simply on consonants.
This suggests that an onset velar voicing happened at some
point in the history of French, but we don’t know when. We
next aim to isolate the problem by filtering out “noise”, iden-
tified with the help of our statistics, to get a “noise”-less
subset. In our case, we set the focus point14 as the input
form from Classical Latin, and use a filter sequence “# k @
[+lo]”15.
The user can then access a list of the resulting subset’s er-
rors, which include (with correct forms second) /kle/:/glɛv/,
/klɑ/:/ɡlɑ/, /kʁɑs/:/ɡʁɑs/, /kʁaj/:/ɡʁij/, and so on. Viewing
this list, it is apparent that /k/ in all the error cases lies be-
tween the word onset and a consonant. We no longer have
to rely on prior knowledge because all the words which end
up with uvular /ʁ/ still have alveolar /r/ at our focus point.
However, because we never observe a non-sonorant conso-
nant having a different effect, we continue to condition our
rule on consonants, not sonorants, because we seek the least
specific rule possible. If we assert a low vowel after the on-
set cluster, we perfectly predict the /k/:/ɡ/ distortion, with
one exception16.
The subset of data filtered for etyma with the Latin sequence
“# k [+cons] [+lo]” has well under 50% accuracy. Examin-
ing the specific non-error cases among this subset, they all
have changed the original a into a non-low vowel, and in all
of these cases, the a had primary stress and was in an open
syllable. The same is true of only one of the error cases17.

rithm that aligns phones so as to minimize Feature Edit Distance
(Mortensen et al., 2016).

14The time step at which a subset is made using the filter se-
quence

15onset k, any single phone (“@”), then a low vowel
16The ⟨clef ⟩/⟨clé⟩ doublet, reflexes of clāvem, with a low vowel
17namely, ⟨glaive⟩, whose exact history is unclear
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Figure 8: Derivation of clāram >⋅ ⋅ ⋅>⟨claire⟩.

Figure 9: We isolate our error by setting our focus point
right after the last bleeding rule, to find a subset with zero
accuracy.

This pattern points us toward our next objective — to pro-
pose a solution (Amend in PATCH). Now that we have deter-
mined our rule’s conditioning, we want to pin down where it
should be placed in the cascade. To locate when the vocalic
changes that bled (Kiparsky and Good, 1968) our proposed
rule occurred, we examine the derivations of affected cases.
In the derivation for clāram >⋅ ⋅ ⋅>⟨claire⟩ (figure 8) we
see the bleeding rule at rule 554: /ae/̯ > /eː. This explains
not only why we have ⟨claire⟩ and not ⟨glaire⟩, but also the
cases of of clārum and clāvem. The printout derivation
of clāvum >⋅ ⋅ ⋅>⟨clou⟩ likewise reveals an earlier bleeding
effect as /aw/ passed to /�w/. Our proposed rule must thus
be placed after these bleeding rules.
Now that we have a proposed rule, its conditioning, and its
relative date, we must next justify it (Test in PATCH). First,
we want to make sure that this is really what the data sup-
ports.
As demonstrated in figure 9, in DiaSim we do this by setting
our focus point to time step 555, to exclude the words af-
fected by bleeding rules. As expected, our accuracy on that
subset is zero. Now that we have zeroed in on the source of
error, and inserted a corrective rule (figure 2) at a specified
time, the proposal will be validated if our accuracy dramat-
ically improves.

(2) k > ɡ / # __ [+cons] [+lo]
Surely enough, we achieve perfect accuracy for all etyma in
the subset except one.18

Since we have added a new rule, per PATCH we also justify
it. It is easy to see this phenomenon in the context of ear-

18The exception is crātīculam > ⟨grille⟩, due to irregular hia-
tus behavior after the loss of the interdental fricative /ð/, reflex of
/t/. The only other words with EOF sequence /ˌaðˈi/ show different
but also irregular behavior. See also cladēbon >⋅ ⋅ ⋅>⟨glaive⟩ and
trāditor >⋅ ⋅ ⋅>⟨traitre⟩, which are similarly nearby a vanishing
/ð/, and also display irregularity. These suggest there something
else to fix, not that our otherwise well corroborated proposal is
wrong.

lier lenition processes in French, as well as most Western
Romance and British Celtic languages, whereby stops that
were either intervocalic or in an intervocalic stop + sono-
rant cluster were voiced, often as a precursor to spiranti-
zation. Although in French, the process ceased being pro-
ductive without diachronic affects on onset consonants, in
both Ibero-Romance and Insular Celtic, it continues to op-
erate across word boundaries (Martinet, 1952); the general
tendency toward weak word boundaries is known in French
is well known, and is realized in sandhi phenomena such
as liaison (Cerquiglini, 2018). At the same time, our pro-
posed rule is dated right around the time that the deletion
of final consonants was beginning, meaning that many on-
set clusters would newly become intervocalic where previ-
ously they weren’t.19 There is evidence suggesting a related
synchronic phenomenon that was once broader in coverage,
such as attested k > g substitution in initial /klo-/ (Pope,
1934, p. 96).
It is at this point that one consults other relevant lexical
data to corroborate their simulation-guided proposal. In
this case, we are supported by philological data from the
Old French corpus. Replacement of initial ⟨c⟩ with ⟨g⟩ in
these effected words, is first attested in early 12th century
Old French, which is after both bleeding effects on stressed
/a/.20

Despite this evidence from the early 12th century, the tra-
ditional view in the literature has been that such voicing
was only a sporadic “tendency” that occurred at the Gallo-
Roman stage (Pope, 1934, p. 96). Meanwhile, the involved
words have been assigned a number of unrelated and often
rather convoluted explanations by the scholarship: ⟨glas⟩
alone is said to be affected by “assimilation du c initial à la
consonne sonore suivante” (ATILF, 2019c), while analogy
is proposed for ⟨gras⟩ (ATILF, 2019g), which supposedly
cascaded onto ⟨graisse⟩ (ATILF, 2019d). The explanation
of ⟨glaive⟩ relies on both of two proposed language contact
effects holding true (ATILF, 2019b), while the voicing in
the case of grille is not explained at all. Bourciez (1971,
p. 146) in fact notes a large subset of our filtered set and in-
cludes ⟨gratter⟩, from Frankish ⟨kratton⟩, a relevant lexeme
that agrees with our analysis but was outside our dataset.
But, tantalizingly, he does not investigate an explanation us-
ing regular sound change, instead attributing the case of gras
to analogy from gros, and leaving the others unexplained.
However, the conditioning and timing we found perfectly di-
vides affected words from all other words with an initial /k/
in Latin which were unaffected, except for CAVEŌLA > ge-
ole and Celtic *CAMBITU-, which are separately explained
by Bourciez (1971, p. 134,142) anyways. Furthermore, our
findings were supported by words outside our dataset, such
as ⟨grappe⟩ and ⟨gratter⟩. Thus, for the Choose stage of

19Specific lexemes that tend to precede nouns are especially rel-
evant here: the conjunction et (</eθ/), the prepositions ⟨à⟩ ( <
/aθ/), the articles ⟨ce⟩ (< ⟨cel⟩), ⟨ceci⟩ and ⟨ci⟩ (< /t͡six/), and ⟨cela⟩
(ce + là < /lax/).

20The reflex of Latin crassia is still attested as ⟨craisse⟩ in 1100
but is attested as ⟨graisse⟩ in 1150 (ATILF, 2019d), thus falling
into line with ⟨grappe⟩ (1121) (ATILF, 2019e; ATILF, 2019f),
⟨glaive⟩ (1121) (ATILF, 2019b), ⟨glas⟩ (1140) (ATILF, 2019c)
and so forth.
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PATCH, we uphold our proposed fix.
Pope (Pope, 1934, p. 69) is likely correct that there was
at one point a synchronic tendency of such form, the di-
achronic effect became phonologized later, late enough to
be bled by the loss of /a/ in both of our bleeding cases, hence
why we nevertheless have ⟨clou⟩ (< clavum), ⟨clore⟩ (<
claudere), ⟨claire⟩ < clāram, and so forth.
A possible criticism is that we could in fact be “overfitting”
specifications on a sound law to the data. One may note
that there would be a double standard in the application of
this critique, because the traditional view has enshrined into
the academic canon a large number of highly specific sound
laws, or even sets of sound laws that explain only a few
words, in this case and others21 To reply, we in turn ask,
“what is more likely”? According to the current view in the
French diachronic literature, each one of these words is ex-
plained by different, highly specific, and sometimes rather
elaborate explanations. What is more likely, that each of
these words was the result of a different obscure effect per-
haps involving two stages of language contact, or that an
easily explained shift that we demonstrate here that leaves
no exceptions gives a single, simple, and unified explana-
tion?
Nevertheless, it is also difficult to conclusively “disprove”
this critique. We do agree that future work should incorpo-
rate a measure of overall complexity as discussed in section
4.2., but even without this, we maintain that our method ac-
tually favors the simplest and most likely explanation much
more than the traditional method, because it focuses on find-
ing new rules that correct large numbers of derivations si-
multaneously whereas the traditional method not only toler-
ates but turns a blind eye to the proliferation of lexically spe-
cific explanations. As such, we propose that adopting CFR
alongside traditional methods would in fact work against
“overfitting”.

8. Conclusion
We maintain that we have clearly demonstrated the utility
of computerized forward simulation (CFR) for calibrating
diachronic rule cascades. The magnitude of improvement,
from a baseline accuracy of 3.2%up to an improved accu-
racy of 84.9%, was far better than we expected. Equally
important however is that applying the PATCH methodol-
ogy with CFR not only reproduces conclusions in literature
coming after Pope (1934), but also contributes new insights
even for a language as well studied as French. That the
epoch with, by far, the highest density of corrections was
Gallo-Roman demonstrates the utility of our method for less
well-studied languages, because Gallo-Roman is the only
era without a substantial attested corpus.
The next step for CFR with PATCH is to take it out of the lab
and into the field. We strongly advise the adoption of trans-
parent computerized forward reconstruction, for the clear
advantages it offers in efficiency, accuracy, accountability,
and coverage. Furthermore, for the overwhelming majority

21Indeed, ⟨glas⟩ is supposedly explained by a lexically specific
rule that only affected other words indirectly through sporadic
analogy, despite that rule working better as a broader and regular
rule, as we have just demonstrated. This, plus all the other lexically
specific explanations, is not in line with Occam’s razor at all.

of the world’s languages which remain vastly understudied,
our method offers a way to speed up research into diachronic
phonology and by extension phylogeny, allowing us to ad-
vance our knowledge further before the majority of them
likely become moribund in the next century.
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Abstract
This paper presents LatInfLexi, a large inflected lexicon of Latin providing information on all the inflected wordforms of 3,348 verbs
and 1,038 nouns. After a description of the structure of the resource and some data on its size, the procedure followed to obtain the
lexicon from the database of the Lemlat 3.0 morphological analyzer is detailed, as well as the choices made regarding overabundant and
defective cells. The way in which the data of LatInfLexi can be exploited in order to perform a quantitative assessment of predictability
in Latin verb inflection is then illustrated: results obtained by computing the conditional entropy of guessing the content of a paradigm
cell assuming knowledge of one wordform or multiple wordforms are presented in turn, highlighting the descriptive and theoretical
relevance of the analysis. Lastly, the paper envisages the advantages of an inclusion of LatInfLexi into the LiLa knowledge base, both
for the presented resource and for the knowledge base itself.
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1. Introduction

This paper presents LatInfLexi, an inflected lexicon of
Latin verbs and nouns, and shows its place in the larger
field of resources for the Latin language in general, and
its usefulness in allowing for an entropy-based analysis of
predictability in verb inflection in particular.
In studies on morphological theory, inflected wordforms
are often considered to be composed of smaller, meaning-
ful units, morphemes. Such an approach to word structure
has been called ‘constructive’ by Blevins (2006; 2016).
In this perspective, the goal is analyzing how exactly the
relevant units are assembled in order to realize different
Morphosyntactic Property Sets (MPS) for a given lexi-
cal item, in a ‘syntagmatic’ (Boyé and Schalchli, 2016),
‘exponence-based’ (Stump, 2015) fashion. Conversely, a
different line of research, finding its roots in work on the
implicative structure of paradigms within the framework
of Natural Morphology (Wurzel, 1984), takes full inflected
wordforms as the starting point, with smaller units possi-
bly inferred only a posteriori, in an ‘abstractive’ (Blevins,
2006; Blevins, 2016) perspective. Similar approaches can
be defined as implicative, in Stump (2015)’s terms, and
‘paradigmatic’, in Boyé and Schalchli (2016)’s terms: the
focus is on implicative relations between wordforms, al-
lowing to infer the content of a given paradigm cell assum-
ing knowledge of the content of other cells.
This task has been stated in the question that Ackerman
et al. (2009) call the ‘Paradigm Cell Filling Problem’
(PCFP): «What licenses reliable inferences about the in-
flected (and derived) surface forms of a lexical item?». In
the last decade, this question has received remarkable at-
tention in the morphological literature, especially within
two related but different frameworks. A set-theoretic ap-
proach is represented by Stump and Finkel (2013)’s Prin-
cipal Part Analysis, that aims at finding sets of inflected
wordforms (‘Principal Part Sets’) from which the content
of the whole paradigm of a lexeme can be inferred. An-
other way of tackling the PCFP is quantifying the contri-

bution of each inflected wordform to predictability, esti-
mating the uncertainty in guessing the content of individ-
ual cells, rather than trying to fill the whole paradigm as in
Principal Part Analysis. This second possibility has been
modelled in information-theoretic terms, using conditional
entropy (Ackerman et al., 2009). In this way, it is also pos-
sible to weigh the impact of different inflectional patterns
according to their type frequency (Bonami and Boyé, 2014;
Beniamine, 2018).
However, this presupposes the availability of large, rep-
resentative inflected lexicons for the languages under in-
vestigation. Indeed, similar resources are being increas-
ingly developed for modern Indo-European languages: see,
among else, the CELEX database (Baayen et al., 1996)
for Dutch, English, and German, Flexique (Bonami et
al., 2014) and GLÀFF (Hathout et al., 2014) for French,
Morph-it! (Zanchetta and Baroni, 2005) and GLÀFF-
IT (Calderone et al., 2017) for Italian. The availability
of inflected lexicons is much more limited for historical
languages like Latin, despite the growing amount of re-
sources and NLP tools developed for such languages in the
last years (Piotrowski, 2012; Bouma and Adesam, 2017),
among which also lexical resources, like the derivational
lexicon Word Formation Latin (Litta et al., 2016). As
for inflected lexicons, the only easily available resource
is the one provided within the Unimorph1 project (Sylak-
Glassman et al., 2015). However, the data of this resource
display issues of lack of homogeneity and systematicity,
due to the collaborative design of the source from which
they are taken, namely Wiktionary. On the other hand, it
would be possible to obtain an inflected lexicon without
such shortcomings semi-automatically, using the informa-
tion contained in morphological analyzers such as Words,2

Morpheus,3 LatMor,4 and the PROIEL Latin morphology

1http://unimorph.org/.
2http://archives.nd.edu/words.html.
3https://github.com/tmallon/morpheus.
4http://cistern.cis.lmu.de.
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system.5

This paper details, in Section 2., the procedure that was
followed to exploit one of these morphological analyzers
– namely, the recently renewed Lemlat 3.0 (Passarotti et
al., 2017) – in order to obtain LatInfLexi, a paradigm-
based inflected lexicon of Latin. Section 3. shows how the
data in LatInfLexi allow for a quantitative, entropy-based
analysis of predictability in Latin verb inflection that on
the one hand recovers traditional notions such as Princi-
pal Parts on a more solid ground, on the other hand sheds
new light on Latin paradigm structure, revealing patterns of
inter-predictability between wordforms that are less trivial
than the ones that are usually identified. Section 4. dis-
cusses the possible use of LatInfLexi to enhance the LiLa
knowledge base (Passarotti et al., 2019), providing infor-
mation not only on wordforms that are attested in the texts
included therein, but also on unattested, but nevertheless
possible wordforms, also highlighting the advantages for
LatInfLexi itself of a connection with the textual resources
in LiLa. In conclusion, Section 5. summarizes the main
points of the paper.

2. The Resource: LatInfLexi
This section is devoted to a careful description of LatIn-
flexi, starting in 2.1. from a few words on its design and
overall structure. Some quantitative data on the size of
the resource and its coverage of the Latin lexicon are then
given in 2.2.. In 2.3., the procedure followed to generate in-
flected wordforms from the information provided in Lem-
lat 3.0 is detailed, regarding both verbs and nouns. Lastly,
2.4. explains and motivates the choices made in the re-
source for cases of non-canonical filling of paradigm cells,
namely defectiveness and overabundance.

2.1. Design
The overall structure of LatInfLexi is based on lexemes and
paradigm cells, rather than on attested wordforms. This
means that for each nominal and verbal6 lexeme, we list all
the paradigm cells, providing the following information for
each of them:

• the lexeme to which the cell refers, notated through the ci-
tation form used in Lemlat;

• its PoS-tag and the MPS realized by the cell, notated
through Petrov et al. (2011)’s ‘Universal Part-Of-Speech
Tagset’ and the features used in the Universal Dependen-
cies7 project (Nivre et al., 2016);

• the inflected wordform filling the cell, in both orthographi-
cal and phonological, IPA, transcription;

• its frequency according to Tombeur (1998)’s Thesaurus For-
marum Totius Latinitatis, across different epochs: Antiqui-
tas, from the origins to the end of the 2nd century A.D.;

5https://github.com/mlj/proiel-webapp/
tree/master/lib/morphology.

6Adjectives have not been included in the current version
because LatInfLexi was originally conceived to allow for an
entropy-based analysis of verb and noun inflection, but the plan
for the near future is to add adjectives too.

7http://universaldependencies.org/u/feat/
index.html.

Aetas Patrum, from the 2nd century to 735; Medium Aeuum,
from 736 to 1499; Recentior Latinitas, from 1500 to 1965.

2.2. Size
The selection of lexemes is frequency-based. LatInfLexi
contains all the 3,348 verbs reported in the Dictionnaire
fréquentiel et Index inverse de la langue latine (Delatte et
al., 1981). Regarding nouns, only those with a frequency
of 30 or more are kept, for a total of 1,038.
For each noun, a 12-cells paradigm is given, as generated
by various combinations of different values of the inflec-
tional categories of number – singular vs. plural – and case
– nominative, genitive, dative, accusative, vocative, abla-
tive. In the currently distributed version of LatInfLexi, the
locative case is not considered because of its marginality,
being attested almost only in names of towns and small is-
lands. This exclusion is due to practical reasons: since the
resource was originally conceived to allow for a quantita-
tive analysis of predictability, for a cell attested in so few
lexemes it would not have been possible to obtain signifi-
cant results. However, the plan is to add the locative too, to
make the resource more complete.
As for verbs, the provided paradigms are made up of 254
cells, generated by the combinations of values of tense-
aspect (present, perfect, future, imperfect, pluperfect, fu-
ture perfect), mood (indicative, subjunctive, imperative,
infinitive), voice (active vs. passive), person and num-
ber. They include also nominal and adjectival forms in-
flected for case and (only the adjectival ones) for gender,
for instance gerunds and participles. On the other hand,
paradigm cells that are always filled analytically by means
of a periphrasis, rather than with a dedicated, synthetic in-
flected wordform, are excluded: for instance, there is no
cell PRF.PASS.IND.1SG, since passive perfective cells are
always realized by means of a periphrasis composed by the
perfect participle of the relevant verb and the appropriately
inflected form of the verb ‘to be’, e.g. amātus sum ‘I was
loved’.
Table 1 summarizes some data on the overall size of the
lexicon.

verbs nouns
lexemes 3,348 1,038
paradigm cells 850,392 12,456
wordforms 752,537 12,355
distinct wordforms 434,040 7,307

Table 1: The size of LatInfLexi

The number of wordforms does not match the number
of cells because there are cells that are marked as defec-
tive (#DEF#) in LatInfLexi: they do not contain any in-
flected wordform. Further details on such cases can be
found in 2.4. On the other hand, the difference between
the sheer number of wordforms and the number of dis-
tinct wordforms is due to cases of more or less system-
atic syncretism, where the same surface wordform appears
in different cells: for instance, in nominal inflection the
dative and ablative plural are always realized in the same
way. It is interesting to compare the number of distinct
wordforms in our resource to the ones reported in the very
extensive database of Tombeur (1998), that lists all the
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forms attested in a very large corpus of Latin, also pro-
viding information on their frequency in different epochs
(see above, 2.1.). Out of the 554,828 wordforms attested
in Tombeur (1998), 183,579 are present also in LatInfLexi,
that thus cover for about one third of the forms of Tombeur
(1998). This proportion is remarkable, especially consid-
ering that LatInfLexi only contains verbs and nouns, sys-
tematically excluding other lexical categories, even open
ones like adjectives and adverbs. Furthermore, it should be
noticed that LatInfLexi, thanks to its previously mentioned
paradigm-based design, also contains many inflected word-
forms (257,768 distinct wordforms) that are not attested in
the texts on which Tombeur (1998) is based.

2.3. Generation of Wordforms
The database of Lemlat 3.0, a large and recently renewed
morphological analyzer for Latin, was exploited to gener-
ate full paradigms for all the lexemes of our sample. For
each lemma, Lemlat reports one or more ‘LExical Seg-
ment(s) (LES), roughly corresponding to the stem(s) ap-
pearing in the various inflected wordforms. Every LES is
equipped with a CODLES, from which plenty of informa-
tion can be inferred, for instance on the subset of paradigm
cells where the CODLES can be used and on the inflectional
endings that are compatible with it. As an example, for the
verb STO ‘stay’, Lemlat lists the LESs and CODLESs given
in Table 2 below.

LES CODLES

st v1i
ist v1i
stet v7s
stat n41
stat n6p1
statūr n6p2

Table 2: LESs and CODLESs of STO ‘stay’

The CODLES ‘v1i’ is used for LESs that correspond to the
stem traditionally labelled as ‘present stem’, appearing in
the so-called ‘present system’ – i.e., in imperfective cells
– in intransitive (‘i’) 1st conjugation (‘1’) verbs (‘v’). The
CODLES ‘v7s’ instead marks LESs that correspond to the
‘perfect stem’, appearing in the ‘perfect system’ – i.e., in
perfective cells. The remaining CODLESs identify stems
used in nominal forms (‘n’), namely the supine (‘n41’) and
the perfect (‘n6p1’) and future (‘n6p2’) participle, corre-
sponding to what Aronoff (1994) calls the ‘third stem’, and
other stems derived from it, like the one of the future par-
ticiple.
The first step of the procedure consists in extracting all
LESs and CODLESs for each of the selected lexemes and
matching them to the stems used in the principal parts
provided by Latin dictionaries – in particular, Lewis and
Short (1879), that is used as the primary source of infor-
mation, due to its easy availability in machine-readable
format. On the one hand, this allows to decide what LES
should be selected in cases – like the one of Table 2 –
where more than one LES with the same CODLES is present
in Lemlat. For instance, the principal parts of STO in
Lewis and Short (1879) are stō, stetı̄ and statum, filling the
cells PRS.ACT.IND.1SG, PRF.ACT.IND.1SG and SUP.ACC,

respectively. Therefore, between the two LESs with CO-
DLES ‘v1i’ given in Table 2, only the first one is kept, since
it corresponds to the stem appearing in the wordform used
as principal part, while the second one is in Lemlat only
because it is reported in dictionaries as a marginal vari-
ant sometimes attested in texts. On the other hand, the in-
formation that can be inferred from the principal parts of
Lewis and Short (1879) and other dictionaries is more de-
tailed than the one in Lemlat regarding the phonological
shape of the stems, since there is also a coding of vowel
length and of the distinction between the vowels /i/, /u/
(<i>, <u>) and the semivowels /j/, /w/ (<j>, <v>). Since
our lexicon aims to be as surface-true as possible, the LESs
of Lemlat are enhanced with this additional information.
This also allows to automatically obtain phonological tran-
scriptions in IPA notation.
After the extraction of LESs, by attaching the endings of the
1st conjugation to the ones with CODLES ‘v1i’, the imper-
fective forms of the present system are generated – but not
the passive ones, that are defective because the verb is in-
transitive, except for the ones referring to the third-person
singular, attested in an impersonal usage (e.g. stātur ‘one
stays’). The LESs with CODLES v7s can be used to generate
perfective forms of the perfect system, again by attaching
the appropriate endings, that are the same for all conjuga-
tions. The other LESs are used to generate supine and par-
ticipial wordforms, adding the relevant nominal/adjectival
endings. The procedure is illustrated in Table 3 below.

LES CODLES cell wordform
st v1i PRS.ACT.IND.1SG st-ō

PRS.ACT.IND.3SG st-at
PRS.PASS.IND.1SG #DEF#
PRS.PASS.IND.3SG st-ātur
. . . . . .

stet v7s PRF.ACT.IND.1SG stet-ı̄
PRF.ACT.IND.3SG stet-it
. . . . . .

stat n41 SUP.ACC stat-um
SUP.ABL stat-ū

stat n6p1 PRF.PTCP.NOM.M.SG stat-us
. . . . . .

statūr n6p2 FUT.PTCP.NOM.M.SG statūr-us
. . . . . .

Table 3: Generation of some inflected wordforms of STO
‘to stay’

The procedure followed for nouns was very similar, the
only difference being that for a given lexeme there are not
multiple LESs with different CODLESs to be used in differ-
ent sections of the paradigm, but only one (or more) LES
with a CODLES corresponding to the inflectional (sub)class.
In most cases, all the inflected wordforms can be generated
from the LES and CODLES alone. For instance, Table 4 and
Table 5 illustrate the generation of some wordforms of the
1st declension noun ROSA ‘rose’ and of the 5th declension
noun RES ‘thing’, respectively.
On the other hand, in 3rd declension nouns and in some 2nd

declension nouns, a different stem allomorph appears in
some cells, namely NOM.SG and VOC.SG in masculine and
feminine nouns and ACC.SG too in neuter nouns, where this
cell is systematically syncretic with NOM.SG and VOC.SG.
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LES CODLES cell wordform
ros n1 NOM.SG ros-a

GEN.SG ros-ae
ACC.SG ros-am
. . . . . .

Table 4: Generation of some inflected wordforms of ROSA
‘rose’

LES CODLES cell wordform
r n5 NOM.SG r-ēs

GEN.SG r-eı̄
ACC.SG r-em
. . . . . .

Table 5: Generation of some inflected wordforms of RES
‘thing’

Differently than what happens for verbs, the shape of this
allomorph is not explicitly coded with a dedicated LES and
a specific CODLES. However, in Lemlat, for all lemmas,
under the heading LEM, information on how to produce the
citation form is provided. Since the citation form used for
nouns is exactly NOM.SG, and the other cells are syncretic
with NOM.SG whenever they display a different allomorph,
this information was exploited to fill the cells displaying
stem allomorphy in our resource, as illustrated below in Ta-
ble 6 by the allomorphic 2nd declension noun APER ‘boar’
and in Table 7 by the 3rd declension noun AGMEN ‘multi-
tude (of men/animals)’.

LES CODLES LEM cell wordform
apr n2 aper NOM.SG aper

GEN.SG apr-ı̄
ACC.SG apr-um
. . . . . .

Table 6: Generation of some inflected wordforms of APER
‘boar’

LES CODLES LEM cell wordform
agmin n3 agmen NOM.SG agmen

GEN.SG agmin-is
ACC.SG agmen
. . . . . .

Table 7: Generation of some inflected wordforms of AG-
MEN ‘multitude (of men/animals)’

2.4. Defectiveness and Overabundance
As was hinted above, LatInfLexi aims at providing full
paradigms for all its lexemes. Therefore, every paradigm
cell is filled with a wordform, whenever this is possible.
This choice is reasonable, since in the usual, ‘canonical’
(Corbett, 2005) situation each paradigm cell is expected to
be realized by exactly one inflected wordform.
However, it is a well-known fact that there are non-
canonical cases of defectiveness (Sims, 2015), i.e. empty
cells, for which the corresponding inflected wordform
is not only unattested, but indeed non-existent. For
instance, in Latin intransitive verbs are defective of passive
wordforms, except for the third-person singular that can

be used with an impersonal meaning (cf. above, 2.3.,
Table 3). Conversely, deponent verbs (Grestenberger,
2019) are always defective of morphologically active
wordforms. Impersonal verbs only display third-person
singular wordforms, as well as infinitives, gerunds and
participles, but are systematically defective in all other
cells. Regarding nouns, pluralia tantum do not have sin-
gular wordforms. In all such cases, the defective paradigm
cells are not filled with a wordform, but simply marked
as such (#DEF#) in LatInfLexi. In verb paradigms, also
cells for which the stem that should be used to generate
the corresponding wordform is not reported in Lemlat are
marked as defective: for instance, for the verb ALBEO
‘to be white’, only the LES corresponding to the present
stem is reported in Lemlat, thus perfective forms and the
nominal forms based on the third stem are marked as
#DEF#.
Another non-canonical phenomenon concerning
paradigms is overabundance – multiple filling of the
same cell by different wordforms (Thornton, 2019). In
the current version of LatInfLexi, each non-defective cell
contains exactly one wordform. In cases where more than
one wordform could potentially be generated for the same
paradigm cell – either because more than one LES with the
same CODLES is available, or because different endings
would be compatible with a given LES – a choice was made
on which wordform to keep and which one(s) to discard,
based on the principal parts reported in dictionaries in the
former case (as showed above in 2.3.), while in the latter
case the wordforms outputted in the inflectional tables of
the Collatinus toolkit8 are used.

3. An Entropy-Based Assessment of
Predictability in Latin Verb Paradigms

This section illustrates how the data of LatInfLexi can
be used for a quantitative, entropy-based analysis of pre-
dictability in Latin verb inflection. After an explanation,
in 3.1., of the procedure that was followed, the results ob-
tained on Latin verb paradigms are presented in 3.2., first
focusing on predictions from one form (3.2.1.) and then
extending the investigation to predictions from more than
one form (3.2.2.).

3.1. The Method
In general, entropy (H) is a measure of uncertainty about
the outcome of a random variable: the more the uncer-
tainty, the higher the entropy value. Entropy increases with
the number of possible outcomes: for instance, the entropy
of a coin flip, with two possible outcomes, is higher than
the entropy of rolling a dice, where the possible outcomes
are six. Conversely, entropy decreases if the different out-
comes are not equiprobable: the entropy of a coin flip is
lower if the coin is rigged to always or often come up heads.
Bonami and Boyé (2014) propose a method to estimate
the uncertainty in predicting one cell from another one
by means of conditional entropy – H(A|B), a measure of
the uncertainty about the outcome of a random variable A,
given the value of another random variable B . To illustrate

8https://outils.biblissima.fr/fr/
collatinus-web/.
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their procedure, let us consider in Table 8 the phonologi-
cal shape of the inflected wordforms filling the paradigm
cells PRS.ACT.IND.1SG and PRS.ACT.IND.2SG for Latin
verbs belonging to different conjugations, explaining how
the conditional entropy of guessing the latter given the for-
mer can be computed.

lexeme conj.
PRS.ACT.
IND.1SG

PRS.ACT.
IND.2SG

AMO ‘love’ 1st amo: ama:s
MONEO ‘warn’ 2nd moneo: mone:s
SCRIBO ‘write’ 3rd skri:bo: skri:bis
CAPIO ‘take’ mix.9 kapio: kapis
VENIO ‘come’ 4th wenio: weni:s

Table 8: PRS.ACT.IND.1SG and PRS.ACT.IND.2SG of Latin
verbs of different conjugations

The first step of Bonami and Boyé (2014)’s methodol-
ogy consists in extracting alternation patterns between the
wordforms, and contexts where such alternation patterns
can be applied, as the second column of Table 9 illustrates.
The second step is a classification of lexemes according to
the patterns that can potentially be applied, based on the
phonological makeup of the patterns themselves and of the
extracted contexts. The outcome of this classification is
given in the third column of Table 9. Verbs of the 1st and
3rd conjugation are in the same class, because patterns 1
and 3 can both be applied to a PRS.ACT.IND.1SG ending
in /o:/ preceded by a consonant; similarly, verbs of the 4th

and mixed conjugation are in the same class, because faced
with a PRS.ACT.IND.1SG ending in /io:/ preceded by a con-
sonant, both pattern 4 and pattern 5 can be applied.

lexeme
pattern/context
(1SG ↔ 2SG)

applicable
patterns

n.
verbs

AMO 1. _o: ↔ _a:s / C_# A. (1,3) 1,332
MONEO 2. _eo: ↔ _e:s / C_# B. (2) 298
SCRIBO 3. _o: ↔ _is / C_# A. (1,3) 1,152
CAPIO 4. _o: ↔ _s / i_# C. (4,5) 132
VENIO 5. _io: ↔ _i:s / C_# C. (4,5) 169

Table 9: Information used to compute
H(PRS.AC T.I N D.2SG|PRS.AC T.I N D.1SG)

Given these two cross-cutting classifications and informa-
tion on the number of verbs in which the various alternation
patterns occur (given in the last column of Table 9 with
data taken from LatInfLexi), it is possible to compute
the conditional entropy of guessing PRS.ACT.IND.2SG
from PRS.ACT.IND.1SG in each of the classes based on
applicable patterns, using the type frequency of alternation
patterns as an estimate of their probability of application.
In class B (see (1), b.) there is no uncertainty: given a
PRS.ACT.IND.1SG in /eo:/, the PRS.ACT.IND.2SG cannot
but be in /e:s/.10 In classes A and C (cf. (1), a. and c.)
there are competing patterns (1 vs. 3 and 4 vs. 5), and

9The conjugation of CAPIO is called ‘mixed’, as in Dressler
(2002), because it displays the endings of the 3rd conjugation in
some cells and the endings of the 4th conjugation in other cells.

10For the sake of simplicity, in this example we dis-
regard highly irregular verbs, as well as verbs whose
PRS.ACT.IND.1SG ends in /eo:/ that belong to the 1st conjugation

therefore there is some uncertainty, whose impact can
be quantified by means of the number of verbs in which
each pattern occurs. The results regarding the different
classes can then be put together – again weighing them
on the basis of type frequency, as is shown in (1)d. – to
obtain a single entropy value, estimating the uncertainty
in guessing the content of PRS.ACT.IND.2SG knowing the
wordform filling PRS.ACT.IND.1SG. This value is called
‘implicative entropy’ by Bonami (2014).

(1) H(PRS.AC T.I N D.2SG|PRS.AC T.I N D.1SG)

a. Class A:
H = −

( ( 1,332
2,484 × log2

1,332
2,484

) + ( 1,152
2,484 × log2

1,152
2,484

) )
= 0.996

b. Class B:
H =−(1× log21)

c. Class C:
H = −

( ( 132
301 × log2

132
301

) + ( 169
301 × l og2

161
309

) )
= 0.989

d. Overall:
H = ( 2,484

3,083 ×0.996
) + ( 298

3,083 ×0
) + ( 301

3,083 ×0.989
) = 0.899

This procedure has two crucial advantages with respect to
other entropy-based quantitative measurements of inflec-
tional predictability proposed in the literature (cf. e.g. Ack-
erman et al. (2009) and subsequent work). Firstly, this
methodology takes the type frequency of different patterns
into account, rather than relying on the simplifying as-
sumption that all inflection classes are equiprobable. Sec-
ondly, it does not require a pre-existing classification of in-
flection classes, since alternation patterns and contexts can
simply be inferred from the surface phonological shape of
the inflected wordforms.

3.2. Applying the Method to Latin Verb
Paradigms

Thanks to the freely available Qumin11 toolkit (Beniamine,
2018), it is possible to automatically perform implica-
tive entropy computations according to Bonami and Boyé
(2014)’s procedure on all the inflected wordforms of Lat-
InfLexi, obtaining the results that will be presented in the
following sub-sections.

3.2.1. Predicting from One Form: Zones of
Interpredictability in Latin Verb Inflection

To have a first overall picture of predictability in Latin verb
paradigms, implicative entropy values are computed for
each pair of cells. A first relevant fact that should be no-
ticed is that for a lot pairs of cells (A,B) the entropy values
of both H(A|B) and H(B |A) are null, meaning that knowing
one of the two inflected wordforms involved, the other one
can be predicted with no uncertainty, since they are in sys-
tematic covariation: for instance, given the present active
infinitive of a verb, the cells of the imperfect active sub-
junctive can always be obtained by adding personal end-
ings to it, no matter how irregular the infinitive, and vice-
versa, as is shown in (2).

and thus have PRS.ACT.IND.2SG in /ea:s/ (e.g. CREO ‘create’,
PRS.ACT.IND.1SG creō, PRS.ACT.IND.2SG creās).

11https://github.com/XachaB/Qumin
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(2) PRS.ACT.INF X ↔ PRS.ACT.SBJV.1SG Xm

a. AMO ‘love’:
PRS.ACT.INF amāre ↔ PRS.ACT.SBJV.1SG amārem

b. FERO ‘bring’:
PRS.ACT.INF ferre ↔ PRS.ACT.SBJV.1SG ferrem

Similar categorical implicative relations can be exploited to
obtain a mapping of the Latin verbal paradigm in zones of
full interpredictability: within such zones, all cells can be
predicted from one another with no uncertainty. This map-
ping is sketched in Table 10 (for active12 verbal forms) and
Table 11 (for nominal and adjectival forms) below, with
cells that belong to the same zone sharing the same color
and index (Z1-15), and different shades of the same color
used to visualize zones that are closer to one another in
terms of mutual predictability.

ACT 1SG 2SG 3SG 1PL 2PL 3PL

IPRF.IND Z1 Z1 Z1 Z1 Z1 Z1
IPRF.SBJV Z2 Z2 Z2 Z2 Z2 Z2
PRS.IMP Z3 Z2
PRS.IND Z4 Z5 Z6 Z2 Z2 Z7
FUT.IMP Z2 Z2 Z2 Z7
FUT.IND Z8 Z8 Z8 Z8 Z8 Z8
PRS.SBJV Z9 Z9 Z9 Z9 Z9 Z9
PRF.IND Z10 Z10 Z10 Z10 Z10 Z10
PLUPRF.IND Z10 Z10 Z10 Z10 Z10 Z10
FUTPRF.IND Z10 Z10 Z10 Z10 Z10 Z10
PRF.SBJV Z10 Z10 Z10 Z10 Z10 Z10
PLUPRF.SBJV Z10 Z10 Z10 Z10 Z10 Z10

Table 10: Zones of interpredictability in Latin verb
paradigms: verbal forms (active only)

GDV
PRS.
PTCP

PRF.
PTCP

FUT.
PTCP

PRS.INF.ACT Z2 NOM.SG Z12 Z13 Z14 Z15
PRS.INF.PASS Z11 GEN Z12 Z12 Z14 Z15
PRF.INF.ACT Z10 DAT Z12 Z12 Z14 Z15
GER.GEN Z12 ACC Z12 Z12 Z14 Z15
GER.DAT Z12 VOC.N.SG Z12 Z13 Z14 Z15
GER.ACC Z12 VOC.M/F.SG Z12 Z12 Z14 Z15
GER.ABL Z12 ABL Z12 Z12 Z14 Z15
SUP.ACC Z14 NOM.PL Z12 Z12 Z14 Z15
SUP.ABL Z14 VOC.PL Z12 Z12 Z14 Z15

Table 11: Zones of interpredictability in Latin verb
paradigms: nominal and adjectival forms

Therefore, although the sheer number of cells in Latin
verb paradigms is very high, in many cases the presence
of different wordforms does not contribute to uncertainty
in the PCFP, since such wordforms can be predicted from
other wordforms in the same zone. In this way, the 254-
cells paradigm of LatInfLexi can be reduced to only 15
zones between which there is not full interpredictability.
To go into some more detail, Z10 corresponds to what tra-
ditional descriptions call the ‘perfect system’, containing
cells based on the perfect stem. The cells that Aronoff

12Passive wordforms can be inferred from their active counter-
part with no uncertainty, and they are therefore not reported in
Table 10 for reasons of space.

(1994) identifies as based on the ‘third stem’ correspond
to two different zones (Z14 and Z15) in our mapping be-
cause there actually are a few cases where the future par-
ticiple is based on a different stem than the perfect par-
ticiple and supine (e.g. PRF.PASS.PTCP.NOM.SG mortu-us
vs. FUT.ACT.PTCP.NOM.M.SG morit-ūrus). As for what
traditional descriptions label the ‘present system’, contain-
ing imperfective wordforms based on the present stem, it
proves to be split between several (13) zones. This hap-
pens because with the adopted methodology not only the
uncertainty generated by stem allomorphy is taken into ac-
count, but also the impact of the opacity of some endings
with respect to inflection class assignment – witness the
example provided above in Table 8, where the endings of
PRS.ACT.IND.1SG are partly uninformative on the inflec-
tional behavior of PRS.ACT.IND.2SG, because the ending
-ō is ambiguous between the 1st and 3rd conjugation, and
the ending -iō between the 4th and mixed conjugation.
It is interesting to observe that, if compared with the pic-
ture that would emerge by only considering the role of
stem allomorphy, the mapping of the paradigm summa-
rized in Table 10 and Table 11 is much more similar
to the situation found in Romance verb inflection, with
several zones of interpredictability, as shown e.g. by
Bonami and Boyé (2003) for French, Pirrelli and Battista
(2000) and Montermini and Bonami (2013) for Italian,
Boyé and Cabredo Hofherr (2006) for Spanish. For in-
stance, Table 10 shows that the cells PRS.ACT.IND.1SG and
PRS.ACT.IND.3PL are very distant from the other present
active indicative cells in terms of interpredictability. Thus,
the overall picture is similar to the one produced by what
Maiden (2018, pp. 84 ff.) calls ‘U-pattern’ in Romance lan-
guages. This suggests that there might be more continuity
from Romance to Latin regarding paradigm structure than
is usually assumed in diachronic accounts of this topic, like
e.g. Maiden (2009).
Having identified these 15 zones of interpredictability, it is
possible to take advantage of them to obtain a more com-
pact version of the Latin paradigm, where only one cell
per zone is kept. This allows to focus on the cases where
there is some uncertainty and compare the different lev-
els of predictability of different zones. To this aim, for
each selected cell X , the values of average cell predictabil-
ity – i.e., the average implicative entropy of predicting cell
X knowing each of the other chosen cells – and average
cell predictiveness – i.e., the average implicative entropy
of predicting each of the other cells knowing cell X – are
computed and given in Table 12a-b, sorted by decreasing
entropy values. It can be observed that while the values
of predictability are in a narrower range, the various zones
display remarkable differences in their predictiveness: in
particular, Z4 (the zone of the first-person singular of the
present indicative) has a very low predictiveness, because
of the above-mentioned opacity of the endings of that cell,
that is poorly informative on the overall inflectional behav-
ior of the lexemes (see again Table 8 above).

3.2.2. Predicting from More than One Form: (Near)
Principal Parts

In the previous sub-section, the implicative entropy of
guessing the content of one cell given knowledge of in-
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a b

zone
average cell

predictability zone
average cell

predictiveness
Z13 0.208271 Z8 0.079394
Z1 0.229066 Z7 0.089352
Z4 0.231378 Z9 0.127819
Z12 0.240871 Z2 0.130643
Z11 0.244131 Z3 0.13107
Z14 0.255304 Z5 0.166161
Z15 0.263901 Z11 0.189036
Z6 0.269721 Z15 0.257111
Z9 0.302484 Z14 0.266108
Z8 0.309003 Z1 0.3122
Z7 0.311636 Z12 0.348084
Z3 0.315026 Z6 0.355214
Z5 0.315126 Z13 0.370468
Z2 0.342413 Z10 0.442993
Z10 0.343957 Z4 0.916636

Table 12: Average cell predictability and predictiveness

dividual wordforms – what Bonami and Beniamine (2016)
call ‘unary implicative entropy’ – was used in order to ob-
tain an overall assessment of predictability in Latin verb
paradigms. However, Bonami and Beniamine (2016) ar-
gue that, in languages with large paradigms, in many cases
speakers are exposed to more than one inflected wordform
of a lexeme without being exposed to all of them: there-
fore, it is reasonable to extend the investigation to predic-
tions from more than one wordform, using what Bonami
and Beniamine (2016) call ‘n-ary (binary, ternary etc.) im-
plicative entropy’. Table 13 compares average unary im-
plicative entropy – i.e., the entropy of guessing paradigm
cells from one another, averaged across all pairs of cells –
with average n-ary implicative entropy at different cardi-
nalities – i.e., using combinations of n forms as predictors.
These results show that knowledge of multiple wordforms
reduces uncertainty in the PCFP drastically: already with
two predictors, the average implicative entropy value drops
below 0.1, and with five predictors uncertainty is virtually
eliminated.

cardinality average implicative entropy
1 0.28
2 0.06
3 0.03
4 0.02
5 0.01

Table 13: Average n-ary implicative entropy

The idea of predictions from more than one form is what
stands behind the traditional notion of principal parts and
their contemporary and more principled recovery by Stump
and Finkel (2013): in an entropy-based perspective, princi-
pal parts are sets of inflected wordforms knowing which the
entropy of guessing the content of all the remaining cells
of the paradigm – what Bonami and Beniamine (2016) call
‘residual uncertainty’ – is exactly 0. As can be seen from
Table 14 below, in Latin verb inflection there are no princi-
pal part sets composed of two or three paradigm cells. The
smallest combinations of cells that work as principal parts
are composed of four cells: there are 56 combinations of

four cells that allow to eliminate residual uncertainty. If
five predictors are used, there are more principal part sets,
both in absolute terms and in percentage on the number of
possible combinations of cells.

cardinality principal parts
n. %

2 0 0
3 0 0
4 56 4.1%
5 336 11.2%

Table 14: Principal part sets at different cardinalities

This confirms on a more empirically-based ground
the descriptions of Latin grammars and dictionaries,
where the four principal parts are PRS.ACT.IND.1SG,
PRS.ACT.IND.2SG, PRF.ACT.IND.1SG and, lastly,
PRF.PASS.PTCP.NOM.M.SG or SUP.ACC, depending
on the choices made by different authors.13 Our results
are also in line with the findings obtained by Finkel and
Stump (2009) with a different, set-theoretic rather than
information-theoretic, methodology: also in their study,
four principal parts prove to be sufficient in order to be
able to guess the rest of the paradigm with no uncertainty.
An advantage of the information-theoretic methodology
is that it makes it possible to take into consideration not
only categorical principal parts, but also what Bonami and
Beniamine (2016) call ‘near principal parts’, i.e., sets of
cells that allow to infer the rest of the paradigm with very
low – but not null – residual uncertainty. In Table 15, the
threshold of residual uncertainty is set at 0.001 and 0.01,
and the number and percentage of near principal parts at
different cardinalities is reported.

cardinality near principal parts
H < 0.001 H < 0.01
n. % n. %

2 0 0 15 14.3%
3 15 3.3% 196 43.1%
4 122 8.9% 834 61.1%
5 471 15.7% 2,190 72.9%

Table 15: Near principal part sets at different cardinalities

It can be observed that already with the very low thresh-
old of 0.001, there are sets of near principal parts com-
posed of three cells. If the threshold is set at 0.01, there are
even combinations of two cells that work as near principal
parts; furthermore, almost half of the available combina-
tions of three cells, more than half of the combinations of
four cells, and the relevant majority of combinations of five
cells allow to infer the rest of the paradigm with a residual
uncertainty of less than 0.01. This means that knowledge
of a limited number of cells yields a very relevant reduction
of uncertainty in the PCFP, giving further confirmation to
Ackerman and Malouf (2013)’s ‘low entropy conjecture’,
according to which the surface complexity of the inflec-
tional patterns of languages with a rich morphology – like
Latin – does not make unpredictability in such systems so
great as to make them hard to learn and master for speakers.

13Lewis and Short (1879) use only three principal parts, but
only because the conjugation is stated explicitly.
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4. Inclusion of LatInfLexi into the LiLa
Knowledge Base

The topic of this section is a discussion of the perspectives
opened by the planned inclusion of the data of LatInfLexi
into the LiLa knowledge base (Passarotti et al., 2019). The
goal of the LiLa (Linking Latin) project14 is to connect and
make interoperable the wealth of digital resources – like
corpora and lexicons – and NLP tools – like lemmatizers,
morphological analyzers and dependency parsers – that are
already available for Latin. To this aim, LiLa makes use of
a set of Semantic Web and Linguistic Linked Open Data
standards, among which here at least the ontology used
for lexical resources (Lemon, Buitelaar et al. (2011), On-
tolex15) should be mentioned, that is based on the ‘Lexical
Entry’ to which all the relevant forms can be associated.
The architecture of LiLa thus has the ‘lemma’ as its core.
A lemma is defined as an inflected ‘form’ that is conven-
tionally chosen as the citation form of a lexical entry. Lem-
mas are then directly linked to ‘tokens’ – i.e., actual occur-
rences in textual resources. Both forms and tokens can be
analyzed by NLP tools.
Within this architecture, it would be useful to make the
coverage of LatInfLexi more systematic – adding also the
nouns with less than 30 occurrences in Delatte et al. (1981)
and including adjectives – and incorporate the wordforms
reported in LatInfLexi in the knowledge base. Both Lat-
InfLexi and the Lila knowledge base would benefit greatly
from such interaction, due to their different design. The
LiLa knowledge base takes a concrete perspective, includ-
ing only wordforms that are either attested in corpora, or
reported in lexical resources that are in turn based on ac-
tual usage in texts, like for instance Tombeur (1998). Con-
versely, we have seen in 2.1. that in LatInfLexi a much
more abstract perspective drives the selection of different
inflected wordforms: for each lexeme, the content of all
non-defective paradigm cells is given, regardless of the ac-
tual attestation of the generated wordforms in actual texts.
Therefore, the inclusion of the data of LatInfLexi into the
LiLa knowledge base would greatly enrich the latter: lem-
mas would be linked to all their possible inflected word-
forms, rather than only to attested ones. The relevance of
such enrichment would be more relevant than one could
think, since recent quantitative work on the attestation
of inflected wordforms in large paradigms (Chan, 2008;
Bonami and Beniamine, 2016; Blevins et al., 2017) shows
that, even using very large corpora, ‘saturation’ – i.e., the
situation in which all the inflected wordforms of a lexeme
occur in a given corpus (Chan, 2008) – is reached only
for a handful of very frequent lexemes, while in all other
cases only some cells are actually filled by a wordform,
and for many lexemes only a couple of wordforms are at-
tested, or even only one. On the other hand, LatInfLexi
too would benefit from being included into LiLa, because
the linking of the possible wordforms of the former to the
real occurrences in the lemmatized (and sometimes, e.g.
in treebanks, even equipped with fine-grained morphosyn-
tactic analyses) texts of the latter would allow for a more

14https://lila-erc.eu/.
15https://www.w3.org/community/ontolex/.

accurate assessment of the frequency of wordforms,16 and
thus for a more careful discrimination between forms that
are possible but are not attested and those that actually oc-
cur in texts. This could also be useful in order to have
a more satisfactory, corpus-based treatment of overabun-
dance, where the marginality of a ‘cell-mate’ (Thornton,
2019) with respect to the other one(s) is not decided ac-
cording to lexicographical sources, but rather on the basis
of the actual usage of the competing wordforms in texts.

5. Conclusions
This paper has presented LatInfLexi, a large, freely avail-
able, paradigm-based inflected lexicon of Latin verbs and
nouns, detailing how the wordforms have been generated
starting from the information provided in the morphologi-
cal analyzer Lemlat 3.0.
It has then illustrated the usefulness of such a lexicon,
firstly to perform a quantitative analysis of predictability
in inflectional morphology by means of the information-
theoretic notion of implicative entropy. From this analysis,
by means of unary implicative entropy a mapping of the
verbal paradigm in 15 zones of complete interpredictabil-
ity has been proposed: this picture is less straightforward
than the traditional one, based on the three different stems
appearing in the paradigm, and therefore more similar to
the situation found in Romance verb paradigms, suggest-
ing that there is more continuity from Latin to Romance
than is traditionally assumed, at least if patterns of inter-
predictability are considered. Secondly, n-ary implicative
entropy has been used to recover the traditional notion of
principal parts on more solid grounds, confirming the anal-
ysis of grammars and dictionaries in this respect, as well
as results recently obtained for Latin verb inflection with
Finkel and Stump (2009)’s Principal Part Analysis, but also
highlighting the usefulness of extending the investigation
to non-categorical ‘near principal parts’, that allow for a
relevant – although not complete – reduction of residual
uncertainty regarding other paradigm cells.
Lastly, another possible use of the resource that has been
discussed in this paper is its inclusion in the LiLa knowl-
edge base, that in this way would be enhanced with pos-
sible inflected wordforms that can be linked to lemmas,
besides the ones attested in textual resources, while Lat-
InfLexi would benefit from this interaction in that it would
have access to more detailed frequency data.

6. Availability of Data and Tools
The data and tools used in this study are freely
available online, allowing for an easy replication of
the presented results. LatInfLexi can be found
at https://github.com/matteo-pellegrini/
LatInfLexi. The Qumin toolkit that was used
to automatically perform entropy computations can
be freely downloaded at https://github.com/
XachaB/Qumin.

16As we have seen in 2.1., LatInfLexi provides information on
frequency, but with the same shortcomings of the source from
which it takes it, Tombeur (1998), where there is no disambigua-
tion of wordforms with multiple possible analyses. For a more
detailed discussion of the issues related to frequency data in Lat-
InfLexi, the reader is referred to Pellegrini and Passarotti (2018).
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Abstract
Optical character recognition (OCR) for historical documents is a complex procedure subject to a unique set of material issues, including
inconsistencies in typefaces and low quality scanning. Consequently, even the most sophisticated OCR engines produce errors. This
paper reports on a tool built for postediting the output of Tesseract, more specifically for correcting common errors in digitized historical
documents. The proposed tool suggests alternatives for word forms not found in a specified vocabulary. The assumed error is replaced
by a presumably correct alternative in the post-edition based on the scores of a Language Model (LM). The tool is tested on a chapter
of the book An Essay Towards Regulating the Trade and Employing the Poor of this Kingdom (Cary, 1719). As demonstrated below,
the tool is successful in correcting a number of common errors. If sometimes unreliable, it is also transparent and subject to human
intervention.

Keywords: OCR Correction, Historical Text, NLP Tools

1. Introduction
Historical documents are conventionally preserved in phys-
ical libraries, and increasingly made available through dig-
ital databases. This transition, however, usually involves
storing the information concerned as images. In order
to correctly process the data contained in these images,
they need to be converted into machine-readable charac-
ters. This process is known as optical character recognition
(OCR). Converting a book from image into text has obvious
benefits regarding the identification, storage and retrieval
of information. However, applying OCR usually generates
noise, misspelled words and wrongly recognised charac-
ters. It is therefore often necessary to manually postedit
the text after it has undergone the automatic OCR process.
Usually, the errors introduced by the OCR tool increase
with the age of the document itself, as older documents
tend to be in worse physical condition. The circumstances
of digitization, e.g. the quality of the scan and the mechan-
ical typeset used, also impact the outcome of the OCR pro-
cedure. This paper proposes a tool for automatically cor-
recting the majority of errors generated by an OCR tool.
String-based similarities are used to find alternative words
for perceived errors, and a Language Model (LM) is used
to evaluate sentences. This tool has been made publicly
available.1

The performance of the tool is evaluated by correcting the
text generated when using OCR with the book An Essay
Towards Regulating the Trade and Employing the Poor of
this Kingdom (Cary, 1719).

2. Related Work
To improve the outcome of OCR, one can either focus on
the processing of images in the scanned book, or on edit-
ing the output of the OCR tool. For either stage, several
approaches have been proposed.

1https://github.com/alberto-poncelas/
tesseract_postprocess

The approaches involving image-processing perform mod-
ifications on the scanned book that make the OCR perform
better. Examples of these approaches include adding noise,
as through rotation, for augmenting the training set (Bie-
niecki et al., 2007), reconstructing the image of documents
in poor condition (Maekawa et al., 2019), clustering similar
words so they are processed together (Kluzner et al., 2009)
or jointly modeling the text of the document and the process
of rendering glyphs (Berg-Kirkpatrick et al., 2013).
Techniques for increasing accuracy by performing post-
OCR corrections can be divided into three sub-groups. The
first group involves lexical error correction, and consists of
spell-checking the OCR output using dictionaries, online
spell-checking (Bassil and Alwani, 2012), and using rule-
based systems for correcting noise (Thompson et al., 2015).
The second group of strategies for correcting OCR output
is context-based error correction, in which the goal is to
evaluate the likelihood that a sentence has been produced
by a native speaker by using an n-gram LM to evaluate the
texts produced by the OCR (Zhuang et al., 2004), and to
use a noisy-channel model (Brill and Moore, 2000), or a
Statistical Machine Translation engine (Afli et al., 2016) to
correct the output of the OCR. A final approach proposes
using several OCR tools and retrieving the text that is most
accurate (Volk et al., 2010; Schäfer and Weitz, 2012).

3. OCR Challenges for Historical Document
Performing OCR is a challenging task. Although ideally
the procedure should successfully generate the text repre-
sented in an image, in practice the tools often produce er-
rors (Lopresti, 2009). In addition, when older documents
are converted into text further difficulties arise that cause
the performance of the OCR tools to decrease. One of the
problems of historical documents is that the quality of the
print medium has often degraded over time. The quality of
the paper also impacts the output, as in some cases the let-
ters on the reverse side of a page are visible in the scanned
image, which adds noise to the document.
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Figure 1: Example of the scan of the book An Essay To-
wards Regulating the Trade.

Furthermore, OCR systems are generally best suited to con-
temporary texts, and not built to handle the typefaces and
linguistic conventions that characterize older documents. In
Figure 1 we show a small extract of a scan of the book An
Essay Towards Regulating the Trade to illustrate some of
the problems frequently encountered. One may notice the
following particularities of the text:

• Some words such as especially, whose and spent con-
tain the “s” or long “s”, an archaic form of the letter “s”
which can easily be confused with the conventional
symbol for the letter “f”.

• Some words, such as Poor and Profits, are capitalized
even though they occur mid-sentence. This would be
unusual in present-day English.

Piotrowski (2012) categorizes variations in spelling as
uncertainty (digitization errors), variance (inconsistent
spelling) and difference (spelling that differs from contem-
porary orthography). In our work we focus on the latter.
Spelling issues compound the general challenges touched
upon before, such as the quality of the scan (e.g. the word
“us” in Figure 1 is difficult to read even for humans). Fur-
ther issues include the split at the end of the line (e.g. the
word “especially” or “generally”).

4. Proposed Tool
This paper introduces a tool that automatically edits the
main errors in the output of an OCR engine, including
those described in Section 3.. The method retains, next to
the edited text, the material that has been automatically re-
placed. Thus, the human posteditor has the agency to ap-
prove or discard the changes introduced by the tool. The
aim of automating the initial replacement procedure is to
shorten the overall time spent on post-editing historical
documents.
In order to execute the tool, run the command
ocr and postprocess.sh $INPUT PDF
$OUT $INITPAGE $ENDPAGE. In this command,
$INPUT PDF contains the path of the pdf file on which
OCR will be performed, and $OUT the file where the
output will be written. $INITPAGE and $ENDPAGE
indicate from which page until which page the OCR should
be executed.
The output is a file consisting of two columns (tab-
separated). The first column contains the text after OCR
is applied and the errors have been corrected. In the second
column, we include the list of edits performed by our tool,
so that a human post-editor can easily identify which words
have been replaced.
The pipeline of this approach is divided into three steps,
as further explained in the subsections below. First, the

OCR is executed (Section 4.1.). Subsequently, words that
are unlikely to exist in English are identified and replace-
ment words are sought (Section 4.2.). Finally, the word-
alternatives are evaluated within the larger sentence in order
to select the best alternative (Section 4.3.).

4.1. Perform OCR
The first step is to extract part of the pdf and convert it into
a list of png images (one image per page). These images
are fed to an OCR engine and thus converted into text. The
line-format in the text will conform to the shape of the im-
age, meaning that word forms at the end of a line ending
on an “-” symbol need to be joined to their complementary
part on the following line to ensure completeness.

4.2. Get alternative words
As the output of the OCR tool is expected to contain errors,
this text is compared to a list of English vocabulary referred
to as recognized words.
Once the text is tokenized and lowercased, some of the
words can be replaced by alternatives that fit better within
the context of the sentence. The words that we want to
replace are those that are not included in the list of recog-
nized words or contain letters that are difficult to process
by the OCR tool (as in the case of confusion between the
letters “s” and “f” mentioned in Section 3.). For each of
these words we construct a list of candidates for a potential
replacement. This list is built as follows:

1. Even if a word seems to be included in the list recog-
nized words, it still may contain errors, as some let-
ters are difficult for the OCR to recognize. As per the
above, “f” can be replaced with “s”, and the resultant
word can be added as a replacement candidate if it is a
recognized word.

2. If the word is not in the list recognized words, we pro-
ceed along the following lines:

(a) The word is split into two subwords along each
possible line of division. If both items resulting
from the split are recognized words, the pair of
words is added as an alternative candidate.

(b) Similar words in the vocabulary are suggested
using a string-distance metric. The 3 closest
words, based on the get close matches function
of python’s difflib library, are included.

After this step, for a word wi we have a list of potential
replacements wi, w

(1)
i , w

(2)
i ...w

(ri)
i , where ri is the number

of alternatives for wi. Note also that the original word is
included as an alternative.

4.3. Replace words with their alternatives
Once we have obtained a list of alternatives, we proceed to
evaluate which of the alternatives fits best within the con-
text of the sentence. This means that given a sentence con-
sisting of a sequence of N words (w1, w2...wN ), the word
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wi is substituted in the sentence with each of its replace-
ment candidates, and a set of sentences is obtained as in
(1):

{(w1 . . . wi . . . wN ),

(w1 . . . w
(1)
i . . . wN ),

. . .

(w1 . . . w
(ri)
i . . . wN )}.

(1)

The perplexity of an LM trained on an English corpus is
used to evaluate the probability that a sentence has been
produced by a native English speaker. Given a sentence
consisting of a sequence of N words as w1, w2...wN , the
perplexity of a language model is defined as in Equation
(2):

PP = 2−
1
nPLM (w1...wN ) (2)

Note that the LM evaluation is performed with lowercased
sentences. Once the sentence with the lower perplexity has
been selected, the case is reproduced, even if the word has
been replaced. This is relevant in the case of capitalization
conventions, as related to words such as Poor or Profits in
Figure 1.

5. Experiments
5.1. Experimental Settings
In order to evaluate our proposal, we use the Tesseract2

Tool (Smith, 2007) to apply OCR to the book An Essay To-
wards Regulating the Trade. Specifically, we convert into
text a scan of the chapter An Act for Erecting of Hospitals
and Work-Houses within the City of Bristol, for the better
Employing and Maintaining the Poor thereof (pages 125 to
139).
The list of recognized words consists of the vocabulary of
the python package nltk3, expanded with a list of 467K
words4 (DWYL, 2019). For each word that is not included
in the vocabulary list we search for the closest 3 alternatives
(based on a string-distance metric).
In order to evaluate which word-alternative is the most
plausible in the sentence we use a 5-gram LM built with
KenLM toolkit (Heafield, 2011), trained on the Europarl-
v9 corpus (Koehn, 2005).

5.2. Results
The text obtained after applying OCR consists of 576 lines.
These lines are usually short, containing about 7 words per
line.
In Figure 2 we show an extract of the scanned book. The
text obtained after OCR is given in Table 1 (in the first col-
umn). Comparing the resultant text with the original, one
can easily spot errors mentioned in Section 3.,such as re-
trieving “fuch” instead of “such”, and further irregularities,
such as interpreting “time as” as a single word.

2https://github.com/tesseract-ocr/
tesseract

3https://www.nltk.org/
4https://github.com/dwyl/english-words/

blob/master/words.zip

Figure 2: Extract from the test set.

Original Edited Changes
{uch timeas
the faid Twenty
Guardians fhall

{uch times the said
Twenty Guardians
shall

timeas →
times; faid
→ said;
fhall →
shall

fo defire ; and
on his Refutal, the
faid

so desire; and on
his Refutal, the
said

fo → so;
defire →
desire; faid
→ said

Deputy-Governor
for the time being,
on fuch

Ex-governor for
the time being, on
such

Deputy-
Governor
→ Ex-
governor;
fuch →
such

fignification, fhall
be Bound, and is
hereby

fignification, shall
be Bound, and is
hereby

fhall →
shall

ikewife Enjoyned
and Required to
Call and

likewise Enjoined
and Required to
Call and

ikewife →
likewise;
Enjoyned
→ En-
joined

Table 1: Example of postedited line

Table 1 also presents the text after being processed with our
tool (second column). In the third column we include the
substitution performed (this information is also retrieved by
the tool). We observe that 66% of the lines contain at least
one correction. Each line has a minimum of 0 and a maxi-
mum of 3 corrections.
The tool is generally successful in correcting the words in
which the letter “f” and “s” were previously confused. Most
frequent in this regard are word-initial errors for “shall”,
“so” and “said”, but word-internal mistakes, as in“desire”
(see second row), are not uncommon.
In the first row we observe that the word “timeas” is not
recognized as part of the vocabulary. The tool finds that the
item can be split into the English words “time” and “as”.
However, the tool also finds other options, and opts to ren-
der “times”, thus requiring human intervention and illus-
trating the necessity of transparency in the automated pro-
cedure. In the last row, a non-existent word has been cor-
rected as “likewise” because it is similar in terms of string-
distance and is plausible according to the LM.
Table 2 presents some of the words that could not be found
in the vocabulary (first column) and their respective candi-
dates for replacement. The tool replaced these words by the
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Unrec.
word

Alternatives

“faid” “fai”, “f aid”, “fid”, “fa id”, “said”, “fraid”
“timeas” “timias”, “tim eas”, “time as”, “tineas”, “ti

meas”, “times”
“ikewife” “likewise”, “ike wife”, “piewife”,

“kalewife”

Table 2: Example of replacement dictionaries

most plausible alternative, employing th LM to evaluate the
resulting sentence.
Despite numerous successful corrections, Table 1 also
shows some of the limitations of the tool. For example,
the word “fignification” has not been properly replaced by
a correct alternative. Other words have been incorrectly re-
placed, such as “Deputy-Governor”, which now occurs as
“Ex-Governor”.
In our experiments, we observe that around 63% of the er-
rors are corrected by our tool. Most of the corrections are
made in frequent words such as the word “shall” mentioned
in Table 1.

6. Conclusion and Future Work
In this paper we have presented a tool to postprocess errors
in the output of an OCR tool. As the problems addressed
mainly pertains to historical documents, the tool was illus-
trated with reference to the early 18th-century text An Es-
say Towards Regulating the Trade. In order to achieve a
more accurate representation of the original document than
is commonly attained in image-text conversion, we con-
structed a system that identifies words that have potentially
been incorrectly recognised and which suggests candidates
for replacement. In order to select the best candidate, these
alternatives are evaluated within the context of the sentence
using an LM.
In this study we have manually stated which characters are
misrecognized by the OCR system. In the future, we hope
to develop a method for automatically identifying such
characters.
We did not find large amounts of good-quality data from
around 1700. Further research would benefit from LM
models built on data from the same period as the test set,
which could also be used to select appropriate sentences
(Poncelas et al., 2016; Poncelas et al., 2017).
The tool could also be expanded to address related issues
of textual organization, such as the automatic separation of
side notes from a body of text. Overall, OCR technology is
a fundamental factor in the dissemination of knowledge in
the digital age, and to refine its output is essential.
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Abstract 
The basic tasks of ancient Chinese information processing include automatic sentence segmentation, word segmentation, part-of-speech 
tagging and named entity recognition. Tasks such as lexical analysis need to be based on sentence segmentation because of the reason 
that a plenty of ancient books are not punctuated. However, step-by-step processing is prone to cause multi-level diffusion of errors. 
This paper designs and implements an integrated annotation system of sentence segmentation and lexical analysis. The BiLSTM-CRF 
neural network model is used to verify the generalization ability and the effect of sentence segmentation and lexical analysis on different 
label levels on four cross-age test sets. Research shows that the integration method adopted in ancient Chinese improves the F1-score of 
sentence segmentation, word segmentation and part of speech tagging. Based on the experimental results of each test set, the F1-score 
of sentence segmentation reached 78.95, with an average increase of 3.5%; the F1-score of word segmentation reached 85.73%, with an 
average increase of 0.18%; and the F1-score of part-of-speech tagging reached 72.65, with an average increase of 0.35%. 

Keywords: sentence segmentation of ancient Chinese, word segmentation, part-of-speech tagging, BiLSTM-CRF, ancient Chinese 
information processing 

1. Introduction 
Lexical analysis is the most basic task of Chinese 
information processing, including automatic word 
segmentation, part of speech tagging, and named entity 
recognition. Besides the above tasks, the basic task of 
information processing in ancient Chinese also includes 
automatic sentence segmentation. Chinese ancient books 
have a vast number of texts, and most of them are 
unpunctuated, which brings great difficulties for readers to 
read and study. The use of advanced natural language 
processing technology for automatic sentence 
segmentation and lexical analysis of ancient Chinese can 
not only facilitate readers to read, but also of great 
significance to the arrangement of ancient books, the 
development of ancient Chinese and the intelligent 
application of ancient Chinese. 

Most of the research on information processing in ancient 
Chinese is focused on a specific subtask, such as automatic 
sentence segmentation and word segmentation, part of 
speech tagging and named entity recognition. To complete 
the basic task of ancient Chinese information processing, 
most scholars adopt different research methods and 
techniques, and each subtask need to be completed in turn, 
which greatly affects the processing efficiency of the 
machine. Moreover, using sentence segmented by machine 
to go on doing word segmentation and part of speech 
tagging are easy to result in multi-level diffusion of tagging 
errors, which affects the accuracy of overall tagging task. 

In this paper, a tagging system integrating automatic 
sentence segmentation and lexical analysis in ancient 
Chinese is designed and completed. BiLSTM-CRF model 
is used to joint learn sentence segmentation, word 
segmentation and part of speech information. Due to the 
relative shortage of tagged ancient Chinese corpus, most of 
the previous studies were conducted according to a special 
book, and the corpus scales were relatively small, so the 
training model could not be well applied to other types of 
ancient Chinese texts. Based on the existing resources, this 

paper constructs four kinds of annotated corpus written in 
different ages, and verifies the effect of the integrated 
annotation on different test sets by using the neural network 
model. 

2. Model introduction 
RNN model and its variants, which are suitable for 
sequence tagging, have greatly changed the research 
methods of natural language processing. RNN can be 
regarded as a multiple overlay structure of the same 
network. It performs the same operation for each element 
in the sequence, and each operation depends on the 
previous calculation results. In theory, RNN can use any 
length of sequence information, but in practice, only some 
previous steps can be reviewed. LSTM neural network is a 
kind of special RNN. Based on the original RNN model, 
input gate, forgetting gate and output gate are added. 
Neurons will selectively forget the useless information for 
current output. It inherits the advantage that RNN can keep 
the preorder’s information, and overcomes the problem that 
RNN can't really capture the long-distance dependency in 
the text. 

BiLSTM is a model put forward by Schuster in 1997 to 
solve the problem that LSTM can't retain the post 
information. The main idea of the model is to set up two 
LSTM structures in the front and back direction of the 
training sequence. By splicing the LSTM in two directions 
to capture the preorder and post order’s information, the 
information in the whole training sequence can be retained 
to the greatest extent. 

The BiLSTM-CRF model structure used in this paper was 
first proposed by Huang et al. The output of BiLSTM layer 
is a probability matrix, which is calculated by BiLSTM 
based on the optimal result of each moment. In this way, 
the output tag doesn’t consider the influence of the previous 
tag. For example, the word "孟子" appears in the input 
sequence "孟子 (name)卒 (die)继室 (second wife)以 (a 
conjunction) 馨子 (name)", in which " 孟 " is the first 
character and "子" is the last character. The model may 
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predict both "孟" and "子" as the first character, such 
situation should be avoided in the lexical analysis task of 
ancient Chinese. CRF is a framework for an undirected 
graph model that can be used to define the joint probability 
distribution of a tag sequence in a situation that a set of 
observed sequences need to be tagged. Assume that X is 
the random variable of the data sequence to be annotated, 
and Y is the random variable of the corresponding tag 
sequence. For example, X is the set of sentences in natural 
language, and Y is the part of speech set that used to mark 
these sentences. Random variables X and Y are jointly 
distributed and a conditional model P(Y|X) is constructed 
according to the pairs of observation sequence and label 
sequence. The CRF layer is matched with the output layer 
of BiLSTM, so that the output sequence of BiLSTM 
becomes the observation sequence of CRF, and then CRF 
calculates the optimal solution of the whole sequence in 
probability without ignoring the interaction between 
sequence element tags. 

3. Construction of corpus 
Ancient texts were selected according to different historical 
stages, and the corpus with the same size was extracted 
from the traditional version of Tso Chuan (左傳 , Han 
dynasty, 722BC~468BC), Brush Talks from Dream Brook 
(夢溪筆談, Song dynasty, AD1086~AD1093), Fantastic 
Tales by Ji Xiaolan (閱微草堂筆記 , Qing dynasty, 
language style is more colloquial, AD1789~AD1798), and 
Documents of History of Qing Dynasty (清史稿, Republic 
of China, AD1914~AD1927) as the experimental data set 
of this paper. The purpose of constructing a corpus by age 
is to explore the generalization ability of the model for text 

annotation in different ages after training based on mixed 
corpus of different ages. The data set is manually proofread 
on the basis of machine-assisted word segmentation and 
POS tagging. Kappa was used for labeling consistency test 
and the Kappa value was higher than 0.8, indicating a 
higher degree of labeling consistency. The specification of 
POS tags refers to Ancient Chinese Corpus published by 
LDC1, totaling 21 tags. The experimental data set is divided 
into training set, development set and test set according to 
the ratio of 8:1:1. Among them, the training set is a mixed 
corpus composed of 80% of the corpus in Tso Chuan, 
Brush Talks from Dream Brook, Fantastic Tales by Ji 
Xiaolan, and Documents of History of Qing Dynasty. Based 
on this mixed corpus, this paper discusses the annotation 
ability of the model to texts of various ages. The 
experimental corpus set “：，。；！？” six kinds of 
punctuation as sentence breaks, and each text sequence 
divided by two sentence breaks is treated as a sentence, 
with all other punctuation ignored. Table 1 is a general 
overview of the experimental data set. 

4. Integrated word position tag design 
Xue is the first to put forward a character-based learning 
method of sequential annotation, who uses four kinds of 
tags, which is LL(stands for left boundary of a word), 
LR(stands for monosyllabic word), MM(stands for the 
middle of a word) and  RR(stands for the right boundary of 
a word), to express the segmentation and annotation 
information of characters, thus it translates word 
segmentation task into serialized annotation task formally 
for the first time.  

Table 1 : Experimental data set 

This paper uses this method of character annotation to 
construct an ancient Chinese integrated-analysis annotation 
system. For this model, the problem is actually a tag multi-
classification problem, where each character needs to be 
assigned to a specific tag type. 

Word segmentation layer (WS): Using B, I, E, S four tags. 
B means that the current character is at the beginning of a 
multi-character word. I means that the current character is 
at the middle of a multi-character word. E means that the 
current character is at the ending of a multi-character word. 
S represents the current character is a one-character word. 
After transforming the character annotation sequence, the 

 
1 LDC Ancient Chinese Corpus 

sentence segmentation results can be calculated out. For 
example: 

Character annotation: 九 B 月 E ，S 晉 B 惠 I 公 E 卒 S 。
S 懷 B 公 E 立 S ，S 
After the transformation: 九月(September) ，晉惠公 卒
(die) 。懷公 立(ascend the throne) ， 

POS tagging layer (POS): Tagging the part of speech of 
the word to which each character belongs. Meanwhile, 
incorporating physical tags (personal name nr, place name 
ns) into POS. Then, adding POS on the basis of WS so that 
each character can corresponds to its position in the word 

https://catalog.ldc.upenn.edu/LDC2017T14 

The data set 
The training set The development set The test set 

#character #word #sentence #character #word #sentence #character #word #sentence 
Tso Chuan 75,000 65,000 15,000 9136 7755 1917 9280 7738 2046 

Brush Talks 
from Dream 

Brook 
81,000 63,000 13,000 9483 8384 1662 9825 8378 1643 

Fantastic Tales 
by Ji Xiaolan 81,000 69,000 14,000 9722 8699 1745 9789 8680 1784 

Documents of 
History of 

Qing Dynasty 
81,000 57,000 12,000 10248 8851 1651 9991 8159 1432 

Total 32,400 25,400 54,000 38,000 34,000 6975 38,000 33,000 6905 
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and the part of speech it represents or entity information it 
has. 

九 B-t 月 E-t ，S-w 晉 B-nr 惠 I-nr 公 E-nr 卒 S-v 。S-w 
懷 B-nr 公 E-nr 立 S-v ，S-w 

Each character is tagged word segmentation tag and POS 
tag, connected by “-“.Take “晉 B-nr 惠 I-nr 公 E-nr” as 
example, “晉” is the first character of a personal name, “惠” 
is a character in the middle of a personal name, “公” is the 
last character in a personal name, so that “晉惠公” can be 
segmented and recognized to a person's name, whose 
reality tag is represented as “nr”. 

Sentence segmentation layer (SS): Tagging whether a 
character is at the end of a sentence. Adding SS layer on 
the basis of WS and POS, so that each character can be 
corresponded with three layers, i.e., word segmentation, 
part of speech and sentence segmentation. 

九 B-t-O 月 E-t-L 晉 B-nr-O 惠 I-nr-O 公 E-nr-O 卒 S-v-
L 懷 B-nr-O 公 E-nr-O 立 S-v-L 

If a character in the corpus is at the break of a sentence, 
such as “月”, “卒” and “立” in the sentence, then tag “L” 
will be put after the part of speech tag, otherwise, tag “O” 
will be put after the part of speech tag. 

During the process of corpus preprocessing, three-layers 
tags categories (WS, POS, SS) can be processed in different 
ways: 

WS+POS+SS (e.g., 卒 S-v-L) is a three-layers tag. Under 
this annotation level, the annotation effect of each subtask, 
such as sentence segmentation (SS), can be calculated. 

There is WS+POS (e.g., 卒 S-v) in two-layers tags. Under 
this annotation level, the effects of word segmentation (WS) 
and POS tagging (WS+POS) can be calculated. 

There is WS (e.g., 卒 S) and SS (e.g., 卒 L) in one-layer 
tags. The effect of sentence segmentation or word 
segmentation can be calculated. 

5. Evaluation indexes 
The experimental training set is used for feature learning 
and training of the model, and the test set is used to verify 
the results of automatic tagging. For the evaluation of 
automatic tagging results, F1-score (harmonic mean), the 
most commonly used evaluation index in sequence tagging, 
is used to measure the effect of the model. F1-score is 
calculated from P(precision) and R(recall), and the 
calculation formula is: 

F1 =
2 ∗ P ∗ R

P + R
 

The calculation of Precision is as follows: 

P =
Correct number of tags

Number of machine tags
 

The calculation of Recall is as follows: 

R =
Correct number of tags

Number of all tags in the corpus
 

Based on the above evaluation metrics, sentence 
segmentation, word segmentation, part of speech tagging 

results are calculated. Sentence segmentation calculation is 
based on sentence rather than characters, that is, according 
to the label “L”. If both machine and manual tagging results 
are “L”, it is correct. Word segmentation and part of 
speech are calculated on the basis of words rather than 
characters. Taking POS tagging as example, it is assumed 
that the word 孟子(Mencius) is predicted as “孟S-nr子S-
nr”. Although the model gets a correct part of speech 
based on characters, however, the word segmentation is 
wrong, and the correct answer should be “孟B-nr子E-
nr”. To determine whether a word belongs to the correct 
part of speech, whether the character is correctly divided 
into words should be determined first, that is, determination 
should be based on the correct word segmentation. 

6. Experimental design and result analysis 
The results of Experiment 1 are the super parameters 
obtained by manual parameter adjustment on the 
development set, and the results of Experiment 2, 
Experiment 3 and Experiment 4 are obtained on the test set. 

Experiment 1 will verify the necessity of adding word 
vectors into the integration analysis of ancient Chinese and 
investigate the effect of word vectors of different 
dimensions on the results of integrated annotation. 
Generally speaking, the higher the dimension of the word 
vector, the more semantic features it contains, but they are 
not absolute positively correlated. Based on nearly 1.5 
billion characters of traditional ancient Chinese raw corpus 
(from Imperial Collection of Four and other ancient 
Chinese corpus), selecting word2vec as the tool, CBOW 
(Continuous Bag of-Words Model) as the model, we carry 
out character vector pretraining. The experiment sets the 
word vector dimension to 50, 100, 128 and 200 respectively, 
selects Tso Chuan test set as the test corpus, and adopts 
“WS+ POS+ SS” as its tagging layer, which is a tagging 
method of integrating sentence segmentation and lexical 
analysis. By manually adjusting parameters on the 
development set, the final hyper-parameter adopted is 
shown in Table 2. 

Word vector dimension  50/100/128/200 
Number of hidden layers 1 
Number of hidden units 200 

Minimum number of samples 64 
Dropout rate dropout 0.5 

The optimizer Adam 
Learning rate 0.001 

Table 2: Experimental hyper-parameter setting 

In the BiLSTM-CRF structure, based on experiments on 
the development set, it is found that the number of layers in 
BiLSTM had little influence on the precision, so the 
number of hidden layers in the model, namely the number 
of layers in BiLSTM, is set as 1. The number of hidden 
nodes in the sequence tagging task is usually from 200 to 
600, and 200 is taken as the parameter here. The minimum 
sample size is set to 64, with each sample size controlled 
between 50 and 60. The optimization of the model adopts 
the “Adam” algorithm, which has a good effect in the 
sequence tagging task. The Dropout method is used to 
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reduce overfitting. A Dropout with a parameter of 0.5 is 
added between the BiLSTM layer and the full connection 
layer, which can weaken the excessive interaction between 
various features caused by the small amount of data, so that 
the model has the optimal generalization ability and the 
lowest degree of overfitting. The experimental results are 
shown in Table 3. 

Table 3: The F1-score of integration of sentence 
segmentation and lexical analysis(unit %) 

As can be seen in table 3, the addition of word vector is 
necessary for sentence segmentation and lexical analysis 
tasks in ancient Chinese, especially for POS tagging tasks, 
which increased by 2.5 percentage points. In the word 
vector dimension setting, the experiment shows that 128 
dimensions is the best for the integrated automatic tagging 
of ancient Chinese. In order to verify the training effect of 
the word vector under this dimension, cosine similarity is 
used to calculate the semantic correlation between the two 
word vectors: Assume word vector A=(A1,A2,…,An), 
B=(B1, B2,…,Bn), the formula for cosine similarity is as 
follows: 

cos θ =
∑ (Ai × Bi)n
1

�∑ (Ai)2n
i=1 × �∑ (Bi)2n

i=1
 

i represents the dimension of the vector, and Ai represents 
the specific value of the i-dimension of the character A. 
Taking characters 也 (modal particle) and 曰 (say) as 
examples, the calculation results are as follows in Table 4: 

The most semantically 
relevant word of 也 

The most semantically 
relevant word of 曰 

矣(modal particle) 0.662 
之(modal particle) 0.659 
乎(modal particle) 0.658 

謂(say) 0.652 
非(be not) 0.593 

歟(modal particle) 0.584 
耶(modal particle) 0.571 
哉(modal particle) 0.563 

以(with) 0.525 

云(say) 0.696 
謂 0.584 
也 0.514 

言(say) 0.500 
問(ask) 0.465 

耶 0.434 
荅(answer) 0.415 
答(answer) 0.413 
為(do) 0.412 

Table 4: Semantic relevancy calculation results 

In experiment 2, for testing the performance of BiLSTM-
CRF model in tagging ancient texts, we used IDCNN 

(Iterated Dilated Convolutions) and non-CRF-layer 
BiLSTM model to compare with it. DCNN (Dilated 
Convolutions) was first proposed by (Yu et al., 2015) and 
applied to image semantic classification. IDCNN model 
structure is generated based on DCNN. Drawing on the 
advantages of CNN and RNN, IDCNN takes into account 
the parallel processing and breadth of context feature 
extraction, so it is also widely used in sequence tagging 
tasks. In this experiment, Tso Chuan is chosen as test set, 
and tagged in the method of integrating sentence 
segmentation and lexical analysis. Keeping other 
experimental variables (e.g., training corpus, word vector 
dimension) consistent, we investigate tagging effect of 
different models in the word segmentation task under 
integrated tagging layer. The experimental results are 
shown in Table 5. 

Neural network models Tso Chuan testing set (unit %) 
P R F1 

IDCNN 88.25 89.28 88.76 
BiLSTM 89.39 90.05 89.71 

BiLSTM-CRF 89.37 91.13 90.24 

Table 5: Word segmentation performance of different 
models on Tso Chuan 

The results of comparative experiments show that in 
ancient Chinese word segmentation task, the precision of 
BiLSTM-CRF model is only 0.02% lower than BiLSTM 
model, which is almost not different, and the recall is 1.08% 
higher than non-CRF-layer BiLSTM model, and F1-score 
is 1.48% higher than IDCNN and 0.53% higher than 
BiLSTM. As a result, BiLSTM-CRF model’s performance 
is generally higher than IDCNN model and BiLSTM model 
in ancient Chinese word segmentation task. 

This experiment was not carried out in the other three books, 
but the effects should be good because of the BiLSTM-
CRF’s advantage compared to the other two models. 

The third set of experiments focuses on four kinds of texts, 
including Tso Chuan, Brush Talks from Dream Brook, 
Fantastic Tales by Ji Xiaolan, and Documents of History of 
Qing Dynasty. In each text’s in-domain experiment, the 
training and testing corpus we used are both from the same 
text. The purposes of experiment 3 is to explore the 
modeling ability of the model that integrates sentence 
segmentation and lexical analysis applying to various texts, 
and to compare the result with experiment 4 which based 
on mixed corpus.  

Tagging layer in the experiment is “WS+POS+SS”, i.e., the 
tagging method of integrating sentence segmentation and 
lexical analysis. The experimental parameters are 
consistent with the previous ones. The experimental results 
are shown in Table 6. 

 

 

 

 

 

 

Word vector 
dimension 

Sentence 
segmentation  

Word 
segmentation 

POS 
tagging  

No word vector 82.16 88.23 78.36 
50 dimensions 83.07 89.39 79.53 

100 dimensions 83.89 90.19 80.59 
128 dimensions 84.11 90.24 80.88 
200 dimensions 83.58 89.83 80.42 
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Table 6: Experimental results of BiLSTM-CRF model applying to various texts under “WS+POS+SS” layer (unit %)

 Because of the differences in the age and genre of the four 
texts, the experimental results of the model for each corpus 
are quite different. By comparing the F1-score of word 
segmentation task, POS tagging task and sentence 
segmentation task, we found that in word segmentation 
task, Tso Chuan performances best, Fantastic Tales by Ji 
Xiaolan ranks the second, Documents of History of Qing 
Dynasty is the worst; in POS tagging task, Tso Chuan and 
Fantastic Tales by Ji Xiaolan have the same rank as last 
task, but Brush Talks from Dream Brook is the worst; in 
sentence segmentation task, Tso Chuan and Documents of 
History of Qing Dynasty’s effects are relatively good, far 
more accurate than Fantastic Tales by Ji Xiaolan and 
Brush Talks from Dream Brook. After analyzing the model 
tagging errors, we found that Brush Talks from Dream 
Brook contains a large number of non-repetitive 
professional terms in various disciplines, for example, in 
sentence “南呂調皆用七聲(scales)：下五、高凡、高工、
尺、高一、”, the words “下五”, “高凡” are proper names 
related to music. The relatively sparse data of proper 

names makes it difficult for the model to learn the relevant 
features, which is the main reason that Brush Talks from 
Dream Brook performances worse in POS tagging task. 

Experiment 4 is designed from two dimensions: (1) in the 
horizontal dimension, the experiment discusses the 
differences of model based on mixed corpus, tagging in 
different ages’ corpus under a same tagging layer, and 
investigates the models’ generalization ability considering 
the result of experiment 3; (2) in the vertical dimension, 
the experiment compares the tagging differences of same 
testing corpus under different tagging layers. The 
performance of the joint model is almost unaffected by the 
mixed corpus, so the experiment can verify the 
effectiveness of the integrated tagging method of word 
segmentation, POS tagging and sentence segmentation.  

The experiment selects BiLSTM-CRF as model, mixed 
corpus as training corpus, and 128-word vector dimensions. 
The experimental results are shown in Table 7.

Table 7: Experimental results of BiLSTM-CRF model based on mixed corpus applying to various corpus under different 
tagging layers

After comparing model’s tagging results of each testing set 
under different tagging layers, there are 4 conclusions: 

(1) By observing the F1-score of each testing set in the 
same tagging layer, it is found that taking mixed corpus as 
training set, tagging results of the model applying to 
various testing corpus are not balanced, which are similar 
to experiment 3’s result. By comparing the results under the 
layer that integrates sentence segmentation and lexical 
analysis with experiment 3, we found that Brush Talks from 
Dream Brook's performance in sentence segmentation, 
word segmentation and POS tagging tasks are 0.7, 1.0, 0.5 
percentage points higher respectively; Fantastic Tales by Ji 
Xiaolan's performance in sentence segmentation and POS 

tagging tasks are 2.3, 0.7 percentage points higher 
respectively; Tso Chuan declines slightly in all tasks. This 
result indicates that the integration model based on mixed 
corpus has learnt some homogeneity features of each 
corpus, which improves some testing sets’ tagging 
performances. However, in the meantime, the differences 
among corpus interferes with the comprehensive judgment 
of the model, resulting in some testing sets’ performance 
degradation. Therefore, the generalization ability of the 
integrated tagging model applying to different ages’ texts 
needs to be improved. 

 (2) By observing the F1-score of each testing set’s word 
segmentation task under different tagging layers, the layer 

Tagging layers Tso Chuan Brush Talks from 
Dream Brook 

Fantastic Tales by Ji 
Xiaolan 

Documents of History 
of Qing Dynasty 

P R F1 P R F1 P R F1 P R F1 

integration 

sentence 
segmentation 85.8 83.0 84.4 72.4 67.4 69.8 70.2 71.7 71.0 87.7 87.0 87.4 

word 
segmentation 89.9 92.1 90.9 86.8 84.8 85.8 85.8 87.9 86.8 82.8 77.3 80.0 

POS tagging 81.0 83.0 82.0 66.7 65.1 65.9 71.1 72.9 72.0 72.7 68.0 70.3 

Tagging layers Tso Chuan Brush Talks from 
Dream Brook 

Fantastic Tales by Ji 
Xiaolan 

Documents of History 
of Qing Dynasty 

P R F1 P R F1 P R F1 P R F1 
only sentence segmentation 83.6 79.5 81.5 69.0 64.4 66.6 68.1 68.7 68.4 86.8 83.9 85.3 

only word segmentation 88.8 91.4 90.0 87.4 85.8 86.6 85.8 87.1 86.4 81.2 77.2 79.2 

POS 
word 

segmentation 88.9 91.2 90.0 86.9 86.2 86.6 85.5 86.8 86.1 82.1 77.4 79.7 

POS tagging 79.2 81.2 80.2 67.6 65.6 66.6 72.2 73.2 72.7 71.8 67.7 69.7 

integration  

sentence 
segmentation 86.5 81.9 84.1 72.0 71.1 71.5 73.7 73.0 73.3 85.2 88.8 86.9 

word 
segmentation 89.4 91.1 90.2 87.6 85.9 86.8 86.3 87.0 86.6 81.7 77.0 79.3 

POS tagging 80.1 81.7 80.9 67.4 65.4 66.4 72.5 72.9 72.7 72.8 68.6 70.6 
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that integrates sentence segmentation and lexical analysis 
performances best in its entirely. Regardless of which 
testing set, the F1-score of the tagging layer that only 
segments word is lower than the integrated layer, which 
means that integrated tagging method of sentence 
segmentation and lexical analysis can improve word 
segmentation task in ancient Chinese. 

 (3) By observing the F1-score of each testing set’s 
sentence segmentation task under different tagging layers, 
the layer that integrates sentence segmentation and lexical 
analysis performances best in its entirely, which shows that 
integrated tagging method can improve sentence 
segmentation task in ancient Chinese. Taking Tso Chuan as 
example, the F1-score of sentence segmentation under 
integrated tagging layer is 2.6 percentage higher than the 
layer only segment sentence. Similar improvement happens 
in other testing sets, reflecting that in automatic sentence 
segmentation task of ancient Chinese, integration of 

sentence segmentation and lexical analysis is better than 
step-by-step tagging method. 

(4) Comparing the layer of integrated tagging and the layer 
of POS tagging, we can find that the F1-score of integrated 
tagging in most testing sets is higher than POS tagging 
layer. Taking Tso Chuan as example, the performance of 
word segmentation and part-of-speech tagging under 
integrated tagging layer is 0.2 and 0.7 percentage higher  
than the POS tagging layer respectively. This result verifies 
that the integration of sentence segmentation and lexical 
analysis performances better in word segmentation task and 
POS tagging task than those methods without adding 
information of sentence break.  
 A comprehensive analysis based on (2), (3), (4) can find 
that the sentence segmentation, word segmentation, and 
POS tagging tasks have improvement because of the 
integrated annotation system, and the promotion(F1-score) 
is not limited to one kinds of testing set. The concrete 
conditions are shown in Table 8. 

Table 8: The promotion of F-score in each task after using the integrated annotation system

Although the integrated tagging method has limit in task 
promotion, the experiment proves the feasibility of it. It can 
avoid multi-level spread of tagging errors in single task. 
For example, if performing tasks step-by-step, we need 
segment sentence first, and then perform word 
segmentation task and POS tagging task, which will cause 
erroneous multi-level accumulation, and the whole 
performance is not as good as the integrated method. 
What’s more, the tagging method of integrating sentence 
segmentation and lexical analysis can greatly improve the 
efficiency of processing words and sentences in ancient 
Chinese. 

7. Conclusion 
This paper designs and implements the annotation systerm 
of integrating sentence segmentation and lexical analysis of 
ancient Chinese. Based on BiLSTM-CRF neural network 
model, we verify the intergrated tagging model’s 
generalization ability on different ages’ texts, as well as the 
model’s effects on sentence segmentation, word 
segmentation and part of speech tagging of ancient Chinese 
under different tagging layers on four different historical 
testing sets, including Tso Chuan, Brush Talks from Dream 
Brook, Fantastic Tales by Ji Xiaolan and Documents of 
History of Qing Dynasty. The results appeal that the 
integrated tagging method performs better among tasks of 
sentence segmentation, word segmentation and POS 
tagging. The F1-score of sentence segmentation reached 
78.95, with an average increase of 3.5%; the F1-score of 
word segmentation reached 85.73%, with an average 
increase of 0.18%; and the F1-score of part-of-speech 
tagging reached 72.65, with an average increase of 0.35%. 

Future research will expand the scale of corpus and 
improve the model. Focusing on the design of deep 

learning model in the context of large-scale cross era 
corpus, the model will include attention system and transfer 
learning method to explore the adaptability of model to 
different times’ texts. Finally, we will develop an 
integrated analysis system of ancient Chinese with better 
performance across the ages and styles. 
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Abstract 
This paper describes a first attempt to automatic semantic role labeling in Ancient Greek, using a supervised machine learning approach. 
A Random Forest classifier is trained on a small semantically annotated corpus of Ancient Greek, annotated with a large amount of 
linguistic features, including form of the construction, morphology, part-of-speech, lemmas, animacy, syntax and distributional vectors 
of Greek words. These vectors turned out to be more important in the model than any other features, likely because they are well suited 
to handle a low amount of training examples. Overall labeling accuracy was 0.757, with large differences with respect to the specific 
role that was labeled and with respect to text genre. Some ways to further improve these results include expanding the amount of training 
examples, improving the quality of the distributional vectors and increasing the consistency of the syntactic annotation. 

Keywords: Semantic Role Labeling, Ancient Greek, distributional semantics 

1. Introduction 

In the last couple of years there has been a large wave of 
projects aiming to make the large and diachronically 
diverse corpus of Ancient Greek linguistically searchable. 
Some large treebanking projects include the Ancient Greek 
Dependency Treebanks (Bamman, Mambrini, and Crane, 
2009), the PROIEL Treebank (Haug and Jøhndal, 2008), 
the Gorman Trees (Gorman, 2019) and the Pedalion 
Treebanks (Keersmaekers et al., 2019). Altogether (also 
including some smaller projects) the Greek treebank 
material already contains more than 1.3 million tokens – 
and it is still growing – offering a solid basis for corpus-
linguistic research. There have also been recent efforts to 
automatically annotate an even larger body of text using 
natural language processing techniques: see Celano (2017) 
and Vatri and McGillivray (2018) for the literary corpus 
and Keersmaekers (2019) for the papyrus corpus. However, 
despite this large amount of morphologically and 
syntactically annotated data, semantic annotation for 
Ancient Greek is far more limited. A label such as “ADV” 
(adverbial) in the Ancient Greek Dependency Treebanks, 
for instance, refers to a large category of adverbials that do 
not necessarily have much in common: e.g. expressions of 
time, manner, place, cause, goal, and so on. While there 
have been some smaller scale initiatives for semantic role 
annotation in Greek, these only amount to about 12500 
tokens (see section 2). This can be explained by the fact that 
manual annotation is a time-intensive task. Therefore this 
paper will present a first attempt to automatic semantic role 
labeling in Ancient Greek, using a supervised machine 
learning approach. 
This paper is structured as follows: after introducing the 
data used for this project (section 2), section 3 will describe 
the methodology. Section 4 will give a detailed overview 
and analysis of the results, which are summarized in section 
5. 

2. The data 

Devising a definite list of semantic roles for Ancient Greek 
is not a trivial task. Looking at semantic annotation projects 

                                                           
1 While I am planning to include nominatives and accusatives in 

future versions of the labeler, this was not possible at this moment 

because none of the projects I included annotated them. 

of modern languages, we can also see a wild amount of 
variation in the number of roles that are annotated, ranging 
from the 24 roles of VerbNet (Kipper Schuler, 2005) to the 
more than 2500 roles of FrameNet (Baker, Fillmore, and 
Lowe, 1998). Obviously learning 2500 semantic roles is 
not feasible in a machine learning context (and even the 39 
roles in the Ancient Greek Dependency Treebanks are a 
little on the high side considering the amount of training 
data we have, see below). Therefore I decided to make use 
of the roles of the Pedalion project (Van Hal and Anné, 
2017). These are based on semantic roles that are 
commonly distinguished both in cross-linguistic 
typological frameworks and in the Greek linguistic 
tradition (in particular Crespo, Conti, and Maquieira 2003, 
although their list is more fine-grained). The 29 Pedalion 
roles I used for this project (see table 1) are a reasonable 
enough amount to be automatically learned through 
machine learning, and they are also specifically relevant for 
Ancient Greek, in the sense that no role of this list is 
expressed by the exact same set of formal means as any 
other role: e.g. while both an instrument and a cause can be 
expressed with the dative in Greek, a cause can also be 
expressed by the preposition ἕνεκα (héneka: “because of”) 
with the genitive while an instrument cannot. 
For this task I limited myself to nouns and other 
nominalized constructions, prepositional groups and 
adverbs, depending on a verb. I excluded a number of 
constructions from the data (on a rule-based basis), either 
due to a lack of semantic annotation in the data I used (see 
below) or because they did not express any of the semantic 
roles listed in table 4 (e.g. appositions): nominatives, 
vocatives, accusatives when used as an object, infinitive 
and participial clauses (they are still included when 
nominalized with an article, see e.g. sentence 1 below), and 
words with a syntactic relation other than ADV (adverbial), 
OBJ (complement) or PNOM (predicate nominal).1 ADV 
is used for optional modifiers (e.g. “Yesterday I gave him 
a book”), while OBJ is used for obligatory arguments of 
non-copula verbs (e.g. “Yesterday I gave him a book”) and 
PNOM for obligatory arguments of copula verbs (e.g. “I 
was in Rome”). 
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I took semantically annotated data from the following 
sources: 
(1) The Ancient Greek Dependency Treebanks 

(AGDT) (Bamman, Mambrini, and Crane 2009), 
which has semantic data from the Bibliotheca of 
Pseudo-Apollodorus, Aesop’s Fables and the Homeric 
Hymn to Demeter (1119 semantically annotated tokens 
in total).2 The annotation scheme is described in 
Celano and Crane (2015): since it was more fine-
grained (39 unique roles) than the one this project uses, 
some of their categories needed to be reduced (e.g. 
“relation”, “connection”, “respect” and “topic” to 
“respect”). Additionally, there are two other projects 
that are not included in the AGDT but use the same 
annotation scheme: a treebank of Apthonius’ 
Progymnasmata (Yordanova, 2018, 752 tokens in 
total) and of the Parian Marble (Berti, 2016, 
annotated by Giuseppe G. A. Celano, 61 tokens in 
total). 

(2) The Harrington Trees (Harrington, 2018), consisting 
of Susanna from the Old Testament, the first part of 
Lucian’s True Histories and the Life of Aesop (Vita G): 
in total 1118 semantically annotated tokens. While 
their annotation scheme is quite compatible with the 
Pedalion scheme, their role set is a little smaller (22 
unique roles), so I manually checked their data and 
disambiguated some roles (in particular “extent”, 
“orientation” and “indirect object”). Syntactically its 
annotation scheme does not make a distinction 
between obligatory (OBJ) and non-obligatory (ADV) 
modifiers, so they were also disambiguated manually. 

(3) The Pedalion Treebanks (Keersmaekers et al., 2019), 
annotated by a group of people involved at the 
University of Leuven in the annotation scheme 
described in this paper (syntactically, they are 
annotated in the same way as the AGDT). This is the 
largest amount of data this project uses (9446 
semantically annotated tokens, or 76% of the total) and 
contains a wide range of classical and post-classical 
authors. 

In total this data includes 12496 tokens of 29 roles, as 
described in table 4 at the end of this paper. 
 

3. Methodology 

Next, I used this dataset of 12496 annotated roles as 

training data for a supervised machine learning system. 

Traditionally, automated approaches typically make use of 

formal features such as part-of-speech tags and 

morphology, syntactic labels, lemmas and sometimes 

encyclopedic knowledge such as lists of named entities (see 

e.g. Gildea and Jurafsky, 2002; Màrquez et al., 2008; 

Palmer, Gildea, and Xue, 2010), essentially excluding 

semantic information. This seems counter-intuitive, but 

was necessary at the time due to a lack of good methods to 

                                                           
2 While the AGDT treebank is also available in the Universal 

Dependencies project, I used their original version (in the style of 

the Prague Dependency Treebank) to ensure compatibility with 

the other projects included. 
3 This is the DepHeadChild model in the Keersmaekers and 

Speelman (to be submitted) paper. 
4 This “latent meaning” simply refers to the fact that several 

context features tend to be highly correlated: e.g. a word such as 

represent lexical semantics computationally. Recently, 

however, due to the rise of so-called distributional semantic 

models (or “vector space models”) and word embeddings, 

it has become possible to computationally represent the 

meaning of a word as a vector, with words that are similar 

in meaning also having mathematically similar vectors. 

This methodology has been highly successful for several 

natural language processing tasks, including semantic role 

labeling (e.g. Zhou and Xu, 2015; He et al., 2017; 

Marcheggiani and Titov, 2017). 

Therefore one of the crucial features used for this task was 

a distributional vector of both the verb and the argument 

that bears the semantic relationship to the verb. The method 

of computing these distributional vectors is explained in 

more detail in Keersmaekers and Speelman (to be 

submitted). In short, they are calculated by computing 

association values (with the PPMI “positive pointwise 

mutual information” measure) of a given target lemma with 

its context elements, based on a large (37 million tokens) 

automatically parsed corpus of Ancient Greek (see Turney 

and Pantel, 2010 for a more detailed explanation of this 

methodology). These context elements are lemmas with 

which the target lemma has a dependency relationship 

(either its head or its child).3 Next, these vectors are 

smoothed and their dimensionality is reduced by a 

technique called latent semantic analysis (LSA). This 

technique (using so-called Singular Value Decomposition) 

enables us to retrieve vectors with a lower dimensionality, 

where the individual elements do not directly correspond to 

individual contexts but the ‘latent meaning’4 contained in 

several context elements (see Deerwester et al., 1990 for 

more detail). Experimentally I found that reducing the 

vector to only 50 latent dimensions was sufficient for this 

task, with no significant improvements by increasing the 

number of dimensions.5 

Apart from the distributional vector of both the verb and its 

argument, the following additional features were included: 

 The form of the construction, subdivided into three 

features: the preposition (or lack thereof), the case 

form of its dependent word and a feature that combines 

both; e.g. for ἀπό+genitive (apó: “from”) these 

features would be {ἀπό,genitive,ἀπό+genitive}. 

Combinations that did occur less than 10 times were 

set to “OTHER” (179 in total). 

 The lemma of both the verb and its argument. For 

verbs or arguments that occurred less than 50 times, 

the value of this feature was set to “OTHER”. Only 26 

argument lemmas and 25 verb lemmas occurred more 

than 50 times; however, altogether these lemmas 

account for 34% of all tokens for the arguments and 

34% of all tokens for the verbs as well. 

ἐξέρχομαι (exérkhomai) and ἀπέρχομαι (apérkhomai) “go away” 

would typically be used with similar nouns. These “latent 

meanings” can therefore be seen as generalizations over several 

correlated features. 
5 I used the function svds from the R package RSpectra (Qiu et al., 

2019). 
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 The syntactic relation between verb and argument, 

which was either “OBJ” (complement), “ADV” 

(adverbial) or “PNOM” (predicate nominal). 

 Animacy data, taken from an animacy lexicon coming 

from several sources: the PROIEL project (Haug and 

Jøhndal, 2008) as well as data annotated at the 

University of Leuven (see Keersmaekers and 

Speelman, to be submitted). It categorizes nouns into 

the following groups: animal, concrete object, non-

concrete object, group, person, place and time. For 

5249 (42%) arguments a label from this category could 

be assigned; the others were set to “unknown”. 

 The part-of-speech of the argument to the verb: 

adjective, article, demonstrative pronoun, indefinite 

pronoun, infinitive, interrogative pronoun, noun, 

numeral, participle, personal pronoun and relative 

pronoun. 

 Morphological features of the argument and of the 

verb: gender and number for the argument and 

number, tense, mood and voice for the verb. 

I trained a Random Forest classifier on this data, using R 

(R Core Team 2019) package randomForest (Breiman et 

al., 2018), building 500 classification trees6 – this classifier 

turned out to perform better than any other machine 

learning model I tested. The results were evaluated using 

10-fold cross-validation (i.e. by dividing the data in 10 

roughly equally sized parts as test data, and training 10 

models on each of the other 9/10 of the data). 

4. Results and analysis 

Overall labeling accuracy was 0.757, or 9460/12496 roles 

correctly labeled.7 However, there were large differences 

among specific roles, as visualized in table 1. These results 

are calculated by summing up the errors for each of the 10 

test folds. 

 

 Precision Recall F1 

agent (364) 0.875 0.712 0.785 

beneficiary (715) 0.649 0.691 0.669 

cause (753) 0.728 0.681 0.704 

companion (424) 0.870 0.682 0.765 

comparison (198) 0.882 0.455 0.600 

condition (5) (never used) 0.000 0.000 

degree (295) 0.745 0.793 0.768 

direction (1006) 0.809 0.874 0.840 

                                                           
6 This is the default setting for the randomForest package, but this 

amount can be decreased to as low as 250 without having a large 

negative effect on labeling accuracy (0.756, or -0.1%). 
7 While this set of roles is quite fine-grained, a reduction in the 

number of roles did not have a large effect on accuracy: when I 

merged some less frequent roles with more frequent ones 

(‘condition’ to ‘respect’, ‘extent of space’ to ‘location’, 

‘frequency’ and ‘time frame’ to ‘time’, ‘intermediary’ and ‘value’ 

to ‘instrument’, ‘material’ to ‘source’, ‘modality’ to ‘manner’, 

‘property’ to ‘possessor’ and ‘result’ to ‘goal’, reducing the 

amount of roles to 19 from 29), accuracy only increased with 

1.1% point (0.768). This is probably because these roles, while 

semantically quite similar, typically use other formal means in 

Greek to express them (e.g. ‘time frame’ is typically expressed by 

the genitive, but ‘time’ by the dative). 

duration (221) 0.821 0.665 0.735 

experiencer (259) 0.742 0.444 0.556 

extent of space (67) 0.917 0.164 0.278 

frequency (78) 0.704 0.487 0.576 

goal (282) 0.696 0.422 0.525 

instrument (507) 0.628 0.673 0.650 

intermediary (16) 1.000 0.688 0.815 

location (1436) 0.702 0.808 0.752 

manner (1596) 0.745 0.809 0.775 

material (22) 1.000 0.727 0.842 

modality (17) 0.385 0.294 0.333 

possessor (127) 0.781 0.701 0.739 

property (6) 0.000 0.000 0.000 

recipient (1289) 0.879 0.942 0.909 

respect (800) 0.708 0.733 0.720 

result (15) 0.667 0.133 0.222 

source (803) 0.724 0.885 0.797 

time (943) 0.805 0.752 0.777 

time frame (45) 0.786 0.489 0.603 

Table 1: Precision, recall and F1 scores for each semantic 

role (number of instances between brackets) 

 

In general low recall scores for a specific role can be 

explained by a lack of training examples: roles that had 

very little training data such as condition (only 5 instances), 

property (6 instances) and result (15 instances) expectedly 

had very low recall scores (0 for condition and property, 

and 0.133 for result). Figure 1 plots the recall score of each 

role as a function of the (logarithmically scaled) token 

frequency of the role in the training data, showing that the 

amount of training examples is one of the main factors 

explaining the performance of each role. Figure 2 shows a 

confusion matrix detailing how often each role 

(“Reference”) got labeled as another role (“Prediction”). 

Next, we can estimate the effect of each variable by testing 

how well the classifier performs when leaving certain 

variables out of the model.8 As can be inferred from table 

2, there were only two features that had a substantial effect 

on the overall model accuracy: the word vectors (-8% 

accuracy when left out) and the syntactic label (-2.4% 

accuracy when left out). Lemmas, morphology, animacy 

and part-of-speech were less essential, as the accuracy 

decreases less than half a percentage point when either of 

them (or all of them) is left out. Probably the information 

that is contained in the lemma, animacy and part-of-speech 

features is already largely contained in the word vectors, 

8 I did not test leaving out the three variables indicating the form 

of the construction since I considered them essential for the 

classification task. The variable importances calculated by the 

random forest also indicate that these variables are by far the most 

important (in the order “combined preposition/case” > 

”preposition” > ”case”). While including a feature “combined 

preposition/case” might seem superfluous, considering that the 

regression trees are able to model the interaction between them 

natively, when it is excluded there is a relatively big drop in 

accuracy, from 0.757 to 0.726 (-3.1%). Presumably due to the low 

amount of training data and the large feature space, the data often 

gets partitioned into too small groups during the construction of 

the tree so that this interaction effect is not modelled (see also 

Gries, 2019, who argues that adding such combined features in a 

Random Forest can be beneficiary for regression as well). 
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while most morphological features are not that important 

for semantic role labeling. 9 
 

 Accuracy 

Overal accuracy 0.757 

Excluding word vectors 0.677 (-8.0%) 

Excluding syntactic label 0.734 (-2.3%) 

Excluding lemmas 0.759 (+0.2%) 

Excluding morphology 0.754 (-0.3%) 

Excluding animacy class 0.758 (+0.1%) 

Excluding part-of-speech 0.756 (-0.1%) 

Excluding lemmas, morphology, 
animacy class and part-of-speech 

0.754 (-0.3%) 

Table 2: Accuracy when leaving out certain features 

 

As for part-of-speech differences, interrogative pronouns 

(accuracy 0.893; however, 3/4 of examples are the form τί 

tí “why”), adverbs (0.822) and personal pronouns (0.807) 

did particularly well, while relative pronouns (0.528), 

articles (0.616), numerals (0.629, but only 35 examples) 

and infinitives (0.667) did rather badly. The results of 

relative pronouns are not particularly surprising, since they 

are inherently anaphoric: therefore it would likely be better 

to model them by the vector of their antecedent (which is 

directly retrievable from the syntactic tree) rather than the 

“meaningless” vector of the lemma ὅς (hós: “who, which”). 

As for infinitives, the issue might be that they are modelled 

with the same vectors as nouns, while their usage is quite 

different: in sentence (1), for instance, whether the lemma 

of the infinitive is θολόω (tholóō: “disturb”) or any other 

lemma is irrelevant, and the causative meaning is instead 

inferred from the verb ἐμέμφετο (emémpheto: he 

reproached) combined with the ἐπί + dative (épi: “because 

of”) infinitive construction (in the future it might therefore 

be better to model infinitive arguments with a singular 

vector generalizing over all occurrences of an infinitive). 

Similarly, articles are modelled with the vector of the 

lemma ὁ (ho: “the”), which covers all usages of this lemma, 

while the (dominant) attributive usage is quite different 

from its pronominal usage (as a verbal argument): therefore 

restricting the vector of ὁ to pronominal uses might also 

help performance. 

   (1) ἐμέμφετο ἐπὶ τῷ 

 emémpheto epí tõi 

 reproach.3SG.IMPF for the.DAT 

 τὸν ποταμὸν θολοῦν 

 tón potamón tholoũn 

 the.ACC river.ACC disturb.INF.PR 

 He reproached [him] for disturbing the 

river 

Finally, there were some genre differences, as can be seen 

in table 3. 

 

 

                                                           
9 In the variable importances, gender and number of the argument 

of the verb were considered to be the most important, while in 

particular person, number and voice of the verb ranked lower than 

any other feature (including any of the 100 vector elements). As 

 Accuracy 

Religion 0.838 (932/1112) 

Documentary 0.809 (1332/1646) 

History 0.765 (1439/1881) 

Drama 0.751 (1091/1453) 

Narrative 0.751 (2019/2689) 

Rhetorical 0.723 (1086/1503) 

Philosophy 0.714 (1076/1506) 

Epic and lyric poetry 0.687 (485/706) 

Table 3: Accuracy per genre 

 

Unsurprisingly, the texts that did well are quite repetitive 

in nature, have a large amount of training examples and use 

an everyday, non-abstract language: religious and 

documentary texts. On the other side of the spectrum are 

poetic texts, which often express their semantic roles with 

other formal means than prose texts (which are the majority 

of the training data), and philosophical and rhetorical texts, 

which use relatively abstract language (see also below). 

Moving towards a more detailed analysis of the results, the 

following will give a short overview of the specific 

problems associated with some roles that turned out to be 

especially problematic. As for condition, property, result 

and modality, which all had recall scores of less than 0.3, 

there are simply not enough training tokens in the data to 

make any conclusions about the performance of these roles 

(5, 6, 15 and 17 respectively). Intermediary and material 

did perform relatively well, on the other hand (recall of 

0.688 and 0.727), even though they do not have that many 

training examples either (16 and 22 respectively). 

However, they are rather uniformly represented in the 

training data: each example of “intermediary” that was 

classified correctly was encoded by διά + genitive (diá: 

“through”) and had either the verb γράφω (gráphō: 

“write”), κομίζω (komízō: “bring”) or πέμπω (pémpō: 

“send”) with it, while every single example of “material” 

that was classified correctly was a genitive object of either 

πίμπλημι (pímplēmi) or ἐμπίμπλημι (empímplēmi) “fill”. 

Because of this large level of uniformity, their relatively 

high performance with respect to their token frequency is 

not particularly surprising. 

Extent of space, on the other hand, did quite bad even 

when its frequency of 67 training examples is taken into 

account, as can be seen on figure 1. From the confusion 

matrix in figure 2, we can see that it was, unsurprisingly, 

most commonly misclassified as “location” (almost half of 

all cases) and, to a much lower extent, “direction” and 

“cause”. One of the difficulties is that most expressions that 

can be used to express this role can also express a location: 

e.g. διά with the genitive (diá: “through”), ἐπί with the 

accusative (epí “at, to”), κατά with the accusative (kata: 

“along”) and so on (sometimes this role was also 

misclassified as “location” in the data, which obviously did 

not help the learning or evaluation process). As an 

additional difficulty, the lemmas used with this role do not 

for voice of the verb, this can probably be explained because I did 

not label subjects, making the number of roles where this would 

be a factor relatively limited (mainly “agent” and possibly 

“experiencer”). 
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substantially differ from the lemmas typically used for the 

role “location” (e.g. lemmas such as ἀγορά agorá 

“market”, γῆ gẽ “land” etc.). Instead it is typically an 

interaction of the meaning of the verb and the form of the 

construction that determines that the semantic role should 

not be “location” but “extent of space”, which is likely too 

difficult to learn with the limited amount of training 

examples for this role. Similar problems arise for the roles 

time frame and frequency, which are often expressed with 

the same argument lemmas as “time” and therefore are 

often confused with this role: however, the degree of 

confusion is less than with “extent of space”, likely because 

the formal means to express these roles are quite different 

from the ones used to express “time” (e.g. time frame is 

mostly expressed with the genitive, while time is rarely so; 

frequency uses several adverbs such as πολλάκις pollákis 

“frequently”, δίς dís “twice” etc. that can only express this 

role). More training examples would probably be beneficial 

in these cases: while source and direction, for instance, are 

also often used with the same arguments as “location”, their 

recall scores are quite high, likely because they have many 

training examples to learn from (803 and 1006 

respectively). 

Moving to the more frequent roles, there were three roles 

in particular that received a wrong classification quite 

frequently even with a relatively high amount of training 

examples: comparison, experiencer and goal. As for 

comparison, one problem is that there are a wide range of 

formal means to express this role: 21 in total, which is on 

the high side, considering that the median role only has 12 

formal means and that there is only an average amount of 

training examples for this role (198 in total). Another 

problem is that unlike for roles such as “time” and 

“location”, the argument of the verb can be almost any 

lemma (and, when it is used in an adverbial relationship, 

the verb itself as well): if we look at sentence 2, for 

instance, neither the verb ἔχω (ékhō: “have”) nor the noun 

ἄνθρωπος (ánthrōpos: “human”) is particularly useful to 

identify the role of ἀντί (antí: “instead”): instead ἀντί 

functions more as a “mediator” between κυνοκέφαλος 

(kunoképhalos: “baboon”) and ἄνθρωπος. Involving not 

only the verb but also its dependents would help in this 

case, but since the comparative construction can refer to 

any element in the sentence this problem is rather 

complicated (and might be more appropriate to solve at the 

parsing stage). 

   (2) τίς αὐτὸν θελήσει 

 tís autón thelḗsei 

 who.NOM he.ACC want.3SG.FUT 

 ἀγοράσαι καὶ κυνοκέφαλον 

 agorásai kaí kunoképhalon 

 buy.INF.AOR and baboon.ACC 

 ἀντὶ ἀνθρώπου ἔχειν; 

 antí anthrṓpou ékhein? 

 instead.of human.GEN have.INF.PR 

 Who will want to buy him and have a baboon 

instead of a human? 

The experiencer role is most often confused with the 

beneficiary/maleficiary role. This happens in particular 

when this role receives the label ADV “adverbial” (recall 

0.173) rather than OBJ “complement” (recall 0.817). In this 

case both “beneficiary” and “experiencer” refer to a person 

who is affected in some way by the action of the main verb, 

and the difference between being advantaged or 

disadvantaged by an action and being affected by it is often 

only subtle (and sometimes also inconsistently annotated). 

In sentence 3, for instance, σοί (soí “for you”) has been 

labeled as an experiencer, but might also be considered a 

beneficiary: “the rest is according to your wishes for your 

benefit”. In general verbs that denote an action that have 

clear results (e.g. ποιέω poiéō “make”, παρασκευάζω 

paraskeuázō “prepare” etc.) would be more likely to have 

a beneficiary rather than an experiencer adverbial, but more 

training data is likely needed to learn this subtle difference. 

   (3) εἰ (…) τὰ λοιπά 

 ei  tá loipá 

 if  the.ACC.PL rest.ACC.PL 

 σοί ἐστιν κατὰ γνώμην, 

 soí estin katá gnṓmēn, 

 you.DAT be.3SG according will.ACC 

 ἔχοι ἂν καλῶς 

 ékhoi án kalõs 

 have.3SG.PR.OPT PTC good 

 If (…) the rest is according to your wishes 

for you, it would be good. 

Finally, as for goal, its large amount of confusion with roles 

such as “cause” or “respect” is not very surprising, as they 

are expressed by similar argument lemmas. However, the 

role is also frequently confused with roles such as 

“direction” and “location” (to a lesser extent). While the 

same formal means are often used to express goals and 

directions (e.g. εἰς/κατά/ἐπί/πρός + accusative), one would 

expect directions to be used predominantly with concrete 

objects and goals with non-concrete objects. However, in 

general non-concrete objects do perform quite badly: their 

accuracy is only 0.655, as opposed to 0.744 for all nouns in 

general. This might suggest that these nouns are not that 

well modelled by their distributional vector (which we also 

found to some extent in Keersmaekers and Speelman to be 

submitted), although other explanations (e.g. non-concrete 

objects typically receiving roles that are harder to model in 

general) are also possible. Other than that, there was also a 

large influence of the syntactic label: the recall of goals that 

had the label ADV was 0.493 while it was only 0.111 for 

the label OBJ – and 35/48 of the goals that were 

misclassified as direction had the label “OBJ”: this is 

consistent with the fact that goals predominantly have the 

ADV label (80%) while directions predominantly have 

OBJ (83%), and some of the goals that were classified as 

OBJ were in fact misclassifications. 

5. Conclusion 

This paper has described a first approach to automatic 
semantic role labeling for Ancient Greek, using a Random 
Forest classifier trained with a diverse range of features. 
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While the amount of training data was relatively low (only 
about 12500 tokens for 29 roles), the model was still able 
to receive a classification accuracy of about 76%. The most 
helpful features were distributional semantic vectors, 
created on a large corpus of 37 million tokens, while other 
features (lemmas, morphology, animacy label, part-of-
speech) did not contribute as much. Probably it is exactly 
this small amount of training samples that explains why 
these vectors are so important: since there are a large 
amount of lemmas in the training data (about 2700 
argument lemmas and 1900 verb lemmas), the model is 
able to reduce this variation by assigning similar vectors to 
semantically similar lemmas. The distinctions that features 
such as morphology are able to make (e.g. the role agent as 
expressed by ὑπό hupó “by” with the genitive is rare with 
active verbs) might be too subtle, on the other hand, to be 
statistically picked up by the model with the relatively low 
training examples we have, and therefore these features 
would perhaps be more helpful when there is more data to 
learn from. 

An in-depth error analysis reveals a number of ways for 
further improvement. First of all, the most important step 
would be expanding the amount of training data, since there 
is an obvious correlation between the amount of training 
examples and the performance of each role. Secondly, 
while the distributional semantic approach works well for 
most words, some categories (e.g. relative pronouns, 
infinitives) are not modelled that well and might require a 
special treatment. Thirdly, non-concrete words turned out 
to be particularly problematic, and need to be investigated 
in more detail (particularly by examining if their meaning 
is modelled well by their semantic vector). Finally, the 
syntactic relation (adverbial or complement) was also 
relatively influential in the model, and some wrongly 
classified instances had in fact received the wrong syntactic 
label. Therefore improving the syntactic data with regards 
to this distinction would also likely improve results, 
especially when moving from manually disambiguated 
syntactic data (as used in this paper) to automatically 
parsed data. 

The semantic role labeling system used in this paper, as 
well as the training data on which the system was trained 
(including all modifications of existing treebanks) is 
available on GitHub.10 Hopefully this will encourage 
corpus annotators to add a semantic layer to their project 
(since there is already an automatically annotated basis to 
start from), so that their data can also be integrated in the 
system and results can be further improved. 

6. Abbreviations used in interlinear glosses 

ACC accusative 
AOR aorist 
DAT dative 
FUT future 
GEN genitive 
IMPF imperfect 
INF infinitive 
NOM nominative 
OPT optative 
PL plural 
PR present 

                                                           
10 https://github.com/alekkeersmaekers/PRL 

PTC particle 
SG singular 
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Figure 1: Recall scores for semantic roles as a function of their logarithmically scaled token frequency 

 

 

Figure 2: Confusion matrix of semantic roles 
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Role Example 

Agent 
(364 instances) 

δύο δὲ παῖδες ὑπὸ μητρὸς τρεφόμενοι 
“Two children being raised by their mother” 

Beneficiary/Maleficiary11 
(715 instances) 

ὑπὲρ τῆς πατρίδος ἀποθανεῖν δυνήσομαι 
“I will be able to die for my native land”  

Cause 
(753 instances) 

ἐκπλαγῶν διὰ τὸ παράδοξον τῆς ὄψεως 
“Being struck by the incredibility of the sight”  

Companion 
(424 instances) 

τοῦτον μετὰ Σιτάλκους ἔπινον τὸν χρόνον 
“During that time I was drinking with Sitalces” 

Comparison 
(198 instances) 

πάντα ἐοικότες ἀνθρώποις πλὴν τῆς κόμης 
“Completely looking like humans except for their hair” 

Condition 
(5 instances) 

κελεύοντος ἐπ’ αὐτοφώρῳ τὸν μοιχὸν κτείνεσθαι 
“Commanding that an adulterer should be killed in case he is caught”  

Degree 
(295 instances) 

ξεῖνε λίην αὐχεῖς ἐπί γαστέρι 
“Stranger, you are boasting too much about your belly” 

Direction 
(1006 instances) 

εἰς Θετταλίαν αὐτοὺς ἀγαγὼν 
“Bringing them to Thessaly” 

Duration 
(221 instances) 

εὐφράνθη ἐφʼ ἡμέρας τέσσαρες 
“She was happy for four days” 

Experiencer 
(259 instances) 

σὺ δέ μοι δοκεῖς αἰτιᾶσθαι τὸν γάμον 
“You seem to me to defend marriage” 

Extent of space 
(67 instances) 

διὰ Καϋστρίων πεδίων ὁδοιπλανοῦντες 
“Wandering through Castrian plains” 

Frequency 
(78 instances) 

ἀποθνήσκομεν ὅτι οὐ βλέπομέν σε καθʼ ἡμέραν 
“We are dying because we do not see you every day” 

Goal 
(282 instances) 

ὥσπερ ἐπὶ δεῖπνον ἀποδεδημηκὼς εἰς Θετταλίαν 
“As if going to Thessaly for a banquet” 

Instrument 
(507 instances) 

τοῖς δακτύλοις τῶν ἑαυτοῦ βλεφάρων ἡπτόμην 
“I felt my own eyelids with my fingers” 

Intermediary 
(16 instances) 

ἔπεμψά σοι ἐπιστολὴν διὰ τοῦ ἀρτοκόπου 
“I’ve sent you a letter by the baker”  

Location 
(1436 instances) 

ἐν Βυζαντίῳ διατρίβειν δυναμένοις 
“Being able to stay in Byzantium” 

Manner 
(1596 instances) 

ἐάν τις τῷ εὖ λέγοντι μὴ πείθηται 
“If someone does not believe the person who speaks well” 

Material/Content 
(22 instances) 

ἔπλησεν τόν ἀσκόν ὕδατος 
“He filled the sack with water” 

Modality 
(17 instances) 

ἴσως οἶδας τί σοι ἔγραψα 
“Perhaps you know what I’ve written to you” 

Possessor 
(127 instances) 

ἔσται τῇ Σαρρα υἱός 
“Sara will have a son” (lit. “There will be a son to Sara”) 

Property 
(6 instances) 

ὅ ἦν ἀγαθοῦ βασιλέως 
“What is typical of a good king” 

Recipient 
(1289 instances) 

τὰ ἱμάτια αὐτοῦ ἔδωκεν τῷ Αἰσώπῳ 
“He gave Aesop his clothes” 

Respect 
(800 instances) 

μήτε ἀλγεῖν κατὰ σῶμα μήτε ταράττεσθαι κατὰ ψυχήν 
“Neither having pain in the body neither being disturbed in the soul” 

Result 
(15 instances) 

φαίνῃ εἰς μανίαν ἐμπεπτωκέναι 
“You seem to be fallen into madness” 

Source 
(803 instances) 

ῥίπτει δὲ αὐτὸν ἐξ οὐρανοῦ Ζεὺς 
“Zeus threw him from Heaven” 

Time 
(943 instances) 

τετάρτῳ τε καί εἰκοστῷ τῆς βασιλείας ἔτει νόσῳ διεφθάρη 
“He died from disease in the twenty-fourth year of his reign” 

Time frame 
(45 instances) 

μηδʼ εἰληφέναι μηθὲν ἐνιαυτοῦ 
“Not receiving anything over the course of the year” 

Totality 
(150 instances) 

ἑπιλαμβάνεται τῆς χειρὸς αὐτῆς 
“He took her by the hand” 

Value 
(57 instances) 

ἑξήκοντα δηναρίων τοῦτον ἠγόρακα 
“I’ve bought him for sixty denarii” 

Table 4: Pedalion semantic roles 

                                                           
11 I combined these two roles because they were not distinguished in the data, but since some prepositions (e.g. ὑπέρ + genitive) can only 

be used for a beneficiary, while others (e.g. κατά + genitive) only for a maleficiary, in the future it might be better to keep them apart. 
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1. Introduction 

Biblical Hebrew is the archaic form of Hebrew in which the 
Hebrew Bible is primarily written. Its syntax and vocabulary 
differ from later Rabbinic Hebrew and Modern Hebrew. 
Hebrew is a highly inflected language, and the key to 
understanding any Hebrew word is to identify and 
understand its root. For example, the first word in the Bible 
is  בראשית / bereishit / ‘in the beginning’. The underlying 
three-letter root is  ראש / rosh / ‘head, start’. By adding 
vowels and morphology to a root, one can produce derived 
forms, or lexemes. The lexeme  ראשית / reishit / ‘beginning’ 
is derived from the root  ראש. Finally, the prefix letter  ב / be 
introduces the preposition ‘in’. 

Many scholars have developed resources for 
understanding these Hebrew roots. While we do not intend 
to provide a comprehensive list, we will mention a few 
notable resources. A Hebrew and English Lexicon of the Old 
Testament, developed by Brown, Driver and Briggs (1906), 
is one such standard dictionary. The Exhaustive 
Concordance of the Bible, by Strong (1890), is an index to 
the English King James Bible, so that one can look up an 
English word (e.g. “tree”) and find each verse in which that 
word occurs. Strong’s Concordance also includes 8674 
Hebrew lexemes, and each verse occurrence includes the 
corresponding Hebrew lexeme number. Some versions of 
Brown-Driver-Briggs are augmented with these Strong 
numbers. For example, Sefaria, an open-source library of 
Jewish texts, includes such an augmented dictionary as part 
of their database. Another concordance is that of Mandelkern 
(1896), Veteris Testamenti Concordantiæ Hebraicae Atque 
Chaldaicae, a Hebrew-Latin concordance of the Hebrew and 
Aramaic words in the Bible, also organized by root.  

Another notable dictionary is that of Clark (1999), 
Etymological Dictionary of Biblical Hebrew: Based on the 
Commentaries of Samson Raphael Hirsch. Rabbi Samson 
Raphael Hirsch developed a theory, which is expressed 
through his Biblical commentary (Hirsch, 1867), in which 
roots which are phonologically similar are also semantically 
related. This theory is founded on the well-grounded idea, 
accepted by many scholars, that Hebrew’s triliteral roots are 
often derived from an underlying biliteral root. Thus, the 

third letter added to the true biliteral root modifies that 
underlying root’s meaning. For instance, Jastrow’s 
dictionary (1903) lists √ אב / ̀ av is a biliteral root, and derived 
triliteral roots include   אבב / `avav / ‘to be thick, to be heavy, 
to press; to surround; to twist; to be warm, glow etc.’;  אבד / 
`avad / ‘to be pressed, go around in despair’,  אבר / `avar / ‘to 
be bent, pressed, thick’, and others. Within Hirsch’s system, 
specific added letters often convey specific connotations.  

When comparing roots, alternations between letters 
within the same or similar place of articulation often carry 
similar meanings. For instance, in the entry for  אבב / `avav  
(listed above), Jastrow notes the connection between it and 
other biliteral roots, such as קב / qav,  כב / kav, גב / gav,  חב / 
ḥav, and  עב / ‘av.  The first letter of  אבב, an aleph, is a 
guttural, as is the ayin of עב and the ḥet of  חב. The entry for 
the triliteral root  חבב / ḥavav, which is an expansion of the 
biliteral root  חב, includes the gloss to ‘embrace (in a fight), 
to wrestle’. This clearly bears a related meaning to the √אב 
roots in the previous paragraph, which involved pressing and 
surrounding. These related meanings might be termed 
phonemic cognates. 

Within the triliteral root system are what might be called 
gradational variants. At times, there are only two unique 
letters in a root. For instance, in the root  רדד / radad / 
‘flattening down or submitting totally’, the two unique letters 
are the  ר / r and the  ד / d. The geminated triliteral root can be 
formed by gemination of the second letter (as here, the  ד / d 
was repeated, to form  רדד / radad). Alternatively, a hollow 
triliteral root can be formed by employing a  י / y,   ו / w,  ה / h 
in one of the three consonant positions. These three letters, 
yud, vav, and heh are called matres lectiones. They 
sometimes function in Hebrew as full consonants and 
sometimes function to indicate the presence of a specific 
associated vowel. The hollow roots include  רדה / radah / 
‘ruling or having dominion over’,  ירד / yarad / ‘going down’, 
and  רוד / rod / ‘humbling’. Within Hirsch’s system, these 
gradational variants in general are semantically related to 
one another, just as is evident in the present case. 

While these phenomena have been observed by other 
scholars, Hirsch made these ideas central to his Biblical 
commentary and greatly expanded the application of these 
rules, to analyze many different Hebrew roots. His 
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commentary on the first verse, and indeed the first word, of 
Genesis, is typical. In explaining the root  ראש / rosh / ‘head, 
start’ (which has the guttural aleph in the middle position), 
he notes two other words,  רעש / ra’ash / ‘commotion, 
earthquake’ (with a guttural ‘ayin in that position) and  רחש / 
raḥash / ‘moving, vibrating, whispering’ (with a guttural ḥet 
in that position). Hirsch explains that the core phonemic 
meaning is movement, with  ראש / rosh being the start of 
movement,  רעש / ra’ash as an external movement, and  רחש / 
raḥash as an internal movement. 

Clark arranged these analyses into a dictionary, and 
applied the principle in an even more systematic manner. For 
each headword, he provides a cognate meaning (a generic 
meaning shared by each specific cognate variant), and 
discusses all phonemic and gradational variants. In an 
appendix, he establishes a number of phonemic classes, in 
which he groups related words which follow a specific 
phonemic pattern. For instance, he lists phonemic class A54, 
which is formed by a guttural ( א / aleph,  ה / heh,  ח / ḥet,  ע / 
ayin) followed by two instances of the Hebrew letter  ר / resh. 
The roots  ארר / `arar,  הרר / harar, and  ערר / ‘arar mean 
‘isolate’ and  חרר / ḥarar means ‘parch’. These all share a 
general phonemic cognate meaning of ‘isolate’. (To relate 
the last root, perhaps consider that a desert is a parched, 
isolated place; perhaps they are not related at all.) A less 
clear-cut example is A60, which is formed by a guttural, the 
Hebrew letter  ד / dalet, and then a sibilant, with a cognate 
meaning of ‘grow’. The roots involved are  הדס / hadas / 
‘grow’,  חדש / ḥadash / ‘renew’,   עדש / ‘adash / ‘grow’, and 
 atash / ‘sneeze’. There is sometimes a level of‘ / עטש 
subjective interpretation to place these words into their 
phonemic cognate classes, but some true patterns seem to 
emerge. 

Another noteworthy dictionary is that of Klein (1987), A 
Comprehensive Etymological Dictionary of the Hebrew 
Language for Readers of English. It focuses not only on 
Biblical Hebrew, but on Post-Biblical Hebrew, Medieval 
Hebrew, and Modern Hebrew as well. His concern includes 
the etymology of all of these Hebrew words, and he therefore 
includes entries on Biblical Hebrew roots. Klein’s dictionary 
was recently digitized by Sefaria (2018) and made available 
on their website and their database. Other important digital 
resources include the Modern Hebrew WordNet project, by 
Ordan and Wintner (2007), as well as the ETCBC dataset, 
from Roorda (2015), which provides in-depth linguistic 
markup for each word in each verse of the Biblical corpus. 

Our aim was to create a new digital resource, namely a 
graph dictionary / thesaurus for the roots (or lexemes) in 
Biblical Hebrew, in which headwords are nodes and the 
edges represent phonetic, semantic, and distributional 
similarity. This captures connections not drawn in earlier 
efforts. We have thereby created a corpus and tool for 
Biblical philologists to gain insight into the meaning of 
Biblical Hebrew roots, and to consider new, possibly 
unappreciated connections between these roots. The digital 
resource – a graph database and a Word2Vec model – can 
also aid in other NLP tasks against the Biblical text – for 
example, as a thesaurus in order to detect chiastic structures. 

2. Method 

We sought to create our graph dictionary for Biblical Hebrew 
in three different ways, creating several different subgraphs. 
In future work, we plan to merge these subgraphs. 

Our first approach was to look for semantic similarities 
between headwords. Our source data was Ernest Klein’s A 
Comprehensive Etymological Dictionary of the Hebrew 
Language for Readers of English, using Sefaria’s (2018) 
MongoDB database. This dictionary has headwords for both 
roots (shorashim) and derived forms, for Biblical Hebrew as 
well as many later forms of Hebrew. We first filtered out all 
but the Biblical roots. Non-root entries have vowel points 
(called niqqud) and non-Biblical Hebrew words are often 
marked with a specific language code, such as PBH for post-
Biblical Hebrew. We calculated the semantic similarity 
between headwords as the cosine similarity of the tf-idf 
vectors of the lemmatized words in their English gloss. Thus, 
 dabier share the English definition / דבר amar and` / אמר 
‘say’, and a cosine similarity of about 0.35. Function words, 
such as “to” or “an”, will have a low tf-idf score in these 
vectors and would not contribute much to the cosine 
similarity metric. We therefore set a threshold of 0.33 in 
creating the “Klein” graph. We applied this approach to 
Brown-Driver-Briggs’ lexicon of lexemes, which had been 
digitized by Sefaria as well, for the sake of having a 
comparable graph (for lexemes instead of roots) with 
semantic relationships calculated in the same manner.  

Our second approach was to consider phonetic similarity 
between headwords. One data source for this was Matityahu 
Clark’s Etymological Dictionary of Biblical Hebrew.  We 
digitized a portion of Clark’s dictionary, namely his 25-page 
appendix which contains the listing of phonemic classes 
containing phonemic cognates with their short glosses. We 
created a separate graph from this data, linking Clark’s 
headwords to their phonemic class (e.g.  ארר to A54) as well 
as shared short gloss, e.g.  ארר / `arar to  הרר / harar based on 
a shared gloss of ‘isolate’. 

Aside from that standalone Clark graph, we introduced 
phonetic relationships on the Klein graph as well. We 
connected each combination of words which Clark had listed 
as belonging to the same phonemic class. Additionally, we 
computed gradational variants for each triliteral root in the 
Klein dictionary as follows. We treated each triliteral root as 
a vector of three letters. We checked if the vector matched 
the pattern of a potential gradational root. If the root 
contained a potential placeholder letter (י / yud in the first 
position,  ו / vav or  י / yud in the middle position, or  ה / heh in 
the final position), or if the final letter was a repetition of the 
middle letter, then it was a potential gradational variant. We 
then generated all possible gradational variant candidates for 
this root, and if a candidate also appeared in Klein’s 
dictionary as a headword, we connected the two headwords. 

We also looked for simpler, single-edit phonemic 
connections between headwords in Klein’s dictionary. That 
is, we took the 3-letter vectors for triliteral roots and, in each 
position, if the letter was a sibilant, we iterated through all 
Hebrew sibilant letters in that position. We checked whether 
the resulting word was a headword and, if so, established a 
phonemic relationship between the word pair. We similarly 
performed such replacement on other phonetic groups, 
namely dentals, gutturals, labials and velars.  

Our third approach was based on distributional criteria. 
Our source data was the ETCBC dataset, from Roorda 
(2015). We first reduced the text of the Bible to its lexemes, 
using ETCBC lex0 feature. These lexemes were manually 
produced by human expects. As discussed above, the 
Hebrew lexeme is often more elaborate than the Hebrew 
root. Many of the lexemes in this dataset are also triliteral 
roots (such as  ראש / rosh / ‘head’, and  אור / `or / ‘light’), but 
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Figure 1: Klein entry for  סלעם / sal’am / ‘to swallow, to consume, to devour’ 
 

there are also quite a number of lexemes that would not be 
considered roots (such as  ראשית / reishit /’beginning’ and 
 .(’ma`or / ‘luminary / מאור 

We represented each lexeme A as a V-length vector, where 
V is the vocabulary size (of 6,466). Each position in the 
vector corresponded to a different lexeme B, and recorded 
positive pointwise mutual information (PPMI) values. PPMI 
values of lexeme A and lexeme B were computed as follows:  

𝑃𝑃𝑀𝐼(𝐴, 𝐵) = max(0, 𝑙𝑜𝑔
𝑝(𝐴, 𝐵)

𝑝(𝐴)𝑝(𝐵)
) 

 
The joint probability p(A, B) is computed as the frequency 
of lexeme B occurring within a window of the 10 previous 
and 10 following words of each occurrence of lexeme A, and 
the individual distributions p(A) and p(B) as the frequencies 
of lexemes A and B, respectively, within the Biblical corpus.  

We then calculated the cosine similarity of each 
combination of PPMI vectors. Word pairs which exceeded a 
threshold (again, of 0.33) were considered related. This 
yielded word pairs such as  טוב / tov / ‘good’ and  ישר / yashar 
/ ‘upright’ which indeed seem semantically related. 

As an additional way of relating words by distributional 
criteria, we took the same lexeme-based Biblical corpus and 
trained a Word2Vec model. This is a slightly novel approach 
to Word2Vec, in that we are looking at the surrounding 
context of lexemes, rather than the (often highly inflected) 
full words. The results are promising. For instance, the six 
most distributionally similar words to  ארץ / `eretz / ‘land’ 
include  adamah / ‘earth’, and` / אדמה  ,’goy / ‘nation /   גוי 
 mamlacha / ‘kingdom’, which captures the / ממלכה 
elemental, geographical, and political connotations of the 
word ‘land’. We filtered by a relatively high threshold of 
similarity, of 0.9. 

We pushed all of these graphs to a Neo4j database and 
wrote a presentation layer using the D3 JavaScript library. 
Some of the resulting graphs can be seen at 
http://www.mivami.org/dictionary, and are also available as 
a download in GRAPHML file format. 

3. Results 

By applying our method, we have produced four graphs. 
Table 1 describes the number of nodes and edges in each 
graph. 

 

Graph Nodes 

 

Connections 

Klein’s Dictionary 3,287 roots 7,472 semantic ; 

1,509 phonemic class ; 

2,329 phonemic edits 

Brown-Driver-

Briggs lexicon 

8,674 

lexemes 

12,759 semantic 

Clark’s 

Etymological 

Dictionary 

1,926 roots Grouped into 388 

phonemic classes 

Distributional 

Criteria / ETCBC 

6,466 

lexemes 

5773 Word2Vec ; 

12,561 PPMI  

Table 1: Corpora and Connections Established 
 
At the moment, these different types of connections are in 

different graphs, and the headword types slightly differ from 
one another, and so we do not perform a comprehensive 
inter-graph analysis. However, in the evaluation section, we 
evaluate the quality of each individual graph, and in this 
results section, we present some individual interesting 
subgraphs. We examine the connections between nodes and 
find that there are some meaningful connections being 
established.  

For instance, Figure 1 depicts the hyperlinked list of 
related words, from the Klein’s dictionary graph, for the root 
 sal’am / ‘to swallow, to consume, to devour’. (In all / סלעם 
cases for these graphs, the colors are just the styling provided 
by the D3 JavaScript visualization library.) 

Although the connection to other entries is based on 
semantic similarities (e.g. sipping, swallowing, gulping), 
there are some obvious phonological connections   between  
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Figure 2: Klein hyperlinked entry for  דבר 

 
these roots. In particularly, the letters  לע / lamed-‘ayin appear 
in many words, as well as  גמ / gimel-mem and  לג / lamed-
gimel. Sounding out each of these words, they all feel quite 
onomatopoetic, imitative of the sound of sipping and 
swallowing.  

The connections in the Klein graph can, more generally, 
function as a thesaurus, providing insight into the inventory 
of similar words conveying a concept. Someone using 
Klein’s print dictionary could look up the word  דבר / dabeir, 
and discover that it means ‘speak’. However, what similar 
words could the Biblical author have employed? Figure 2 
shows the hyperlinked list of ‘speak’ words: 

Interestingly, the common word  אמר/ `amar / ‘say’ does 
not appear in this list, because ‘say’ did not appear in the 
entry for  דבר, only ‘speak’. It is, however, in the two-step 
neighborhood of  דבר, because it is a neighbor of the root  מלל 
/ maleil / ‘to speak, say, utter’.  

 

Figure 3: Distributional entry for the word  שלש / shalosh 

 Meanwhile, an examination of sample entries in the 

distributional graph reveals real connections between words. 

For instance, Figure 3 displays the graph for the word שלש / 

shalosh / ‘three’. The connected entries are for many other 

numbers, such as  אחד / `eḥad / ‘one’,  שבע / sheva’ / ‘seven’, 

and  אלף / ̀ eleph / ‘thousand’, as well as the word  פעם / pa’am 

/ ‘occurrence’ and  שנה / shanah / ‘year’. Some of these 

connections are based on Word2Vec, some on PPMI vector 

similarities, and some on both.  

Finally, the present version of the Clark graph simply 
shows roots linked to their phonemic classes, as well as 
connections between roots whose short translation is 
identical. Since the connections are essentially manually 
crafted, the graph is exactly as we would expect. Figure 4 
shows the graph for the Clark entry of  המר / hamar / ‘heap’. 

 

Figure 4: Clark entry for  המר / hamar 
 
If we had examined the same entry  המר / hamar in Klein’s 

dictionary, the gloss would be ‘to bet, enter a wager’. This 
might be an example where Clark’s decision as to the proper 
definition of  המר / hamar was influenced by a desire to 
structure all A42 phonemic cognates into related words. 
When interpreting a specific instance of the word, one would 
need to carefully consider the Biblical usage, in context. 

Consider how אמר / ̀ amar, usually rendered as ‘say’, here 
is explained as ‘organized speech’, so that it works well with 
other roots which mean ‘heap’ and ‘collect’. This root is 
placed in the phonemic class A42, which appears to be 
formed by a guttural as the first letter, followed by  מ / mem 
and  ר / resh. The subgraph also shows other roots, from other 
phonemic classes, with a shared meaning (namely “heap”), 
along with the phonemic class of those roots. This is a fitting 
way of exploring words within the context of their phonemic 
cognates. 

4. Evaluation 

To evaluate the precision of the semantic connections that we 
discovered within the Klein dictionary, we outputted and 
analyzed all connections between headwords that exceeded 
our 0.33 threshold of cosine similarity. 

Among the 3287 Klein dictionary roots, 2728 were 
connected to another root, and we established 7472 such 
semantic relationships, for an average of 2.73 connections 
per word. However, a closer examination of the graphs 
reveals a number of tightly connected subgraphs or even 
cliques. That is, the graph contains several subgraphs in 
which a large number of semantically related roots link to 
each another. For instance, אגד / `agad contains a number of 
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word senses including ‘to bind, tie, join together, unite, 
amalgamate’. It is connected to 15 other roots, including  אחד  
/ `eḥad / ‘to be one, to unite’ – also a phonetically related 
word,  אסר / `asar / ‘to bind, tie, imprison’, and  חבר / ḥabar / 
‘to be united, be joined’. The first listed word  אחד / `eḥad, is 
connected to 4 other words, 3 of which have the ‘join’ 
meaning. The word  אסר / `asar is connected to 10 other 
words, all of which have the ‘tie / bind’ meaning. And the 
last word,  חבר / ḥabar is connected to 8 words, which all have 
the ‘join / attach’ meaning. 

We submitted the Klein root connections to human 
experts for judgement, to determine if the headwords indeed 
had semantic similarity. Of the 7472 connections, 6793 were 
deemed correct, for a precision of 0.91. We examined the 9% 
mistaken connections and found that the vast majority (539 
out of 679, or 79%) were the result of three filtering errors 
particular to our dataset. Namely, often the gloss for a root 
was simply that this was a “base” (that is, a root) for a 
different non-root headword, that we should “see” the 
definition in another headword, or that the word was a 
“hapax legomenon”, that is, a word which occurs only once 
in the Biblical corpus and can therefore only be guessed at 
based on context. The vectors for these glosses were similar, 
but not based on real semantic content. A fix would entail 
filtering out such null-glossed words, and linking the cross-
references. 

Most of the remaining erroneous connections were due to 
homonyms and homographs within the stemmed English 
gloss words. For instance, “tear” can either be a droplet from 
the eye or the act of ripping something, “left” can either be 
the opposite of right or the act of going away, and “leave” 
might refer to the act of going away or to a tree leaf. A few 
errors were due to non-essential function words, e.g. “to cut 
off” and “to hollow out”. A fix might entail including part of 
speech disambiguation in the vectors, or comparison with a 
similar dictionary in another language. 

We performed similar analysis among the lexemes in the 
Brown-Driver-Briggs lexicon, and found similar results to 
our results for Klein’s Dictionary. Among the 8674 lexemes, 
5047 were connected to another lexeme. We established 
12,760 semantic relationships, for an average of 2.52 
connections per word. We subjected 500 of these 
relationships to human judgement, which yielded a precision 
of 0.76. Among the correctly discovered relationships, we 
discovered some tightly connected subgraphs. 

We analyzed the errors and could not find ready 
explanations for the vast majority of them. The corpus is 
quite different from Klein’s dictionary. While Klein has 
headwords as roots, with what might be considered lexemes 
grouped together into a single entry, Brown-Driver-Briggs 
separates these lexemes into different entries. Each entry 
includes fewer words and English synonyms. Brown-Driver-
Briggs also contains entries for Biblical personages, with a 
discussion of the etymology of their name, plus that they 
were the son, daughter, father, or mother of some other 
person. This has the effect of linking etymologies with 
familial relationships, and unrelated etymologies together by 
way of the familial relationships – that is, it introduces a good 
deal of noise. A fix would entail filtering out these Biblical 
names, but perhaps vector similarity is not as suited for 
shorter gloss entries. 

We performed a similar analysis for the PPMI vector-
based distributional approach applied to lexemes from the 
ETCBC dataset, where the threshold of cosine similarity of 
the vectors was 0.33. Of the 6466 lexemes, 4478 were 

connected to another lexeme. We established 12,561 
connections, for an average of 2.80 connections per lexeme. 
A sample of 200 connections were reviewed by a human 
expert, where any relationship between the two lexemes (and 
not just synonymy) was deemed correct. The precision was 
0.82. The majority of relationships found (67%) were 
between names of people or places, appearing for instance in 
Biblical genealogical lists or descriptions of borders, since 
these names occur rarely and only in context of each other. 
There were meaningful connections found. For instance, 
 adašaha / ‘lentil’ is mentioned in II Samuel 17:28` / עדשה 
among other places, and connections are made to the other 
grains and foodstuffs listed in the verse, but not to the beds, 
basins, and earthen vessels. 

We similarly evaluated our Word2Vec approach. We set a 
relatively high similarity threshold of 0.9. We connected 
1209 lexemes to one another, establishing 5772 connections, 
or about 4.8 connections per lexeme. Human evaluation of 
200 such connections yielded a precision of 0.98. While a 
majority were again person and place names, those which 
were not were highly related to one another, e.g. the ordinal 
numbers, antonyms such as “light” and “darkness”, and 
synonyms such as types of grass. As is typical of Word2Vec, 
by lowering the threshold, we encounter more connections 
which are more tangential but still related. In general, for all 
of these graphs, further exploration is needed regarding 
where to set the threshold parameter. 

Our assessment of the precision of phonetic relationships 
on the Klein graph was performed programmatically, by 
checking whether the semantic similarity of the tf-idf vectors 
exceeded the 0.33 threshold. Table 2 shows the precision for 
each type of connection. 

 

Connection Type # Connections 

 

Precision 

Cognate Class 1509 0.03 

Gradational Variant 275 0.11 

Guttural replacement 582 0.07 

Velar replacement 208 0.02 

Sibilant replacement 168 0.24 

Labial replacement 398 0.02 

Dental replacement 698 0.01 

Table 2: Connections for Phonological Relationships 
 
Certain phonetic relationships – most notably sibilant 

replacement at 24% and gradational variants at 11% – seem 
to be borne out and valuable. Other relationships – such as 
dental replacement and belonging to the same phonemic 
class defined by Clark, do not seem to be borne out. 

This might demonstrate that these phonetic connections 
and phonemic classes were an overreach, the result of trying 
to globally impose a system that works between certain word 
pairs but does not hold in the general case. Alternatively, the 
theory of phonemic classes – that there is a basic cognate 
meaning, with individual letter choices modifying this basic 
meaning in particular directions – involves a different 
approach to describing the word’s meaning, one which is not 
captured by an English gloss which does not carry such 
concerns. For instance,  עדש / ‘adash is the root of lentil (as 
above), which is something that grows. Clark connects it to 
other growing / renewal words, but he would not expect 
Klein to mention growing, rather than lentils, in his gloss. 
Similarly, Hirsch would not be at all surprised that a standard 
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dictionary would not relate ראש / rosh / ‘head’ to  רעש / ra`ash 
/ ‘earthquake’ and  רחש / raḥash / ‘vibrate’. Perhaps some of 
these relationships could be reproduced by considering a 
lower semantic similarity threshold, by considering 
Word2Vec distributional similarity, or by a WordNet 
ontology, but perhaps not. 

Additionally, we would note that the low precision in 
some types of transformation simply indicates that while 
phonetically related words might be semantically related, 
this is not necessarily systematic, for all possible 
combination of gutturals (or velars, etc.) and for all letter 
positions. Additional exploration of the phonetic 
transformations with the greatest semantic value is 
necessary. 

5. Future Work 

We would like to develop a heuristic to stem the lex0 features 
in the ETCBC dataset to be roots rather than lexemes, so as 
to consider distributional criteria of roots, as well as to be 
able to create these connections on the Klein graph, which 
works with roots. We would like to similarly reduce entries 
in the Brown-Driver-Briggs lexicon to such roots, again to 
create a unified graph to enable a valid, apples-to-apples, 
quantitative evaluation.  

With all these connections in place, we hope to apply 
machine learning, to discover which types of letter 
substitutions are likely to yield related terms, and to give a 
measure of the phonemic relatedness of two root entries.  

Also, at the moment, within semantic similarities, we are 
primarily finding synonyms. We would like to expand the 
types of connections between entries, to find antonyms and 
hypernyms. There has been some recent work on finding 
such relationships using Word2Vec vectors, and so we could 
find such relationships based on our distributional graph. For 
the semantic similarity graphs, we could harness an English 
resource such as WordNet applied to the English gloss text 
of the Klein entries. 

There are a few Digital Humanities projects that we look 
forward to implementing using the corpus as it presently 
stands. One such project involves detection of chiastic 
structure in the Biblical text, and the parallel words we need 
to detect are often synonyms rather than exact repetition of 
the root. Finally, we would look to duplicate this thesaurus 
construction process for other Semitic languages, such as 
Arabic or Aramaic and consider cross-lingual connections. 
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Abstract

The Voynich Manuscript has baffled scholars for centuries. Some believe the elaborate 15th century codex to be a hoax whilst others

believe it is a real medieval manuscript whose contents are as yet unknown. In this paper, we provide additional evidence that the text

of the manuscript displays the hallmarks of a proper natural language with respect to the relationship between word probabilities and

(i) average information per subword segment and (ii) the relative positioning of consecutive subword segments necessary to uniquely

identify words of different probabilities.

Keywords:Voynich Manuscript, Word Probabilities, Segment Information, Uniqueness Point

1. Introduction

The Voynich Manuscript (VM) is a codex or bound

manuscript whose name derives from Wilfrid Michael

Voynich, an antiquarian book dealer who purchased it in

1912 from the Jesuit Villa Mondragone in Frascati, near

Rome. Recent radiocarbon tests at the University of Ari-

zona have reliably dated the vellum to 1404-1438. The

ink and colours used, although difficult to date directly, are

not inconsistent with the time period nor suspicious (Stolte,

2011). It currently resides in the Beinecke Rare Book and

Manuscript Library at Yale University as ‘MS408’.

The physical manuscript is fairly modest upon first inspec-

tion, measuring about 10 inches high, 7 inches wide and

about 2 inches thick (slightly larger than a typical mod-

ern paperback book). There is no indication of a title or

an author for the work. The manuscript itself is made up

of 116 numbered folios mostly of 2 pages with the excep-

tion of 10 foldouts of up to 6 pages most of which include

both illustrations and text. VM comprises a total of about

35,000 words 170,000 characters written using between 24

and 30 letters of the unique VM alphabet1, so it is clearly a

very small corpus by modern standards (Zyats et al., 2016;

Prinke and Zandbergen, 2017). An example of a page from

the Herbal section, showing both the unusual text as well as

drawings, can be found in Figure 1. Apart from these rel-

atively concrete facts, very little is known about VM. The

combination of illustrations and careful penmanship have

led some researchers to suggest that VM is divided into

sections devoted to astrology, cosmology, biology, pharma-

cology, herbs, and recipes (consisting of mostly text with

star like ‘bullet point’ illustrations). Others have suggested

that its overall purpose is to convey secrets of magic and

alchemy. In short, there is no shortage of research that at-

tempts or purports to unlock the secrets of this manuscript,

but this does not fall into any coherent pattern of enquiry and

is often of a highly speculative and/or subjective nature.

The authors believe that in order to make progress it is

1There is some debate around the number of individual char-

Figure 1: Page 16v from the Manuscript - Herbal

Section (from Beinecke Library, accessed from

https://archive.org/details/voynich)

necessary to adopt a clearly articulated scientific approach

in which goals, methodology and evidence are all clearly

delimited. The present paper is a first step in that direc-

tion which provides some further evidence against theories

which claim that VM is a hoax.

acters since there appears to be some ligatures.
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2. Background and Other Works

Mary D’Imperio, in her opening remarks at an early sem-

inar on VM (when interest in it was renewed in the 1970s

(Prinke and Zandbergen, 2017)) made the important obser-

vation that there was little agreement on the real nature of

the document. She noticed that presenters classified it in

one of five ways (D’Imperio, 1976):

• a natural language - not enciphered or concealed in any

way but written in an unfamiliar script.

• a form of natural language but enciphered in someway.

• not a natural language at all, but rather a code or a syn-

thetic language, like Esperanto, using amade up alpha-

bet for further concealment.

• an artificial fabrication containing randomly generated

meaningless padding, i.e. a hoax.

• completely meaningless doodling, produced by either

a disturbed or eccentric person(s).

Knowledge of these classes provides some perspective for

positioning research that has been carried out since. Thus

the first 3 categories imply that the text has meaning and

purpose, motivating attempts to “crack the Voynich code”,

whilst the last 2 negate the rationale for such efforts. Re-

search that has been carried out can be roughly characterised

under one or more of the following themes:

1. Character-level mapping

2. Word-level mapping and sentence interpretation

3. Investigations on statistical characteristics

4. Hoax-related investigations

The first theme is covered by work which aims to establish

character-level correspondences with known writing sys-

tems or sounds. For example Bax (2014) exploited the

fact that VM contains several examples of plant names

adjacent to associated images. Through detailed micro-

analysis matching sounds to symbols he proposedmappings

for fourteen of the Voynich symbols used in ten words.

Cheshire’s work (Cheshire, 2019) not only proposes map-

pings for a larger set (33) of Voynich symbols but ventures

into theme 2 by suggesting word mappings for certain sen-

tences which are used to offer an unparalleled level of inter-

pretation. The main problems here are that the samples are

highly selective and justification for many of the assertions

made is partial at best.

Work covering the third theme is often used to provide ev-

idence for or against the fourth theme which is itself con-

nected to the 5-way classification of VM mentioned earlier

(e.g. if it is a fabrication it is also a hoax).

Experts are unsure whether the Voynich manuscript is writ-

ten in some unknown language or is a hoax. Rugg (2004)

claimed that the manuscript could have been written by con-

structing words from a grid of word prefixes, stems, and

suffixes by means of a simple device known as a Cardan

grille - an encryption tool used in the 16th century. Other

researchers have proposed other hoax hypotheses.

Schinner (2007) attempted to show that the text was, statisti-

cally, consistent with stochastic text generation techniques

similar to those proposed by Rugg. Not everyone agrees

with Rugg and Schinner. Montemurro and Zanette (2013)

conducted a study that shows that the text in the Voynich

manuscript has similar word frequency distributions to text

in natural languages. The authors claim that “Here we anal-

yse the long-range structure of the manuscript using meth-

ods from information theory. We show that the Voynich

manuscript presents a complex organization in the distribu-

tion of words that is compatible with those found in real lan-

guage sequences. These results together with some previ-

ously known statistical features of the Voynich manuscript,

give support to the presence of a genuine message inside the

book.”

Rugg and Taylor (2016) countered by stating than an ”elab-

orate language” such as that in the Voynich manuscript

can easily be created by using simple coding methods. At

the moment there is disagreement on whether the Voynich

manuscript is an elaborate hoax or whether it is a meaning-

ful text in some code. This remains a hotly-debated topic

amongst the experts.

Over the past 100 years or so, various researchers have ap-

plied a gamut of statistical analysis techniques. Many of

these were used to find evidence that either supported or re-

jected the hoax hypothesis. Apart from Rugg, Montemurro,

and Schinner, other researchers have used computational

techniques to analyse, decipher, interpret, and to try to ulti-

mately understand the manuscript.

In Mary D’Imperio’s highly-cited book (D’Imperio, 1978),

The Voynich Manuscript: An Elegant Enigma, she col-

lected, analysed, and curated most of the research available

up to that time.

Reddy and Knight (2011) investigated the VM’s linguis-

tic characteristics using a combination of statistical tech-

niques and probabilistic models at page, paragraph, word

and character levels. They found, inter alia, that VM char-

acters within words were relatively more predictable than

for English, Arabic, and Pinyin. Additional character-level

analysis was performed by Landini (2001) and Zandbergen

(2020) exploring topics such as entropy and spectral analy-

sis of the text.

In 2015, McInnes andWang (2015) published a comprehen-

sive report on the application of statistical methods and data

mining techniques that they used in order to discover lin-

guistic features, relationship, and correlations in the Voyn-

ich text. The authors created an extensive, and compre-

hensive Wiki (Abbott, 2015) with all the results. A year

later, Hauer and Kondrak (2016) proposed a suite of unsu-

pervised techniques for determining the source language of

text that has been enciphered with a monoalphabetic sub-

stitution cipher. The best method in the suite achieved an

accuracy of 97% on the Universal Declaration of Human

Rights in 380 languages. In the same paper the authors

also present a novel approach to decoding anagrammed sub-

stitution ciphers that achieved an average decryption accu-

racy of 93% on a set of 50 ciphertexts. Where these meth-

ods were applied to the Voynich manuscript the results sug-

gested Hebrew as the source language of the manuscript.

This work has been criticised for not being scientifically
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rigorous enough (Hauer and Kondrak, 2018).

As recently as June 2019, Zelinka et al. (2019) applied

somewhat unorthodox, albeit very interesting, techniques to

analyse the text in themanuscript. They concluded that their

results indicated that the manuscript was likely written in a

natural language since its fractal dimension was similar to

that of Hemingway’s novel, The Old Man and the Sea. The

authors also reported that complex network maps (CNMs)

generated from the Voynich manuscript were different from

CNMs generated from random texts.

3. Motivation and Objectives

The main motivation for the programme of work we pro-

pose is to take stock of the diverse approaches towards the

VM that have been taken so far and to investigate whether

consistent application of solidly motivated computational

techniques will advance our understanding in measurable

ways.

The work reported in this paper focuses on theme 3, with

implications for theme 4 as it shows further evidence for

the claim that the VM has several characteristics of a nat-

ural language. The main novelty is the nature of the met-

ric. King and Wedel (2020) have shown that there are cer-

tain patterns in the sequences of sounds and their position

within word boundaries that are shared across a dataset of

diverse languages. In particular, they demonstrate that less-

probable words not only contain more sounds, they also

contain sounds that convey more disambiguating informa-

tion overall, and this pattern tends to be strongest at word-

beginnings, where sounds can contribute the most infor-

mation. We reproduced their experiments on the VM and

found similar patterns.

4. Method

4.1. Data Used

The dataset used for the experiment is a transliteration file

using the EVA (Extensible Voynich Alphabet) alphabet rep-

resentation in the IVTFF (Intermediate Voynich Translitera-

tion File Format). Version ‘1b’ of the ‘ZL’ version of the file

was used with version 1.5 of the IVTFF2. Only words that

have been transcribed with a high degree of certainty were

kept for our experiments (words with uncertain characters,

character sequences or uncertain spaces were omitted). In

total the transcription file contains 36,249 words of which

32,216 were retained for the work done here and, of those,

7,283 were unique (René Zandbergen, 2017).

It is noteworthy, at this point, to observe that the translitera-

tion files available are evolving documents. These translit-

erations of the Voynich text are constantly being improved

and modified to better reflect the content in the manuscript.

4.2. Approach

In order to investigate whether the relation between segment

information and word probability follows a pattern similar

2A good reference site, as well as detailed information

and download links for transliteration versions of the Voynich

Manuscript, can be found on René Zandbergen’s excellent web-

site dedicated to the manuscript http://www.voynich.nu/.

to that found by King andWedel (2020) across a large num-

ber of natural languages, we first computed the context-free

word probabilities for all words retained from the transcrip-

tion file, by dividing the counts for a given word by the total

number of words as seen in Equation 1

We also computedmean segment information for each word

form up until the uniqueness point (Marslen-Wilson and

Welsh, 1978) for that given word, that is, the point at which

it is the only remainingword in the cohort startingwith same

sequence of segments. For example the Voychanese ‘word’

yfodain has a uniqueness point of yfoda (5) as no other

word in the Voychanese lexicon begins with those charac-

ters (in fact, the only other word, appearing once, that starts

with the same 4 characters is yfody).

The mean segment information calculation itself (token

based) is calculated as seen in Equation 2:

It can be seen that the information for each segment of

length n is the count of the first n segments (Voychanese

characters) minus the total count of the word over the

count of the segment that is one letter shorter minus the

count of the word. The count of the word is removed to

eliminate the correlation that the frequency of an entire

word contributes to the calculation of the information of its

segments.

5. Results

In Figure 2, we see the best-fit regression lines for mean

token-based segment information by word probability, for

word lengths four to eight3, for corpora in five languages

in addition to the VM4. The VM follows the same pattern

as the other five natural languages in that it shows that less

probable words contain more informative segments.

Figure 3, shows linear regression models predicting the rel-

ative position of the uniqueness-point for the words in the

given corpora. Less probable words have significantly ear-

lier uniqueness points for all four word lengths in VM. Also

here, VM shares characteristics of the natural languages

presented in the study by King and Wedel (2020).

6. Discussion

As explained in Section 2., previous work used statistical

methods to research whether the Voynich manuscript be-

haves like a natural language. Some focus on word level

3We follow King and Wedel (2020) in their selection of this

range in word length, and note that 84% of the total word occur-

rences in the VM lie within the word length range from four to

eight
4Due to space limitations we show the graphs for 5 languages,

varied in terms of their language families and morphological com-

plexity, focussing on the Indo-European language family because

of their relevance for the VM in terms of the location in which

they are spoken (for comparison with another 15 languages see

King and Wedel (2020))
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Figure 2: Relationship between log word probability and

mean token-based segment information for words of length

4-8

Figure 3: Relationship between log word probability and

relative position of uniqueness-point for words of length 4-

8

(Montemurro and Zanette, 2013; Zelinka et al., 2019) and

find positive results.

The results above show several indications that not only at

word level but also at the level of segments, VM shares

characteristics with other natural languages. However, oth-

ers, such as Zandbergen (2020) and Landini (2001) per-

formed character-level analysis and show mixed results.

Landini’s spectral analysis points in the same direction as

our results, namely that the VM is a natural language, but

it is hard to compare their results to ours, because of the

different nature of their analysis.

Reddy and Knight (2011) compare the unigram and bigram

predictability of VM characters with those of English, Ara-

bic and Pinyin. Especially at bigram-level, VM is more pre-

dictable than English and Arabic, more closely resembling

Pinyin.

This result is consistent with Zandbergen (2020) who shows

that the entropy of characters in the VM is lower than for

many other languages and in particular Indo-European lan-

guages. However, he also notes that the results differ de-

pending on the position of the character. Characters at the

1st and 2nd position are more predictable than in Latin, but

the 3rd and 4th characters are less predictable.

These works emphasise the difference between VM and

other Indo-European languages, but also show the impor-

tance of character position. In contrast, our experiments

show that when focusing on the relationship between word

probability and character information, both on average and

based on position (cf. Figure 2 and Figure 3), the same type

of relation is found in the VM as in other text corpora.

A couple of caveats are needed: The comparisons in this pa-

per are betweenVMand contemporary languages and larger

corpora, in general. A better comparison would be between

languages from roughly the same time period and corpora

of the same size. Also, we do not have phonemic transcrip-

tions of the VM and based these on the written characters.5

7. Conclusions and Future Work

In this paper, we showed more support for the claim that

the VM is written in a natural language and therefore is not

a hoax. Although several scholars have found statistical

evidence pointing in the same direction, more evidence is

needed, particularly to establish whether there is a known

language family to which VM can plausibly be assigned. In

future work, we would like to compare the results from VM

with corpora from the same period that are also similar in

size.
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Abstract
Cognate prediction and proto-form reconstruction are key tasks in computational historical linguistics that rely on the study of sound
change regularity. Solving these tasks appears to be very similar to machine translation, though methods from that field have barely
been applied to historical linguistics. Therefore, in this paper, we investigate the learnability of sound correspondences between a
proto-language and daughter languages for two machine-translation-inspired models, one statistical, the other neural. We first carry
out our experiments on plausible artificial languages, without noise, in order to study the role of each parameter on the algorithms
respective performance under almost perfect conditions. We then study real languages, namely Latin, Italian and Spanish, to see if
those performances generalise well. We show that both model types manage to learn sound changes despite data scarcity, although the
best performing model type depends on several parameters such as the size of the training data, the ambiguity, and the prediction direction.

Keywords: Cognate prediction, Proto-form prediction, Statistical models, Neural models

1. Introduction
Since the works of the Neogrammarians (Osthoff and Brug-
mann, 1878), it is assumed that the lexicon of a lan-
guage evolves diachronically according to regular sound
changes, notwithstanding morphological phenomena, lex-
ical creation and borrowing mechanisms.
The regularity of sound change can be modelled as follows.
If, at a given “point” in time, a phone (or phoneme) in a
given word changes into another phone (or phoneme), then
all occurrences of the same phon(em)e in the same context
change in the same way.1 Such a global change is modelled
as a sound law. The phonetic history of a language from an
earlier to a later stage can then be modelled as an ordered
sequence of sound laws. Sound laws are usually identified
by studying cognates: given two languages with a common
ancestor, two words are said to be cognates if they are an
evolution of the same word from said ancestor, called their
proto-form.2,3 Therefore, the phonological differences be-
tween two cognates, which can be modelled as a sequence
of sound correspondences, capture some of the differences
between the phonetic evolution of the languages.
Most methods for sound correspondences identification
start by aligning sequences of characters or phones, to
which they then apply statistical models, clustering meth-
ods, or both (Mann and Yarowsky, 2001; Inkpen et al.,
2005; List et al., 2017; List et al., 2018; List, 2019) with
the notable exception of Mulloni (2007), who uses Sup-
port Vector Machines. However, this task presents a num-
ber of similarities with machine translation (MT), as they

1For example, the sequence [ka] in Vulgar Latin changed into
[Ùa] in Old French, then to [Sa] in French. This is illustrated by
chat [Sa] ‘cat’ < Vulg. Lat. cattus *[kat.tUs] and blanche [blÃS]
‘white (fem.)’ < blanca *[blan.ka].

2For example, Pol. być ‘to be’, Cz. být ‘id.’ and Lith. būti ‘id.’
are cognates as they share the same Proto-Balto-Slavic ancestor.

3The term ‘cognate’ is sometimes used with broader defini-
tions that are tolerant to morphological differences between the
proto-forms of both words and/or to morphological restructurings
in the history of the languages.

both involve modelling sequence-to-sequence cross-lingual
correspondences,4 yet state-of-the-art neural network tech-
niques used in MT (Bahdanau et al., 2015; Sutskever et
al., 2014; Luong et al., 2015) have only been used once
for sound correspondence prediction, with disappointing
results (Dekker, 2018).
Our goal in this paper is to study under which conditions
either a neural network or a statistical model performs best
to learn sound changes between languages, given the usu-
ally limited available training data.5 We first compare the
performances of these two types of models in an ideal set-
ting. To do that, we generate an artificial phonetised trilin-
gual lexicon between a proto-language and two daughter
languages, use it to train each model with varying hyper-
parameters and compare the results. We observe that statis-
tical models perform better on small data sizes and neural
models on cases of ambiguity. We then present the results
of preliminary experiments, reproducing the same study un-
der real life conditions, using a trilingual cognate dataset
from Romance languages. We observe that both models
learn different kind of information, but that it is too early to
conclude; experiments need to be extended with better and
bigger datasets.

2. Data
2.1. Artificial Data Creation
In order to compare how both model types perform on the
task of sound correspondence learning in an ideal setup, we
create an artificial lexicon, composed of a proto-language
and its reflect in two artificially defined daughter languages.
Using artificial data for such a proof of concept offers sev-
eral advantages: we can investigate the minimum number

4MT generally process sequences of (sub)words, whereas we
process sequences of phon(em)es.

5Such a method could also be applied to learn orthographic
correspondences between close languages, provided said corre-
spondences are regular enough; however, this is not the point of
this paper as we focus on an historical linguistic application.
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of word pairs required to successfully learn sound corre-
spondences, as well as control the different parameters con-
straining the proto-language (number of phonemes, phono-
tactics) and its transformation into the daughter languages
(e.g. number of sound changes). However, the artificial data
must be realistic, to not impair the linguistic validity of the
experiment; the proto-language must have its own realis-
tic phonology, obey phonetic and phonotactic rules, and its
daughter languages must have been generated by the se-
quential application of plausible sound changes.

Creating a Proto-Language We create an algorithm
which, given a phone inventory and phonotactic con-
straints6, generates a lexicon of a chosen size.7

For our experiments, we draw inspiration from Latin and
Romance languages. More precisely, we use:

• The phone inventories of Romance languages: each
lexicon generated uses all the phones common to all
Romance languages, as well as a randomly chosen
subset of less common Romance phones.8

• The phonotactics of Latin, as detailed in the work of
Cser (2016): each word is constructed by choosing a
syllable length in the distribution, and its syllables are
then constructed by applying a random set of the cor-
responding positional phonotactic rules.

Generating a Daughter Language Given the proto-
language, we create a daughter language by, first, randomly
choosing a set of sound changes, then consecutively ap-
plying each chosen sound change to all words in the lexi-
con. Among the main possible sound changes for Romance
languages are apocope, epenthesis, palatalisation, lenition,
vowel prosthesis and diphtongisation. The dataset gener-
ated for this paper used two sets, each of 15 randomly cho-
sen sound changes, to generate two daughter languages.
Two examples from our generated dataset are [stra] > [is-
dre], [estre] and [Zolpast] > [Zolbes], [Zolpes].

2.2. Real Dataset Extraction
Our second goal being to study how our results in an ar-
tificial setting generalise to a real-life setting, we need
to gather a dataset of related real languages, from a well
known direct ancestor language to two closely related but
different daughter languages. We choose to study Latin
(LA) as the ancestor language, with Italian (IT) and Spanish
(ES) as its daughter languages.

Raw Data Extraction EtymDB 2.0 (Fourrier and Sagot,
2020) is a database of lexemes (i.e. triples of the
form 〈language, lemma, meaning expressed by English
glosses〉), which are related by typed etymological rela-
tions, including the type “inherited from.” To generate
the cognate dataset from EtymDB, we followed the inher-
itance etymological paths between words; two words form
a cognate pair if they share a common ancestor9 in one of

6Phonotactics govern which phonemes sequences are allowed.
7Code available at https://github.com/clefourrier/PLexGen
8For example, vowels common to all Romance languages are

[a] [e] [i] [o] [u], and a subset of extra vowels could be [O] [E] [I]
9Said ancestors are those present in the database, not an ex-

haustive list of all possible cases

their common parent languages (Old Latin, Proto-Italic, or
Proto-Indo-European for LA-IT and LA-ES, Vulgar Latin,
Latin, and the previous languages for IT-ES).

Phonetisation and filtering The phonetisation of the real
data is done using Espeak, an open source multilingual
speech synthesiser (Duddington, 2007 2015), which can
also convert words or sequence of words into their IPA rep-
resentations. We phonetise each word independently, then
add to each phonetised word a start-of-sentence token indi-
cating their language and a generic end-of-sequence token
(EOS), following Sutskever et al. (2014).10 When faced
with competing pairs, i.e. pairs whose source word is the
same but whose target words differ, we only retain the pair
with the lowest Levenshtein edit distance (method with the
strongest cognate recall according to List et al. (2018)).

2.3. Datasets properties
The artificial dataset contains 20,000 unique word triples
containing a proto-language (PL) word and its reflects in
the two daughter languages (DL1 and DL2). Samples of
various sizes are then randomly drawn from this dataset.
The real-life dataset contains 605 cognate triples for LA-
ES-IT (1/3-2/3 split in training and test set) as well as 388
additional cognate pairs for LA-IT, 296 for LA-ES, and
1764 for IT-ES, all extracted from EtymDB-2.0 (see above).
Early experiments on real-life data have shown that, to
compensate for noise, monolingual data must be used to
constrain the encoder and decoder of each language to learn
what can be plausible phone sequences in a word. We there-
fore extract 1000 words for each language.

3. Experimental Setup
Task Description For each dataset available, we want to
compare how well the statistical and neural models learn
sound correspondences between related languages. We de-
fine the corresponding task as the translation of phonetised
cognates from one language to another.
However, we expect said translation tasks to vary consid-
erably in terms of difficulty: since several proto-forms can
give the same daughter form, going from a daughter lan-
guage to a mother language should be harder than the op-
posite. To account for this ambiguity, we predict 1, 2, and
3-best answers with each model.

Statistical Model Moses is the reference (open source)
tool for statistical MT (Koehn et al., 2007). We first to-
kenise and align the bilingual data using GIZA++ (Och and
Ney, 2003), then train a 3-gram language model of the out-
put (Heafield, 2011), a phrase table that stores weighted
correspondences between source and target phonemes (we
use 80% of our training data) and a reordering model. The
relative weights of the language model, the phrase table and
the reordering model are then tuned (we use MERT) on de-
velopment data, the remaining 20% of our training data.
For a given input, the decoder can then find the highest
scoring equivalent(s) of an source word in the target lan-
guage.

10In the decoding phase of the model, everything predicted after
an EOS token is discarded.
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Figure 1: BLEU scores for MEDeA, function of the data
size and hidden dimension, for the PL→DL1 pair.

Neural Model MEDeA (Multiway Encoder Decoder Ar-
chitecture) is our implementation of one of the classical ap-
proaches in neural MT: the sequence-to-sequence encoder-
decoder model with attention (Bahdanau et al., 2015; Lu-
ong et al., 2015).11 We use an architecture with a spe-
cific single layer encoder and a specific single layer de-
coder for each source and each target language. We use
an attention mechanism specific to each decoder (and not
encoder-dependent). For a given multilingual lexicon the
model learns on all possible language pairs,12 which con-
strains the hidden representation to a single space. For all
experiments, each phone is embedded as a vector of length
5,13 and MEDeA is trained with batches of size 30, a batch
dropout of 0.2, no layer or attention dropout, and Adam
optimisation with a 0.01 learning rate.

Evaluation Metric We use BLEU as an evaluation met-
ric.14 BLEU is based on the proportion of 1- to 4-grams in
the prediction that match the reference. This is extremely
interesting for our task, as sound changes can affect several
succeeding phones: this score gives us, not only the char-
acter error rate computed by the 1-gram, but also the errors
in the phone successions computed by the 2- to 4-grams in
BLEU. A major criticism of the BLEU score for MT is that
it can under-score correct translations not included in its
reference set. This does not apply in our case, since there
is only one possible “translation” of a word into its cognate
in another language.
In order to use BLEU even when we produce n>1 “trans-
lations”, we compute BLEU scores by providing the n-best
results as the reference, and our input word as the output.

4. Experiments on Artificial Data
4.1. Model Parameters
For all our experiments on artificial languages, we train the
models on our multilingual artificial lexicon.

MEDeA learns a single model for all possible language
pairs, on 50 epochs. We train it with hidden dimensions of
12, 25, 37, and 50, training set sizes of 500, 1000, 1500,

11Code available at https://github.com/clefourrier/MEDeA
12For example, for a bilingual Spanish-Italian lexicon, the

model will learn on Spanish to itself, Italian to itself, Spanish to
Italian and vice versa.

13The embedding size was chosen in preliminary experiments,
and was the best choice between 2, 5 and 10. This seems adequate
relative to the total vocabulary size, of less than 100 items

14We use SacreBLEU, Post (2018)’s implementation

Figure 2: BLEU scores averaged over all runs for all
training data sizes (except 500).15The bottom part of each

bar represents the BLEU score of the most probable
predicted word for each input word. The mid (resp. top)

part of each bar corresponds to the gain in BLEU obtained
by also considering the second-best (resp. third-best)

ranked prediction for each input word.

2000, and 3000 triplets of words, for 1, 2 or 3 best results.
To limit the impact of train/test set separation, we repeat
these experiments using three different shuffling seeds.

MOSES is trained on the same data splits as MEDeA,
shuffled in the same order, to predict 1 to 3 best results.
However, we have to do one run for each language pair, as
MOSES can only learn on bilingual data.

4.2. Impact of the Hidden Dimension on Neural
Models

We study the impact of the hidden dimension on the perfor-
mance of MEDeA. No matter the data size, we observe in
Figure 1 that a hidden dimension of 12 is consistently too
small to learn as well as the rest, and very sensitive to insta-
bility (see the std in blue). A hidden dimension of 50 only
performs well with big enough data sets, and is very sensi-
tive to instability below 1000 pairs of words. On average,
the hidden dimension which achieves the best performance
for the data sizes we have is 25, as it represents a good bal-
ance between a high enough complexity of representation
and a small enough number of weights to learn with. For
this reason, in the rest of the paper, we will only introduce
the results corresponding to a hidden dimension of 25 for
the neural network.

4.3. Model Independent Observations
This analysis focuses on data sizes of 1000 and above, as
the impact of very small datasets (500 word pairs per lan-
guage) on the prediction BLEU scores of both MOSES and
MEDeA will be specifically discussed in the next section.
Across all experiments and models, we observe in Figure 2
that the easiest situation to learn is the predict from the
proto language (PL) to its daughters (98 BLEU), then from
one daughter language to the other (92-95 BLEU), and that,
finally, the hardest task by far is to go from a daughter lan-
guage to its mother (60-75 BLEU): there is a difference of
20 points between the best results from mother to daughter
and the best from daughter to mother.

15Results obtained with a data size 500 skew the average con-
siderably, being several standard deviations apart from the others,
for reasons discussed in Section 4.2., and were thus removed.
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(a) 1-best (b) 2-best (c) 3-best

Figure 3: BLEU scores for the n-best prediction, for all experiments.

Along the same lines, we also observe that using 2 or 3
best experiments barely improves the result for the first two
situations (adds 2 to 5 points from 1-best to 3-best on av-
erage), when it considerably increases the BLEU score for
the prediction from daughter to mother language (20 to 25
points for MEDeA, 10 to 15 points for MOSES). This dif-
ference, due to ambiguity, was expected, and described in
the experimental setup.

4.4. Comparison Between Models
Both models can learn to predict in all directions, but they
perform well under different circumstances (Figure 3).

1-best Experiments On 1-best experiments, the statis-
tical model consistently outperforms the neural model,
though not by far when reaching data sizes of 2000 and
above.

n-best Experiments With very little data (500 word
pairs), the statistical model is significantly better; the neu-
ral model overfits on too little data. However, with a lot
of data (2000 word pairs per language and above), the neu-
ral model outperforms the statistical model. This difference
in performance seems to come from the better modelling of
language structure by the neural model, as will be discussed
in Section 5.2..
With 1000 and 1500 training pairs, the performance is
roughly equivalent between the two models for 2 and 3 best
(the statistical model is slightly better on 1000 word pairs,
the neural network slightly better on 1500 word pairs).

5. Preliminary Experiments on Real Data
5.1. Model Parameters
To assess whether our results transfer to real world data, we
carried out preliminary experiments on our real datasets.
We expect both models to perform worse than on artificial
data, since real data can contain noise, both from extraction
errors and linguistic phenomena.

MEDeA is trained with the real dataset, on all language
combinations possible (IT, ES, LA) at once, with early stop-
ping at 50 epochs. We train it for 3 shuffling seeds, com-
paring a hidden size of 12 to 50, and 1, 2 or 3 best results,
this time using all the data we have.

MOSES is trained on pairs of language combinations
separately. We provide it with the same data splits, with
the exception of monolingual data, removed from its train-
ing set. The triplets of manually corrected data is treated as
several sets of pairs, for the same reasons.

Impact of Data Size on Neural Network Optimal Hyper-
parameters As mentioned in the data descriptions, not
all language pair datasets are the same size. There are about
600 word pairs for ES-LA, 700 for IT-LA, and 2.5 times
that for ES-IT. We observe that for low resource pairs, the
corresponding best hidden size is 25, when for almost 2000
pairs, the best hidden size is 50, confirming what was ob-
served in artificial data experiments. We will systematically
investigate in further work the impact of data size on the
best hidden dimension for learning.

5.2. Results

General Comparison We observe that, on this set of real
data, the statistical model systematically outperforms the
neural network, by on average 15 points. Neural networks
are highly sensitive to noise and data inconsistencies when
trained with too little data, especially without layer dropout.

Impact of the Data Size For our smallest dataset, ES-
LA, BLEU scores ranges from 18 to 33 for MEDeA, and
from 29 to 47 for MOSES (1-best to 3-best); for our biggest
dataset, ES-IT, BLEU scores ranges in both direction from
40 to 54 for MEDeA, and 50 to 64 for MOSES (1-best to
3-best). Even for MOSES, there is a size threshold under
which learning is significantly difficult.

What Are the Models Learning? When looking at the
respective 3-best predictions of the two models, we observe
that the statistical model learns sound correspondence pat-
terns when the neural network learns the underlying struc-
ture of the data. For example, for IT→LA, the neural net-
work consistently predicts several forms as possible words
translations: [rustiko] ‘rustic’, coming from [rUstIkUs] ‘of
the country’, is predicted as [rUstIkUs] (masc.), [rUstIkUm]
(neut.), and [rUstIkss] (nonsense) by MEDeA, vs [rUkUstI],
[rUIkOst] and [UsrtIkwUs], three meaningless forms by
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MOSES.16 It even allowed us to identify errors in our data:
[ramo] ‘branch’ < [ramUs] ‘branch’, erroneously related to
Latin [radIks] ‘root’ (cognate with [ramUs]) in our dataset,
was predicted by MEDeA as [ramUs] (masc.), [ramU], [ra-
mUm], and by MOSES as [mUr], [rEam], and [raEm].

6. Conclusion
Through this paper, we studied the respective performances
of a statistical and a neural model, in two different settings,
to produce the directly related correspondent of a source
language word in a related, target language (i.e. to predict
the cognate of a source word in a sister language of the
source language, the etymon of a source word in a parent
language, or the reflex of a source word in a daughter lan-
guage). Our experiments with artificial data allowed us to
study both models in a controlled setting. We observed that
statistical models perform considerably better when trained
on very little datasets, but that neural networks produce bet-
ter predictions when both more data is available and mod-
els are used to produce more than one output in order to
account for the intrinsic ambiguity of some of the language
pairs. In preliminary experiments on real data, we observed
that, on small and noisy datasets, the statistical model per-
forms consistently better than the neural model, but that
the neural model seems to have learned higher level mor-
phological information. Further experiments need to be
done, both with less noisy, bigger real datasets (e.g. man-
ually curated) and with more complex artificial data, with
more sound changes and added noise separating the proto-
language from its daughter languages.
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Abstract
We address the problem of creating and evaluating quality Neo-Latin word embeddings for the purpose of philosophical research,
adapting the Nonce2Vec tool to learn embeddings from Neo-Latin sentences. This distributional semantic modeling tool can learn from
tiny data incrementally, using a larger background corpus for initialization. We conduct two evaluation tasks: definitional learning of Latin
Wikipedia terms, and learning consistent embeddings from 18th century Neo-Latin sentences pertaining to the concept of mathematical
method. Our results show that consistent Neo-Latin word embeddings can be learned from this type of data. While our evaluation results
are promising, they do not reveal to what extent the learned models match domain expert knowledge of our Neo-Latin texts. Therefore,
we propose an additional evaluation method, grounded in expert-annotated data, that would assess whether learned representations are
conceptually sound in relation to the domain of study.

Keywords: distributional semantics, evaluation, small data, philosophy, digital humanities, Neo-Latin

1. Introduction
Christian Wolff (1679-1754)’s philosophical ideas on the so-
called ‘mathematical method’ are deemed greatly influential
upon 18th century thinking about science (Frängsmyr, 1975,
654-55). An interesting research question is whether the in-
fluence of Wolff’s ideas can be more precisely assessed by
using a mixed (quantitative, qualitative and computational)
approach along the lines of Betti et al. (2019) and Ginammi
et al. (2020). In addressing this question, we want to link
concepts and terms used to express them using computa-
tional techniques, including query expansion based on dis-
tributional semantics, information retrieval as a downstream
task, and meaning shift analysis built upon this.
The endeavour involves several challenges, starting with (i)
building a high-quality, multi-author 18th century philos-
ophy corpus with distinctive characteristics including Neo-
Latin texts; and (ii) getting satisfactory distributional seman-
tics models for Neo-Latin. In this paper we report results on
(ii), and describe initial steps towards (i). As to (ii), our goal
is to evaluate Neo-Latin (word) embeddings learned from
tiny data (very small data, i.e. a few sentences, following
Herbelot and Baroni (2017)) from the specific domain of
philosophy, adapting methods known to work well for this
data type, but previously applied to English only (Herbelot
and Baroni, 2017; Bloem et al., 2019). We perform two eval-
uation tasks: 1. compare embeddings learned from a single
Vicipaedia definitional sentence to Word2vec (Mikolov et
al., 2013) embeddings learned from the full Vicipaedia cor-
pus, and 2. test the consistency of embeddings trained on
tiny amounts of topic-specific 18th century Neo-Latin data,
initialized using different background corpora.

2. Background
Advances in natural language processing and expanding dig-
ital archives have made it possible to analyse old texts in
new ways (Hinrichs et al., 2019). Distributional semantics
(DS) (Turney and Pantel, 2010; Erk, 2012; Clark, 2015) has
emerged as an effective way to computationally represent
words and sentences in a way that appears to represent their
semantic properties. Along with its prevalence in present-
day natural language processing, this aspect makes DS a

promising family of techniques for application in text-based
fields. The application of DS models to historical languages
is however challenging, as large amounts of training data
are required (Bengio et al., 2003), while relatively little new
digital text is being produced online, in comparison with liv-
ing languages. Artefacts from digitization processes such as
Optical Character Recognition (OCR) may also pose prob-
lems. At the same time, philosophers who are interested in
Latin texts make accurate studies of concepts and expect
high accuracy from the digital tools they use. Application
of DS models in this context therefore demands the use of
specific methods suited to low-resource languages, small
corpus sizes and domain-specific evaluation.

2.1. Latin word embeddings
Latin is a highly inflectional language with words taking
many forms depending on features such as case and gen-
der, and language models tend to perform worse on inflec-
tional languages. This effect is greater in n-gram models
(Cotterell et al., 2018) due to how each word form is repre-
sented separately, leading to a large vocabulary. Word2vec
also represents words in this way.
DS models of Latin have only been explored to a limited
extent, and never for Neo-Latin texts. In contrast to the more
numerous and larger-sized Latin corpora of the so-called La-
tinitas Romana, or Classical Latin (7th cent. B.C.-6th cent.
A.D.), Latin corpora of the so-called Latinitas Nova, or Neo-
Latin (15th cent. A.D.-21st cent. A.D.), also called New
Latin when referring specifically to the language, are usually
smaller in size,1 and they often present linguistic variations
or new word types in comparison to Classical Latin corpora.
For example, the terms analyticus (analytic) or syntheticus
(synthetic) are present only in Neo-Latin, and not in Clas-
sical Latin. Various Latin corpora are available. Vicipaedia,
the Latin Wikipedia, contains 10.7M tokens of text that has
been written in recent years. The Latin Library (16.3M to-

1For example, in the LatinISE historical corpus v2.2
(McGillivray and Kilgarriff, 2013), the subcorpus Histori-
cal era Romana (8,069,158 tokens) is considerably bigger than
the Historical era Nova one (1,985,968 tokens)
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kens) is available in plain text format2, containing texts from
all time periods. There are a few manually annotated tree-
banks: the Index Thomisticus Treebank (Passarotti, 2019)
(354k tokens, 13th century, the works of Thomas Aquinas)
based on the Index Thomisticus (Busa, 1974), Perseus (Bam-
man and Crane, 2011) (53K tokens, Classical Latin) and
Latin PROIEL (Haug and Jøhndal, 2008) (Classical Latin
and the 4th century Vulgate New Testament translations).
These are all partially available in Universal Dependencies
format, including tokenization, lemmatization and depen-
dency syntax (Nivre et al., 2016; Cecchini et al., 2018). Fur-
thermore, there is the Late Latin Charter Treebank (Korki-
akangas and Passarotti, 2011) (250k tokens, medieval Latin).
There is some big data as well, specifically a 1.38 billion to-
ken corpus of Latin OCRed text (Bamman and Smith, 2012),
a large but rather noisy resource due to mishaps in the OCR
and automatic language detection processes.
Some Latin DS models exist: Latin data has been in-
cluded in large multilingual semantic modeling (Grave et
al., 2018) and parsing (Zeman et al., 2018) efforts, using
automatic language detection to identify the material as
Latin. Another large-scale approach was taken by Bjerva
and Praet (2015), who trained embeddings on the aforemen-
tioned Bamman corpus (Bamman and Smith, 2012) using
Word2vec (Mikolov et al., 2013). Parameters were taken
from Baroni et al. (2014), who tuned on an English word
similarity resource with models trained on a concatenation
of large English-language corpora. The resulting models
were not tuned or evaluated for Latin. Manjavacas et al.
(2019) applied fastText to the same data to create embed-
dings for the task of semantic information retrieval, also
without tuning, finding that more basic BOW methods out-
perform it and finding fastText to outperform Word2vec.
The only study we are aware of that includes an evaluation
of Latin word embeddings is by Sprugnoli et al. (2019), who
create lemma embeddings from a manually annotated cor-
pus of Classical Latin, the 1.7M token Opera Latina corpus,
which includes manually created lemmatization. Sprugnoli
et al. (2019) evaluate the lemma embeddings by extracting
synonym sets from dictionaries and performing a synonym
selection task on them. For a given target term, the cosine
distance of its vector to a set of four other terms is computed,
one of which is a synonym. To successfully complete the
task, the synonym has to be nearer to the target term than
the alternative terms. The alternative terms were manually
checked to make sure they are not synonyms as well. They
find that fastText-based models, which can represent sub-
word units, perform better on this task than Word2vec-based
model. They note that this may be due to Latin’s heavily in-
flectional morphology, though when using lemmatized data,
the effect of morphology should be limited.
In summary, there are no existing DS models relevant for ad-
dressing our research question, as Bjerva and Praet (2015)’s
models were not evaluated on Latin and Sprugnoli et al.
(2019)’s models were designed for Classical Latin. The rel-
evance of the available corpora for creating Neo-Latin word
embeddings is an open question that we will address.

2http://thelatinlibrary.com/, available as part
of the Classical Language Toolkit: https://github.com/
cltk/latin_text_latin_library

2.2. Tiny data
The application of DS models to Latin involves working
with smaller datasets than usual in DS. Some work has
been done to evaluate the effect of data size and develop
methods suited to learning from less data. Factorized count
models have been found to work better on smaller datasets
(Sahlgren and Lenci, 2016) compared to the Word2vec fam-
ily of models (Mikolov et al., 2013). Herbelot and Baroni
(2017)’s Nonce2Vec, however, shows that Word2vec can be
adapted to learn even from a single sentence, if that sentence
is highly informative. In an experiment on a small dataset
of philosophical texts (Bloem et al., 2019), this method re-
sulted in more consistent embeddings than a count-based
model. The way in which Nonce2Vec can learn from such
small amounts of data is by learning incrementally, starting
from a semantic background model that is trained on a larger
corpus, such as all Wikipedia text of a language. Given any
term with one or a few sentences of context, that term can be
placed into this background model, using nothing but those
context sentences as training data. First, a simple additive
model (Lazaridou et al., 2017) is used for initialization, tak-
ing the sum of the Word2vec background space vectors of
all the context words of the target term. This additive model
is also used as an evaluation baseline. Next, Nonce2Vec
trains the background skipgram model on the context sen-
tences for the target term vector, without modifying the net-
work parameters of the background space3, with an initial
high learning rate, large window size and little subsampling.
In this way, Nonce2Vec can learn a vector for a target term
based on only one or a few sentences of context, even if that
term does not occur in the larger background corpus. As
we currently have only tiny amounts of in-domain data, and
larger corpora are available that can be used as background
(see section 2.1.), we use Nonce2Vec to take distributional
information from a general-domain background corpus and
further train it on our tiny in-domain dataset.

2.3. Evaluation
Distributional semantic models are typically evaluated by
comparing similarities between its word embeddings to a
gold standard of word similarity scores based on human rat-
ings, such as the MEN dataset (Bruni et al., 2014) or the
SimLex-999 dataset (Hill et al., 2015) for English. How-
ever, this is a rarely feasible method in specialised domains
and low-resource situations. Not only do such datasets not
exist for Latin, but even for English, the meaning of words
reflected in these resources may differ from their meaning
in the philosophical domain (Bloem et al., 2019).
Evaluation sets can also be created automatically using ex-
isting resources. Synonym sets, e.g. from lexical semantic
databases, can be used as gold standard data by means of a
synonym selection task, which measures how often the near-
est neighbour of a vector is its synonym. This method was
used for Latin by extracting information from dictionaries
(Sprugnoli et al., 2019), but for our use case, this approach

3Nonce2Vec can also modify the background model in newer
versions (Kabbach et al., 2019), but this can lead to a snowball
effect, where the context sentence vectors are significantly moved
towards the position of the new context through backpropagation,
which would worsen the quality particularly of small models.
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may also have the issue of not reflecting domain-specific
meanings. General dictionary synonyms may not reflect the
way words are used in our target domain. Herbelot and Ba-
roni (2017) evaluate Nonce2Vec by using vectors from a
Word2vec model of Wikipedia text as gold vectors. The
Word2vec model was in turn evaluated using word simi-
larity scores from the MEN dataset. This evaluation can
be conducted for any language in which Wikipedia is avail-
able, although for Latin, we do not have a word similarity
test collection equivalent to the MEN dataset to evaluate a
Word2vec model trained on Vicipaedia.
Some aspects of embedding quality can be measured with-
out a gold standard. The metric of reliability quantifies the
randomness inherent in some predictive distributional se-
mantic models, and to what extent it can affect the results
(Hellrich and Hahn, 2016). Bloem et al. (2019) propose con-
sistency as a metric for evaluating low-resource DS models,
defining a model as consistent “if its output does not vary
when its input should not trigger variation (e.g. because it
is sampled from the same text)”. The consistency metric
computes the ability of a model to learn similar embed-
dings from different parts of homogeneous data, and does
not require ‘gold’ vectors to compute as it only compares
learned vectors to each other. Multiple vectors for a single
target term but with different context sentences are trained
from identically parametrized models, and compared to each
other in terms of nearest neighbour rank and cosine similar-
ity. Higher similarity and nearest neighbour rank between
these different vectors of the same target term indicates that
the model is more consistent at the level of the domain of
text that the context sentences are sampled from (a time
period, author, genre, topic etc.). While this measure does
not capture all aspects of model quality, it can be used to
quantify what model configurations and which background
corpora produce consistent embeddings.
To evaluate in-domain term meaning, domain-specific
knowledge should be used in the evaluation. Comparative
intrinsic evaluation (Schnabel et al., 2015) — i. e. letting
users compare and rank terms from a list of nearest neigh-
bours against a query term for semantic similarity — can be
used to have experts assess the output of a model, and quan-
tify the outcome. When evaluating models of philosophical
concepts, this is not a trivial task. As even domain experts
might be unaware of all possible expressions of a concept
used by a particular author, constructing ground truths of
in-domain key concepts paired off with known terms is nec-
essary for evaluation, as shown by Meyer et al. (2019). This,
in turn requires a large in-domain corpus. Although we are
currently in the process of constructing a corpus with these
exact characteristics, we do not have it yet in a form that is
suitable for evaluation based on expert ground truths. If con-
structed properly in a machine-readable way, such a ground
truth would enable automatic evaluation of model output in
comparison to the ground truth.

3. Tasks
Considering the constraints on data size and evaluation for
our domain, we perform two evaluations of Nonce2Vec on
Latin data. The first evaluation aims to replicate Herbelot
and Baroni (2017)’s English definitional dataset and eval-

uation for Latin, and shows us that Nonce2Vec can learn
meaning representations from a single sentence that are sim-
ilar to those learned from a larger corpus. In the second task,
we evaluate vectors trained on a tiny dataset composed of
sentences from texts relevant to our research question on
Wolff’s mathematical method. We perform the consistency
evaluation of Bloem et al. (2019), while testing different
background models for initialization. The second evaluation
task shows us that Nonce2Vec can learn word embeddings
from these sentences consistently even without access to a
background corpus from the target domain.4

3.1. Vicipaedia definitional dataset evaluation
We built a dataset of terms and their definitional sentences,
following Herbelot and Baroni (2017)’s definitional dataset
for English using the same procedure as much as possible.
We used Vicipaedia as a source, downloaded and extracted
using Witokit5. This source was chosen because Herbelot
and Baroni (2017) also used Wikipedia and because it is rel-
atively close in time to 18th century Neo-Latin, is large, and
is free of OCR errors. The dataset was constructed by taking
Vicipaedia page titles containing one word only, taking that
page title as a target term and taking the first sentence of
the corresponding article as the definitional sentence. The
sentences were tokenized using Polyglot6 and we removed
punctuation. We then filtered out target terms that occur
fewer than 50 times in Vicipaedia to ensure that they are
well-represented in the background model. Herbelot & Ba-
roni used a frequency cutoff of 200 in the UkWaC corpus,
but our corpus is smaller so we chose a lower cutoff. We
also filtered out terms for which the definitional sentence
is shorter than 10 words, to ensure there is some context to
learn from. Terms for which the title word does not literally
occur in the first Vicipaedia sentence were filtered as well.
Occurrences of the target term were replaced by the string
‘ ’, ensuring that a new vector is learned for that term. We
then randomly sampled 1000 of these terms and sentences,
splitting them into 700 tuning and 300 test instances. All
of this replicates Herbelot and Baroni (2017)’s extraction
procedure for English.
To estimate the quality of the extracted material, we manu-
ally checked 99 of the randomly sampled definitional sen-
tences and found that 70 contained proper definitions, 21
contained definitions with additional non-definitional infor-
mation and 8 did not contain proper definitions. As Herbelot
and Baroni (2017) extracted full sentences, definitions with
additional information also occur in their sets, so we accept
these cases. After updating our automatic extraction proce-
dure, of the 8 non-definitional cases, 3 were excluded by ex-
cluding cases with parentheses in the title, 2 were resolved
by including words between parentheses in the sentence ex-
traction, 1 is a proper name without definition, and 2 now
include a definition but also additional material.
Nonce2Vec can use these definitional sentences to perform
one-shot learning of the target term. This newly learnt vector

4A branch of Nonce2Vec that includes these evaluations and
datasets can be found at https://github.com/bloemj/
nonce2vec/tree/nonce2vec-latin

5https://github.com/akb89/witokit
6https://github.com/aboSamoor/polyglot
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can then be compared to the vector produced by a standard
(skipgram) Word2vec model trained over the entire Vici-
paedia. It is expected that a well-performing system will
learn from the definitional sentence a vector that is close to
the Vicipaedia vector: their Reciprocal Rank (RR) will be
high. We calculate RR between the learned vector and the
gold Vicipaedia vector from the background model, over all
target terms, and take the resulting Mean Reciprocal Rank
(MRR) as a measure of model quality. As a baseline, we use
the additive model which just sums context vectors from the
background space, following Herbelot and Baroni (2017).7

3.2. Neo-Latin dataset evaluation
We built a Neo-Latin dataset consisting of terms and their
context sentences. This material is lifted from a small por-
tion (about 20%) of a Neo-Latin corpus that is being used
in our ongoing work (Van den Berg et al., ongoing). The
full corpus includes 162 books in Latin and 146 books in
German published in Germany between 1720 and 1790. We
estimate the page count of the Neo-Latin corpus at roughly
40.000. The full corpus has several distinctive characteris-
tics. It is (i) built by a team of experts towards a specific
scholarly purpose, that of investigating the concept of math-
ematical method in 18th century Germany; (ii) it presents
linguistic variation and vocabulary typical of Neo-Latin cor-
pora (see section 2.1.); additionally, the texts contained in
the corpus are more recent in comparison to Neo-Latin cor-
pora from e.g. the 15th century. Another characteristic of
our corpus is (iii) that it includes only academic philoso-
phy, logic and science in general. In addition to focusing on
specific topics and their corresponding technical language,
the corpus thus also provides insight into the social context
of the authors (Europeans with a deep command of Latin,
(writing under) male (names), of a certain age and socio-
economic background).
Manual annotations on the Neo-Latin corpus are currently
ongoing. They aim at extracting lists of terms expressing
certain philosophical concepts relevant to the study of the
concept of mathematical method in 18th century Germany,
as well as their (functional) synonyms, and the context in
which they appear. A selection of contexts get manually
typed in full. The Neo-Latin dataset we use in our task is a
subset of the full annotation set, and is curated by the same
annotator of the full Neo-Latin annotation set, a philosopher
by training with knowledge of Latin (Maria Chiara Parisi).
The dataset presents – a fortiori – the features of the full cor-
pus indicated above and consists of a small, manually-typed
and manually-checked set of 30 target terms and, for each
term, three sentences (see Table 4) in which the term occurs.
The target term (column 1) is replaced in the snippets (col-
umn 2, 3 and 4) with ‘ ’. The Neo-Latin corpusculum we
use is a tiny, but sufficient set of data to test the consistency
of Neo-Latin word embeddings.
As we do not yet have the full corpus in a suitable machine-
readable format, we cannot perform the same evaluation as
for the definitional dataset, but we can measure vector con-
sistency (Bloem et al. (2019), see 2.3.). We can use an out-

7We run the Nonce2Vec algorithm without the notion of infor-
mativeness incorporated by Kabbach et al. (2019), as that option
requires the use of an additional language model.

of-domain background corpus, such as Vicipaedia, for ini-
tialization, in order to use Nonce2Vec to model these terms.
Note that, doing this, we can no longer evaluate the result-
ing vectors by comparing the learned vectors to those from
the background corpus. The background corpus is text of a
different domain than 18th century mathematical text, and
may not even contain the core terms from these works, or it
may use them in a different way. Thus, unlike in Herbelot
and Baroni (2017)’s Wiki definitions evaluation setup, vec-
tors based on an out-of-domain background corpus cannot
serve as a gold standard for vectors from our domain.
The consistency metric (Bloem et al., 2019) evaluates the
stability of vector spaces generated by a particular model on
a homogeneous dataset extracted from a particular domain
of text, without a gold standard. In our case, the model is
Nonce2Vec, and the homogeneous dataset is our tiny Neo-
Latin mathematical method subset. Consistency is com-
puted by measuring the similarity between vectors of the
same word, trained over different samples of text (the sen-
tences from the dataset). We can use this metric to com-
pare different configurations of Nonce2Vec on the task and
see which one results in more consistent embeddings. In
particular, we are interested in trying different background
models for initializing the Nonce2Vec vectors, trained on
different background corpora. We hypothesize that a back-
ground model that leads to higher consistency scores on this
task with our Neo-Latin dataset provides a better initializa-
tion for our in-domain term vectors. Such a model, we might
conjecture, contains more of the relevant vocabulary, used
in a more similar way to that of our texts.

4. Results
4.1. Definitional evaluation
In the first evaluation, we compare vectors trained on Vici-
paedia definitional sentences to vectors from the Vicipaedia
background model, for the same target term. We first train a
standard Word2vec model on Vicipaedia, which Nonce2Vec
does using the Gensim (Řehůřek and Sojka, 2010) imple-
mentation of Word2vec. While Herbelot and Baroni (2017)
do not tune this model, as Vicipaedia is smaller than the
English Wikipedia they use, we try to change the default pa-
rameters to accommodate this. We find that a higher learn-
ing rate (α = .01), increased window size (15) and higher
subsampling rate (1−4) provides better results on our tuning
set. Next, we tune and run Nonce2Vec on our Latin defini-
tional dataset, using the background model for initialization
and as the sum baseline. We performed a grid search of
the same parameter space as Herbelot and Baroni (2017) do,
containing different learning rates ([0.5, 0.8,1, 2, 5, 10, 20]),
the number of negative samples ([3, 5, 10]), the subsampling
rate ([500, 1000,10000]), and window size ([5, 10,15, 20]).
The subsampling rate decay ([1.0, 1.3,1.9, 2.5]) and win-
dow decay ([1, 3,5]) are not relevant when training vectors
on single sentences. Bold values are the best performing
values in Herbelot and Baroni (2017).
Using the tuned Vicipaedia background model and applying
it to the test set, the best performance is obtained for a win-
dow size of 5, a learning rate of 0.5, a subsampling rate of
500, and 3 negative samples. The lambda parameter was set
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Model MRR Median rank
N2V-best 0.01936 251
N2V-defaultbg 0.15832 1866
N2V-default 0.00410 5736
Sum 0.01263 322

Table 1: Results on definitional dataset

to the default 70. Table 1 shows results using these tuned pa-
rameters (N2V-best) and the default Nonce2Vec parameters
from the English experiment (N2V-default) as compared
to the sum baseline (Sum). The N2V-defaultbg result uses
our tuned N2V parameters, but with the default background
model parameters, and the N2V-default result uses default
parameters from Herbelot and Baroni (2017) both for the
background model and for training on the definitional data.
On the test instances, we find that N2V shows an improve-
ment over the simple additive model baseline. As shown
in Table 1, the median rank of the gold vectors for our test
instances is 251, out of 14,049 neighbours (the vocabulary
size). For English, Herbelot and Baroni (2017) report a me-
dian rank of 623. While this number appears worse than
our score, this metric is sensitive to vocabulary size: their
English model has a vocabulary of 259,376 types due to
the larger corpus, and ranking high is more difficult when
there are more other vectors to rank. The Mean Recipro-
cal Rank (MRR) measure is 0.019 on the Latin definitions
but 0.049 on the English definitions, showing that the near-
est neighbours of the gold Wiki vectors rank higher among
the nearest neighbours of the learned definitional vector for
English than for Latin.

4.2. Neo-Latin consistency evaluation
Recall that for the Neo-Latin data that pertains to our philo-
sophical research question, we do not have gold vectors, as
there is no background corpus for our domain yet. Instead,
we compute consistency between vectors trained over differ-
ent context sentences of the same target term (shown in Ta-
ble 4). We experiment with initializing our vectors based on
models trained from various background corpora with vari-
ous model parameters, in order to find out what background
model leads to more consistent results for our domain of
Latin text. As background corpora, we use the Vicipaedia,
Latin Text Library, Latin Treebanks and Bamman corpora
described in section 2.1. The Latin Text Library corpus was
tokenized using Polyglot in the same way as the Vicipae-
dia corpus. The Bamman corpus was tokenized and lower-
cased by Ucto (van Gompel et al., 2017). Punctuation was
removed and, as these may be disruptive to distributional
models, we let Ucto replace items that are less lexical, such
as numbers of any type, dates, etc. by class labels. Of the
treebanks, we use the Universal Dependencies versions of
the Index Thomistius Treebank (165K tokens), the Perseus
LDT (29K) and Proiel (200K).
For each background model, we compute consistency met-
rics over the vectors learned by Nonce2Vec of all 30 Neo-
Latin target terms. We have three vectors per term, one from
each context sentence, and compute the metrics between all
pairs of the three vectors ( ~a1- ~a2, ~a2- ~a3, ~a1- ~a3). This evalu-

Model cos-sim rank vocab
bamman-c50-d400 0.701 47.5 901K
bamman-c50-d100 0.776 202 901K
lattextlib-c50-d400 0.332 604 24.7K
lattextlib-c50-d100 0.450 1279 24.7K
lattextlib-c20-d400 0.505 75 50.4K
lattextlib-c20-d100 0.621 301 50.4K
vicipaedia-c50-d400 0.482 103 14.0K
vicipaedia-c50-d100 0.603 219 14.0K
vicipaedia-c20-d400 0.551 47.7 30.4K
vicipaedia-c20-d100 0.674 244 30.4K
treebanks-c50-d400 0.133 292 810
treebanks-c50-d100 0.165 286 810
treebanks-c5-d400 0.298 1103 7.3K
treebanks-c5-d100 0.390 703 7.3K

Table 2: Consistency metrics on our Neo-Latin dataset using
Nonce2Vec, initialized with various background models.

ation data is shown in Table 4. We consider two metrics for
comparing a pair of vectors ~a1 and ~a2: by similarity, where
a higher cosine similarity indicates more consistency, or by
nearest neighbor rank, where a higher rank of ~a1 among the
nearest neighbors of ~a2 indicates more consistency. Every
vector in the background model, as well as ~a2, is ranked by
cosine similarity to ~a1 to compute this rank value.
We use the same Nonce2Vec parameters across all experi-
ments: the ones that performed best in our definitional evalu-
ation (section 4.1.). We experiment with background models
with different dimensionality: d400 (the Nonce2Vec default)
and d100 (found to perform better by Sprugnoli et al. (2019)
on lemmatized Latin data). We also vary the frequency cut-
off, as when working with smaller data, we may wish to
include more words even if they are infrequent. We try a
cutoff of 50 (c50), the nonce2vec default, and c20 or c5 de-
pending on the size of the corpus. The results of Nonce2Vec
with the different background models are listed in Table 2.
We observe that the most consistent vectors are obtained
using the largest dataset as a background corpus, the Bam-
man corpus. Using the largest Bamman model (bamman-
c50-d400), we find that different vectors for the same term
trained on a different sentence are on average rank 47 in
each other’s nearest neighbours, out of a vocabulary of 901K
types, computed over all 30 test instances. On average, the
cosine similarity between these vectors is 0.7. Among the
90 total comparisons between the 3 vectors for the 30 target
terms, there were 59 cases where both target term vectors
were each other’s nearest neighbour (65.6%), with a greater
cosine similarity to each other than to any of the other 901K
words in the vocabulary. This is an impressive score with a
vocabulary of almost a million words. The best-performing
Wiki model, with a lower frequency cutoff (vicipaedia-c20-
d400) achieves a similar average rank among a vocabulary
of 30.4K types, and 51% of comparisons have rank 1 con-
sistency. The cosine similarities are lower, though (0.55).
On their synonym detection task for Classical Latin, Sprug-
noli et al. (2019) achieve an accuracy of 86.9%, but here,
the model only needs to choose between four alternative
words, instead of almost 1 million. Furthermore, we observe
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Term ~a1 NNs ~a2 NNs

genus
1 essentialis demonstrabilia
2 metaphysica quidditative
3 substantialitas universaha

conceptus
1 expucetur possibiles
2 demonstrabilia universaliores
3 universaha aliquee

Table 3: Qualitative examination of some nearest neigh-
bours of target term vectors computed over two different
context sentences of those terms.

that for the bamman-c50-d400 model, the average rank of
a target term vector from the background model among the
nearest neighbours of the learned Neo-Latin vector for that
same term is 50,737 with a cosine similarity of 0.41. This
shows that the model does learn from the Neo-Latin data,
deviating from the background vector, and does not achieve
consistency simply by learning nothing consistently.
Generally, we see in Table 2 that a lower word frequency
cutoff (keeping a larger vocabulary) leads to more consis-
tent results. All of this indicates that more background data
leads to more consistent vectors on our Neo-Latin data.
The Vicipaedia-based models slightly outperform the Latin
Text Library-based models, despite their smaller vocabulary.
This shows that data size is not the only factor — similarity
to our target domain may also be relevant here, as Vicipaedia
data may be closer to Neo-Latin scientific text than the con-
tents of the Latin Text Library. Lastly, the models based on
the small Classical Latin treebanks perform worst, a corpus
that is not only small but also highly varied.
These results show that the Bamman models lead to more
consistent embeddings on our data, even though they are
based on rather noisy data. We have a closer look at this
result by cherry-picking some examples. Table 3 shows the
three nearest neighbours for two vectors each for the target
terms genus (kind) and conceptus (concept). ~a1 is trained
over the first context sentence for this term from our dataset,
and ~a2 over the second. For genus, most of these look rea-
sonable — certainly, essentialis (essential), quidditative (re-
lating to the essence of someone or something) and substan-
tialitas (the quality of being substantial or having substance)
are semantically related to genus in the context of the mathe-
matical method. Universaha, while related, is an OCR error
(universalia (universals)). In this case, the two vectors are
also each other’s nearest neighbours, so the results for this
term are consistent. The nearest neighbours of conceptus,
on the other hand, are not a very good result. To start, the
additive model initialization from the background model for
conceptus ~a1 has as its nearest neighbours the words sd-
bygoogle, ı̀bygoogic and digfeedbygoogle, clearly Google
Books artifacts. After training, the nearest neighbours are
as listed in Table 3: they have improved compared to the
initial additive vector’s neighbours and are now vaguely on-
topic, but still full of OCR errors. This shows that consistent
results are not necessarily of high quality in other respects.

5. Discussion
Our definitional dataset evaluation has shown that
Nonce2Vec can learn Latin word embeddings from a sin-

gle definitional sentence, though slightly less well than it
can for English. This is likely because the task of training
a DS model is harder on Latin text due to the highly in-
flectional nature of the language and the smaller size of the
Latin Wikipedia. There is less statistical evidence for the
usage patterns of more different word forms.
Our Neo-Latin evaluation has shown that Nonce2Vec can
consistently learn Neo-Latin word embeddings for terms
relevant to a certain concept (i.e. the mathematical method),
without access to a background corpus from this domain
and without tuning on the consistency metric or Neo-Latin
data. The evaluation demonstrates that this method can be
used even when nothing but a limited number of sentences
is available for the target domain. This is likely due to trans-
fer of word usage information from the general-domain
background corpus to the domain-specific sentence context,
caused by the way in which Nonce2Vec initializes vectors
based on a background corpus. At least two factors may
affect the outcome: the size of the background corpus, and
how similar it is to Neo-Latin text. Since lack of high-quality
corpora in the relevant domain and lack of expert ground
truths are typical features of research in low-resource set-
tings, the relevance of our result becomes clear. It is useful
in such settings to know that Nonce2Vec learns even from
very tiny Neo-Latin corpora – corpuscula –, as long as back-
ground corpora are available, and that the latter can even be
(a) in a different variety of the same language (b) noisy, as
long as they are large. Based on this finding, tools that allow
information retrieval and visualization using DS models (e.g.
BolVis, van Wierst et al. (2018)) can be developed for Latin
and applied to digital versions of the relevant texts, in order
to find passages relevant to particular research questions in
the history of ideas (Ginammi et al., 2020).
Clearly, however, to the aim of addressing our research ques-
tion on the mathematical method with appropriate scholarly
precision, high-quality Neo-Latin word embeddings based
on data that is relevant to our concept of interest will be
necessary. We encountered several issues related to the mor-
phology of Latin. Among the target terms automatically ex-
tracted from Wikipedia, there were many proper names, as
they are less affected by morphology. They occur more fre-
quently in their lemma form and are more likely to pass fre-
quency cutoffs. Other Wikipedia lemmas are not frequently
used in their lemma form in natural text. In our Neo-Latin
dataset, multiple sentences containing the same word form
are scarce for the same reason — important terms can be
inflected in many ways and each form will get a distinct vec-
tor in a standard Word2vec model. Lemmatization has been
shown to improve language model performance on highly
inflected languages. (Cotterell et al., 2018).
For this reason, Sprugnoli et al. (2019) used lemma embed-
dings instead of word embeddings. They were able to do this
by having a manually lemmatized corpus. For Nonce2Vec,
to create lemma embeddings, any background corpus used
would have to be lemmatized. Of the corpora we used,
only the small treebank corpora that mostly contain Clas-
sical Latin contained lemmatization, and none of the better-
performing larger corpora exist in lemmatized form. While
lemmatizers exist (see Eger et al. (2015) for an overview and
evaluation on medieval church Latin) evaluation is costly
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and results may vary across different varieties of Latin. Still,
for our type of research questions lemmatization carries nat-
ural benefits, because, as philosophers focussing on mean-
ing change and concept drift, we are interested in studying
concepts independently of the morphological variants of the
terms expressing them. In future work, the issue could be
addressed with an extrinsic evaluation on our tasks and eval-
uation across Latin varieties in the context of the EvaLatin
shared task (Sprugnoli and Passarotti, 2020).

Despite impressive consistency scores, we also saw that
other aspects of the quality of these embeddings may be
lacking. Using the top-scoring Bamman model for initial-
ization, we observe many OCR errors among the nearest
neighbours of our learned Neo-Latin vectors. This is cause
for concern, as Word2vec models based on this same data
have already been used in a study of concepts in the works
of Cassiodorus (Bjerva and Praet, 2015). We must therefore
consider in what ways our evaluation is incomplete. The
consistency evaluation does not capture all aspects of em-
bedding quality: after all, a model can be consistently bad
as well as consistently good. The definitional evaluation we
conducted is only grounded in a larger Word2vec model (the
background model) which has not been evaluated for Latin.
We also cannot just assume that this model works well on
Latin just because it works well on English — as illustrated
by the fact that in most of our experiments, the English pa-
rameter settings did not perform well on the Latin data. This
uncertainty leads us to propose an additional evaluation that
is directly grounded in domain expert knowledge, to test
whether the learned Neo-Latin word embeddings are not
only consistent, but also conceptually sound.

5.1. Grounding the evaluation

To identify whether the word embeddings are consistently
good or consistently bad, we need to evaluate them by com-
paring the domain expert’s knowledge of the philosophi-
cal data with the embeddings. In Meyer et al. (2019), we
propose a first step towards this form of evaluation for a
20th century English corpus of the philosophical works of
Quine. For this corpus, we semi-formally defined the re-
lations of some key terms to other terms (e.g., in Quine’s
oeuvre, denotation signifies a relation between a general
term in language and (physical) objects in the ontology). By
defining these interrelations between terms in the corpus,
the expert knowledge of the meaning of a term within the
corpus is reflected by how the term relates to other terms. In
the case of our Neo-Latin corpus, the domain expert identi-
fied that definitio (definition) and axioma (axiom) are func-
tional synonyms of principium (principle). Similar to the
task discussed above, to successfully complete this task, the
cosine distance of the vector of a given target term has to
be nearer to the vectors of their functional synonyms than
alternative terms. In the case of principium, definitio and
axioma, the cosine distance of the vectors of these terms are
expected to be nearer to each other than to other terms. Such
a conceptual evaluation grounded in expert knowledge pro-
vides a method to evaluate word embeddings intrinsically
and, thereby, the quality of their consistency.

5.2. Conclusion
Our results show that consistent Neo-Latin word embed-
dings can be learned by using methods that are designed
to handle tiny data. These methods have not been applied
to Latin before. Nonce2Vec might be a good DS model to
use in such low-resource settings, although further evalua-
tion and refinement is necessary, in particular in the context
of humanities research. In addition, we demonstrate and
discuss evaluation methods appropriate for our task. Using
both a grounded evaluation and a consistency evaluation can
tell us to what extent the learned vectors represent the con-
ceptual distinctions we are interested in, and to what extent
they can be learned consistently from the same text source.
We have great plans for the future. We are actively digitizing
a comparable German and Neo-Latin corpus of philosoph-
ical works. We seek to cooperate with existing initiatives
and intend to add value to available collections. For e.g. the
Bamman corpus this will entail improving the overall text
quality by applying fully automatic OCR post-correction as
provided by Text-Induced Corpus Clean-up or TICCL (Rey-
naert, 2010). To equip TICCL for appropriately handling
Latin, we will apply the TICCLAT method (Reynaert et al.,
2019) for linking morphologically related word forms to
each other, to their diachronic and their known typographi-
cal variants. This follows from our observation that there is
much room for improvements in embedding quality by hav-
ing lemmatized and cleaned datasets and background cor-
pora. Tiny data methods can also be further explored, as re-
cent work incorporating a notion of informativity and more
incrementality into Nonce2Vec (Kabbach et al., 2019) and
recent context-based approaches outperforming Nonce2Vec
on the English definitional dataset (e.g. Schick and Schütze
(2019)) was not explored here. Having high-quality embed-
dings learned from historical text, and downstream appli-
cations that make use of them, will help us in obtaining
large-scale evidence for research questions in the history of
ideas that is impossible to obtain otherwise.
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Appendix: Neo-Latin evaluation dataset
We here present the Neo-Latin evaluation dataset, non-
preprocessed for legibility. Best scores are shown. Prove-
nances of the snippets are documented in the metadata to
the online distribution of the experimental data.8 Shown are
smaller excerpts of the longer snippets in the actual dataset.

8https://github.com/bloemj/nonce2vec/
tree/nonce2vec-latin
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Abstract
Although there are several sources where to find historical texts, they usually are available in the original language that makes
them generally inaccessible. This paper presents the development of state-of-the-art Neural Machine Systems for the low-resourced
Latin-Spanish language pair. First, we build a Transformer-based Machine Translation system on the Bible parallel corpus. Then, we
build a comparable corpus from Saint Augustine texts and their translations. We use this corpus to study the domain adaptation case
from the Bible texts to Saint Augustine’s works.
Results show the difficulties of handling a low-resourced language as Latin. First, we noticed the importance of having enough data,
since the systems do not achieve high BLEU scores. Regarding domain adaptation, results show how using in-domain data helps systems
to achieve a better quality translation. Also, we observed that it is needed a higher amount of data to perform an effective vocabulary
extension that includes in-domain vocabulary.

Keywords: Machine Translation, domain adaptation, low resourced

1. Introduction

There exist several digital libraries that store large collec-
tion of digitalized historical documents. However, most of
these documents are usually written in Latin, Greek or other
ancient languages, resulting in them being inaccessible to
general public. Natural Language Processing (NLP) offers
different tools that can help to save this language barrier to
bring the content of these historical documents to people.
In particular, Machine Translation (MT) approaches can re-
produce these historical documents in modern languages.

We present a set of experiments in machine translation
for the Latin-Spanish language pair. We build a baseline
Transformer-based (Vaswani et al., 2017) system trained on
the Bible parallel corpus (Christodoulopoulos and Steed-
man, 2015) to study the associated difficulties of handling
morphologically rich low-resourced languages like Latin.
Latin is a low-resourced language, with few publicly avail-
able parallel data (González-Rubio et al., 2010a; Resnik et
al., 1999). This is a challenge for data-driven approaches
in general, and state-of-the-art Neural Machine Translation
(NMT) approaches in particular since these systems usually
require a high amount of data (Zoph et al., 2016). We create
a comparable corpus from Saint Augustine’s works and we
study the impact of adapting the baseline Bible translation
system towards the Saint Augustine writings.

The paper is organized as follows. In Section 2., we revisit
the state-of-the-art MT approaches and their application to
Latin. Then, in Section 3. we describe both the parallel
and the comparable data that we use in our experiments,
explaining how we compiled the comparable corpus. Sec-
tion 4. gives details on the set of experiments that we car-
ried out to evaluate a baseline NMT trained on the Bible
and its adaptation towards the Saint Augustine work. Fi-
nally, Section 5. discusses the conclusions and future work.

2. Related Work

There is a growing interest in the computational linguis-
tic analysis of historical texts (Bouma and Adesam, 2017;
Tjong Kim Sang et al., 2017). However, there are only a
few works related to MT for ancient or historical languages.
In (Schneider et al., 2017), the authors treat the spelling
normalization as a translation task and use a Statistical Ma-
chine Translation (SMT) system trained on sequences of
characters instead of word sequences. There exist shared
tasks like the CLIN27 (Tjong Kim Sang et al., 2017), a
translation shared task for medieval Dutch.
In the particular case of Latin, there exist several NLP
tools, for instance, the LEMLAT morphological analyzer
for Latin (Passarotti et al., 2017). However, there are
only a few works involving MT for Latin. In particular,
(González-Rubio et al., 2010b) describe the development of
a Latin-Catalan Statistical Machine Translation System and
the collection of a Latin-Catalan parallel corpus. However,
to the best of our knowledge, the present work describes
the first experiments in neural machine translation for the
Latin-Spanish language pair.
Neural Machine Translation systems represent the current
state-of-the-art for machine translation technologies and
even some evaluations claim that they have reached hu-
man performance (Hassan et al., 2018). The first suc-
cessful NMT systems were attentional encoder-decoder ap-
proaches based on recurrent neural networks (Bahdanau
et al., 2015), but the current NMT state-of-the-art archi-
tecture is the Transformer (Vaswani et al., 2017). This
sequence-to-sequence neural model is based solely on at-
tention mechanisms, without any recurrence nor convolu-
tion. Although RNN-based architectures can be more ro-
bust in low-resourced scenarios, Transformer-based models
usually perform better according to automatic evaluation
metrics (Rikters et al., 2018). All the NMT systems built
for our experiments follow the Transformer architecture.
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Latin and Spanish can be considered closely-related lan-
guages. There are several works that study the benefits
of using NMT systems in contrast to using Phrase-Based
Statistical MT (PBSMT) systems (Costa-jussà, 2017), ob-
serving how NMT systems are better for in-domain trans-
lations. (Alvarez et al., 2019) pursue a similar study from
the post-editing point of view, showing how NMT systems
solve typical problems of PBSMT systems achieving better
results.

3. Corpora
In this section, we describe the parallel and comparable
data we use to train our NMT models.

3.1. Parallel Data
Latin is a low-resourced language in general, and paral-
lel data for Latin-Spanish are scarce in particular. In the

Corpus Description sent. align.
Tatoeba A collection of translated

sentences from Tatoeba1
3.9k

Bible A multilingual parallel cor-
pus created from transla-
tions of the Bible

30.3k

wikimedia Wikipedia translations
published by the wikime-
dia foundation and their
article translation system.

0.1k

GNOME A parallel corpus of
GNOME localization files.

0.9k

QED Open multilingual collec-
tion of subtitles for ed-
ucational videos and lec-
tures collaboratively tran-
scribed and translated over
the AMARA2 web-based
platform.

6.1k

Ubuntu A parallel corpus of
Ubuntu localization files.

0.6k

Total: 41.8k

Table 1: Description of Latin-Spanish corpora available in
the OPUS repository. The sent. align. column shows the
number of aligned sentences available per corpus.

OPUS (Tiedemann, 2012) repository there are only 6 Latin-
Spanish parallel corpora of different domains. Table 1
shows the statistics of these corpora, with a total of only
41.8k aligned sentences available. For our work, we choose
the Bible corpus (Christodoulopoulos and Steedman, 2015)
since it is the largest corpus and the only one containing his-
torical texts which are closer to the Saint Augustine texts
domain.

3.2. Comparable Data
NMT systems usually need a considerable amount of data
to achieve good quality translations (Zoph et al., 2016).
We built a comparable Latin-Spanish corpus by collecting
several texts from Saint Augustine of Hippo, one of the

most prolific Latin authors. The Federación Agustiniana
Española (FAE) promoted the translation into Spanish of
the Saint Augustine works and make them available online.
We used most of the texts from the Biblioteca de Autores
Cristianos (BAC), published under the auspices of the FAE,
one of the most complete collections of the Augustinian
works in Spanish 3 4.
After gathering the texts in Spanish and Latin, we processed
the corpus. First, we split the text into sentences using the
Moses (Koehn et al., 2007) sentence splitter and we tok-
enize the text using the Moses tokenizer. Then, we use Hu-
nalign (Varga et al., 2007) to automatically align the data
sentence by sentence. We filter out those sentence align-
ments that have assigned an alignment score below 0. No-
tice that since we are using automatically aligned data, the
resulting corpus is comparable and not a parallel one.

Corpus #sents #tokens la #tokens es
Train 91,044 2,197,422 2,834,749
Development 1,000 22,914 28,812
Test 1,500 31,682 40,587
Total: 93,544 2,252,018 2,904,148

Table 2: Figures for the comparable corpus on Saint Au-
gustine works, showing the number of aligned sentences
(#sents) and the number of tokens in Latin (#tokens la) and
in Spanish (#tokens es) . Train, Development and Test rep-
resent the slices used for building the MT systems. Total
shows the total amount of data.

4. Experiments
We want to study, first, the aplicability of the state-of-the-
art NMT systems to the Latin-Spanish language pair. Once
we have created the comparable corpus on the Saint Au-
gustine writings, we analyze the impact of applying several
domain-adaptation techniques to adapt our models from the
Bible domain to the Saint Augustine domain.

4.1. Settings
Our NMT systems follow the Transformer architec-
ture (Vaswani et al., 2017) and they are built using the
OpenNMT-tf toolkit (Klein et al., 2018; Klein et al., 2017).
In particular, we use the Transformer small configuration
described in (Vaswani et al., 2017), mostly using the avail-
able OpenNMT-tf default settings: 6 layers of 2,048 inner-
units with 8 attention heads. Word embeddings are set to
512 dimensions both for source and target vocabularies.
Adam (Kingma and Ba, 2015) optimizer was used for train-
ing, using Noam learning rate decay and 4,000 warmup
steps. We followed an early-stopping strategy to stop the
training process when the BLEU (Papineni et al., 2002) on
the development set did not improve more than 0.01 in the
last 10 evaluations, evaluating the model each 500 steps.

3Saint Augustine texts are available in https://www.
augustinus.it

4We use all the texts except the Tractates on the Gospel of John
and Sermons from Sermon 100th onward.

95



Training data was distributed on batches of 3,072 tokens
and we used a 0.1 dropout probability. Finally, a maximum
sentence length of 100 tokens is used for both source and
target sides and the vocabulary size is 30,000 for both tar-
get and source languages. Vocabularies are set at the sub-
word level to overcome the vocabulary limitation. We seg-
mented the data using Sentencepiece (Kudo and Richard-
son, 2018) trained jointly on the source and target training
data used for building each model, following the unigram
language model (Kud, 2018). The Sentencepiece models
were trained to produce a final vocabulary size of 30,000
subword units.
We evaluate the quality of the outputs by calculating BLEU,
TER (Snover et al., 2006) and METEOR (Denkowski and
Lavie, 2011) metrics. We used multeval (Clark et al., 2011)
to compute these scores on the truecased and tokenized
evaluation sets.

4.2. Results
First, we trained a baseline model on the Bible parallel cor-
pus. Table 3 shows the results of the automatic evaluation
of this system in its in-domain development and test sets.
The checkpoint-30000 is the model that achieved the best
BLEU score on the development data. Following a usual
technique to improve the translation quality, we averaged
the 8 checkpoints with the best BLEU on the development
set resulting in the avg-8 model. In this particular case, the
average model is able to improve +0.47 on the develop-
ment set and +0.78 on the test set with respect to the ckpt-
30000 model. Also, the avg-8 system improves the TER
metric both on the development and the test set by 1.4 and
1.5 points respectively.

Bible dev test
models BLEU ↑ TER↓ BLEU↑ TER↓
ckpt-30000 11.6 76.8 9.7 82.3
avg-8 12.2 75.4 10.5 80.8

Table 3: Automatic evaluation of the Bible NMT models on
the development (dev) and test sets extracted from the Bible
corpus. ckpt-30000 is the model resulting from the training
step 30000, and the avg-8 is the average of 8 checkpoints.

We selected the avg-8 for adapting it to the Saint Augus-
tine text via fine-tuning (Crego et al., 2016; Freitag and
Al-Onaizan, 2016), that is, by further training the avg-8 on
the in-domain data (hereafter the Bible model). We created
two systems adapted by fine-tuning, the first one uses the
Bible vocabulary (Bible-ft), and the second one updates the
Bible vocabulary by adding those missing elements from
the Saint Augustine texts vocabulary (Bible-ft-vocabExt.).
Furthermore, we also built a model trained only using the
comparable corpus (SAugustine) and a model trained on the
concatenation of the data from the Bible and the Saint Au-
gustine comparable data (Bible+SAugustine) 5. For all the
systems, we selected those models that achieved the best
BLEU scores on the development sets, considering also the
models resulting from averaging 8 checkpoints with higher

5The concatenated corpus resulted in 119,330 sentence pairs.

BLEU scores on the development set like we did for the
Bible model.

System BLEU ↑ METEOR↑ TER↓
Bible 0.9 6.9 106.1
Bible-ft 9.4 25.3 79.2
Bible-ft-vocabExt. 7.1 21.9 84.4
SAugustine 9.1 25.2 79.7
Bible+SAugustine 10.1 26.6 78.5

Table 4: Automatic evaluation of the different MT systems
on the in-domain manually validated Saint Augustine test
set.

Table 4 shows the results of the automatic evaluation of the
different systems on the ValTest from the Saint Augustine
texts.
The best system is Bible+SAugustine, the one trained on
the concatenated data, improving +0.7 points on BLEU re-
garding the best-adapted model Bible-ft. Also, it outper-
forms the model trained only on the in-domain data. These
results show the importance of having enough data to train
an NMT system as well as having an important percentage
of data from the working domain.
The impact of using in-domain data to tune or train the
translation models is remarkable. All the fine-tuned mod-
els outperform significantly the Bible model performance,
gaining up to 8.5 points of BLEU. Notice that the fine-tuned
model (Bible-ft) uses the same vocabulary as the Bible
model. These numbers support the importance of having
in-domain data for developing MT systems. Since many of
the Saint Augustine writings discuss texts from the Bible,
these results also evidence the sensitivity of MT systems to
capture characteristics from different writing styles. These
features can come from different authors or different time
periods, which can be very important when studying histor-
ical texts, giving a wider sense to the domain definition.
Extending the vocabulary when fine-tuning the Bible model
does not result in improvements regarding any of the auto-
matic metrics. In fact, the Bible-ft-vocabExt. model is 2.3
BLEU poins below the Bible-ft model. Although the model
with the extended vocabulary can have wider coverage, it
does not have enough data to learn a good representation
for the new elements in the vocabulary.
We observe also that the SAugustine model obtains better
scores than the Bible model since its training data is larger
and belongs to the test domain, although it was trained on
comparable data. However, the results of the adapted model
Bible-ft are slightly better than the SAugustine. This evi-
dences the importance of having data of quality to model
the translation from Latin to Spanish.

5. Conclusions and Future Work
We built NMT systems for translating from Latin to Span-
ish. We identified the typical issues for low-resourced lan-
guages for the particular case of Latin-Spanish. Since we
only found few parallel corpora available for this particu-
lar language pair, we collected the work of Saint Augustine
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of Hippo in Spanish and Latin and built a comparable cor-
pus of 93,544 aligned sentences. Furthermore, we created a
manually validated test set to better evaluate the translation
quality of our systems.
We built 5 NMT models trained on different data. First, we
built a baseline system trained on the Bible parallel corpus.
Then, we adapted the Bible model towards the Saint Augus-
tine domain by fine-tuning it in two ways: maintaining the
Bible vocabulary and extending this vocabulary by includ-
ing new elements from the Saint Augustine data. Finally,
we trained two models using directly the in-domain data.
We built a model trained only on the comparable Saint Au-
gustine corpus and, finally, we trained an NMT on the con-
catenation of the Bible and the Saint Augustine writings
corpora. The automatic evaluation results show significant
differences among the Bible model and the rest of the mod-
els that somehow include information from the in-domain
data when translating the manually validated Saint Augus-
tine test set, showing the importance of the in-domain data.
The best system was the one trained on the concatenated
data Bible+SAugustine, showing the importance of having
enough data to train an NMT model.
As future work, we want to study the behavior of train-
ing NMT systems in the other direction: from Spanish to
Latin. We find interesting to analyze if the issues observed
when trying to translate into other morphologically rich
languages like Basque (Etchegoyhen et al., 2018) or Turk-
ish (Ataman et al., 2020) can be observed when dealing
with Latin. In this line, we want to study the impact of us-
ing morphologically motivated subword tokenization like
the ones proposed by (Alegria et al., 1996) for Basque and
by (Ataman et al., 2020; Ataman et al., 2017) for Turkish.
Also, we want to include a more in depht analysis of the
linguistic related issues that can appear for these closesly-
related languages (Popović et al., 2016).
In order to deal with the low resource feature of the
Latin-Spanish language pair, we want to continue with our
work by applying data augmentation techniques like back-
translation (Sennrich et al., 2016) to artificially extend the
training data. The Latin-Spanish scenario seems to apply
the unsupervised NMT approaches (Artetxe et al., 2018;
Artetxe et al., 2019; Lample et al., 2018), since there are
available resources in both languages but only a few par-
allel data. Also, we want to explore how a Latin-Spanish
MT system can benefit from other languages in a multilin-
gual scenario (Johnson et al., 2017; Lakew et al., 2018), i.e.
romance languages, to improve the final translation quality.
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Costa-jussà, M. R. (2017). Why Catalan-Spanish neural
machine translation? analysis, comparison and combi-
nation with standard rule and phrase-based technologies.
In Proceedings of the Fourth Workshop on NLP for Sim-
ilar Languages, Varieties and Dialects (VarDial), pages
55–62, Valencia, Spain, April. Association for Computa-
tional Linguistics.

Crego, J., Kim, J., Klein, G., Rebollo, A., Yang, K., Senel-
lart, J., Akhanov, E., Brunelle, P., Coquard, A., Deng, Y.,
et al. (2016). Systran’s pure neural machine translation
systems. arXiv preprint arXiv:1610.05540.

Denkowski, M. and Lavie, A. (2011). Meteor 1.3: Auto-
matic metric for reliable optimization and evaluation of
machine translation systems. In Proceedings of the sixth
workshop on statistical machine translation, pages 85–
91. Association for Computational Linguistics.

Etchegoyhen, T., Martı́nez Garcia, E., Azpeitia, A.,
Labaka, G., Alegria, I., Cortes Etxabe, I., Jauregi Car-
rera, A., Ellakuria Santos, I., Martin, M., and Calonge,
E. (2018). Neural machine translation of basque.

97



Freitag, M. and Al-Onaizan, Y. (2016). Fast domain adap-
tation for neural machine translation. arXiv preprint
arXiv:1612.06897.
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Abstract
Fictional prose can be broadly divided into narrative and discursive forms with direct speech being central to any discourse representa-
tion (alongside indirect reported speech and free indirect discourse). This distinction is crucial in digital literary studies and enables in -
teresting forms of narratological or stylistic analysis. The difficulty of automatically detecting direct speech, however, is currently un-
der-estimated. Rule-based systems that work reasonably well for modern languages struggle with (the lack of) typographical conven-
tions in 19th-century literature. While machine learning approaches to sequence modeling can be applied to solve the task, they typi-
cally face a severed skewness in the availability of training material, especially for lesser resourced languages. In this paper, we report
the result of a multilingual approach to direct speech detection in a diverse corpus of 19th-century fiction in 9 European languages.
The proposed method fine-tunes a transformer architecture with multilingual sentence embedder on a minimal amount of annotated
training in each language, and improves performance across languages with ambiguous direct speech marking, in comparison to a
carefully constructed regular expression baseline.

Keywords: direct speech recognition, multilingual, 19th century novels, deep learning, transformer, BERT, ELTeC

1. Introduction
Fictional prose can be broadly divided into narrative and
discursive forms with direct speech being central to any
discourse  representation  (alongside  indirect  reported
speech and free indirect discourse). This distinction is cru-
cial in digital literary studies and drives various forms of
narratological  or  stylistic  analysis:  direct,  or  “mimetic”
speech and thought (Gennette, 1980) was used to under-
stand voice of literary characters (Burrows, 1987; Hoover,
2014) and study narrative representations of speech (Con-
roy, 2014; Katsma, 2014). Distinction between “mimetic”
speech and “narration” helped to formalize free indirect
discourse,  defined  as  a  linguistic  mixture  of  these  two
types (Brooke, Hammond and Hirst, 2017; Muzny, Algee-
Hewitt  and  Jurafsky,  2017).  Sequences  of  direct  ex-
changes  between  characters  were  studied  to  understand
the evolution of dialogue as a literary device (Sobchuk,
2016)  and  dynamics  of  “dialogism”  over  the  course  of
novel’s  history  (Muzny,  Algee-Hewitt  and  Jurafsky,
2017). Direct speech recognition is also closely related to
the problem of identification and modeling fictional char-
acters (He, Barbosa and Kondrak, 2013; Bamman, Under-
wood and Smith, 2014; Vala et al., 2015).

The majority of approaches to direct  speech recognition
(DSR) in prose remain language-specific and heavily rely
on deep morphological and syntactic annotation of texts
and depend on typographic conventions of marking direct
speech within a given tradition. Rule-based solutions vari-
ably use punctuation, contextual heuristics, and morpho-
syntactic patterns within clauses to identify direct and in-
direct speech (Krestel, Bergler and Witte, 2008; Alrahabi,
Desclés  and  Suh,  2010;  Brunner,  2013;  Brooke,  Ham-
mond and Hirst, 2015; Muzny, Algee-Hewitt and Juraf-
sky, 2017), sometimes relying on external dictionaries of
proper names and reporting verbs (Pouliquen, Steinberger
and Best, 2007; Nikishina et al., 2019). When DSR does
not use quotation marks, it utilizes pre-determined linguis-
tic features – tense, personal pronouns, imperative mode
or  interjections  –  to  guess  speech  type  (Tu,  Krug  and
Brunner, 2019). Similar assembling of mixed features that

might be relevant for direct speech is implemented in su-
pervised  machine  learning  approaches  to  DSR  in  two-
class  classification  task  (Brunner,  2013;  Schöch  et  al.,
2016). Jannidis et al. (2018) constructed a deep-learning
pipeline for German that  does not rely on manually de-
fined  features.  It  uses  simple  regular  expressions  for
“weak” labeling of direct speech and then feeds marked
text segments to the two-branch LSTM network (one for
the “past” and one for the future context of a token) that
assigns speech types on a word-to-word basis.

State-of-the-art DSR performance seems to be revolving
around 0.9 F1-score with the highest (0.939) for French
19th-century  fiction  with  Random Forests  classification
(Schöch et al., 2016), 0.87 (Brunner, 2013) or 0.9 (Janni-
dis et al., 2018) for German novels, 0.85 for Anglophone
texts with noisy OCR (Muzny, Algee-Hewitt  and Juraf-
sky, 2017).  Despite relatively high performance,  all  im-
plementations require  either  a  general  language-specific
models  (for  tagging  corpus  and  extracting  features)  or
standardized  typographic  and  orthographic  conventions,
which we cannot expect in historical texts across uneven
literary  and linguistic  landscape.  Few attempts  to  make
multilingual DSR used highly conventional modern news
texts and benefited from databases specific to the media;
at their core these implementations remain a collection of
rules  adjusted to  several selected  languages  (Pouliquen,
Steinberger  and Best,  2007; Alrahabi,  Desclés  and Suh,
2010).

In this paper we propose a multilingual solution for direct
speech  recognition  in  historic  fictional  prose  that  uses
transformer  architecture  with  multilingual  sentence  em-
bedding and requires minimum amount of “golden stan-
dard” annotation.

2. Data
The project was born in relation to Distant Reading for
European  Literary  History  (COST  Action  CA16204)
project, and one of its subtasks – direct speech markup.
We have therefore focused on the problems as observed in
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the corpus created within the project: European Literary
Text  Collection  (ELTeC),  which  is  aimed to  consist  of
“around 2,500 full-text novels in at least 10 different lan-
guages”  (https://www.distant-reading.net/).  Spanning
from 1840 to 1920, ELTeC provides a cross-view of liter-
ary traditions and typography conventions.

The collection presents a number of challenges due to its
historic variation, from typographic and orthographic dif-
ferences,  to  old  vocabulary,  to  the  status  of  given  lan-
guages at the time, with some, most notably Norwegian,
undergoing at the time the process of being established as
a standardized written language. Another challenge results
from the varying origin of the texts in the subcollections –
some were contributed from existing open-source collec-
tions, while others, e.g. Romanian, due to lack of digitized
collections in respective languages were scanned, OCR-ed
and annotated by the Action members specifically for EL-
TeC. Detailed information on the process and rules guid-
ing the creation of the corpus can be found on the dedi-
cated  website  https://distantreading.github.io/sampling  _  
pr  o  posal.html  .

We use ELTeC as in its first official release in Level 1 en-
coding (basic XML-TEI compliant annotation of the texts’
division into chapters and paragraphs),  covering the fol-
lowing languages: English, German, Italian, French, Ro-
manian, Slovene, Norwegian, Portuguese, Serbian. We do
not introduce changes in the original texts and select five
samples per language of around 10,000 words each, with
every sample drawn from a different novel. We use ran-
dom sampling and preserve information about paragraphs
and sentences.

The samples were manually annotated by JB, WŁ and AŠ,
with two-fold purpose in mind: 1) they were used to train
the model, 2) they were “the golden standard” to compare
baseline performance to. At this early stage of the project
we did not calculate inter-annotator agreement as in the
case of some languages with which only one of us would
be familiar  the texts  were  annotated twice by the same
person. In the next stage of the project we plan to involve
the Action members  in providing and verifying annota-
tions, which will allow us to examine the quality of the
annotations better.

Language Paragraphs Script Direct speech ratio

English 989 Latin 0.684

French 1394 Latin 0.450

German 987 Latin 0.756

Italian 662 Latin 0.308

Norwegian 979 Latin 0.334

Portuguese 1573 Latin 0.583

Romanian 1522 Latin 0.597

Serbian 1278 Cyrillic 0.572

Slovene 1809 Latin 0.392

Table 1: Sample summaries and direct speech ratio (word
level).

3. Method

3.1 Rule-based Approach and Baseline to 
Evaluate Model

Typographic conventions such as various quotation marks
or dashes (see Table 2 below) are strong indicators of the
direct speech. Based on them, we have constructed a base-
line  that  relies  on  regular  expressions  to  extract  occur-
rences of unambiguously marked direct speech. In the lan-
guages  that  use  dashes to  mark  dialogue,  the challenge
was to separate reporting clauses embedded in a sentence.
The results  obtained using this baseline were  compared
with those of manual annotation to assess its performance.

Language Direct speech conventions

English “ … ”

French — … ; « … » ; « … ; » …

German » ... «

Italian — ... ; — ..., —; « ... » ; “ ... ”

Norwegian — ... ; « ... » 

Portuguese — ... ; — ..., — 

Romanian — ... ; „ ... “ 

Serbian — ... ; — ... — 

Slovene “ ... ” ; „ ... “ 

Table 2: Conventions of marking direct speech across lan-
guages, as accounted for in the baseline (the above con-

ventions apply to non-normalized ELTeC corpus, but not
necessarily to the 19th-century typographic traditions in

general).

For many European languages with a high degree of stan-
dardization  of  typographic  conventions this  approach  is
extremely  effective.  For  example,  in  English  where  the
words  spoken  are enclosed  in  double  quotation  marks,
narrator’s inclusions are easy to identify, therefore the ex-
ample sentence: “I see,” said Rachel; “it is the same fig-
ure, but not the same shaped picture.” may be captured
using simple regular expression: (".+?"). Other languages,
like French, not only use different symbols for quotations
(«…»), but also tend to omit them in dialogues for the ini-
tial  dashes.  Despite  this,  the  performance  of  the  rules-
based approach decreases only slightly.

Language Precision Recall Accuracy F1-score

English 0.98 0.99 0.99 0.98

Slovene 0.99 0.97 0.99 0.98

Portuguese 0.95 0.94 0.96 0.94

Romanian 0.90 0.94 0.94 0.92

German 0.99 0.86 0.94 0.92

French 0.92 0.92 0.95 0.92

Italian 0.87 0.88 0.94 0.88

Serbian 0.90 0.85 0.93 0.87

Norwegian 0.72 0.59 0.84 0.65

Table 3: Performance of regular expression baseline in
direct speech detection on manually annotated samples.

However, frequently the formal structure of a compound
sentence delimited by commas does not allow distinguish-
ing the narration from the direct speech for the baseline.
As, for instance, in the sentences —Et la bonne Rosalie,
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la  gouvernante  de  Frédéric,  l’accompagne  sans  doute!
and —Je ne demanderais pas mieux, dit Albert, en regar-
dant madame Mansley. With the lack of clear separation
of the direct speech, which is often the case for the early
19th-century  editions,  baseline  performance  drops  sub-
stantially: for the German sample without proper marks it
achieves 0.68 accuracy and only 0.18 recall (F1 = 0.04).

Other common problems include no clear mark at the end
of  an utterance,  no difference  in  marking direct  speech
and proper names, irony, or other pragmatic shifts that in-
troduce  subjective  perspective,  such  as  characters  using
metaphorical phrases, e.g. “little man” indicating not that
the person addressed this way is short, but is treated with
less  respect  by the  speaker.  These  irregularities  are  the
reason behind the decrease in baseline performance, with
the worst results for Norwegian.

Deep learning solution that has distributed understanding
of the direct speech features in multilingual environment
may provide a way to get beyond typographic conventions
or language-specific models.

3.2 Adopted Deep Learning Solution
While new developments in deep learning have had a sig-
nificant impact on numerous natural language processing
(NLP) tasks, one solution that has gained increased atten-
tion in recent months is BERT (Devlin et al.,  2018),  or
Bidirectional  Encoder  Representations  from  Transform-
ers.  This  new representation  model  holds  a  promise  of
greater  efficiency  of  solving  NLP  problems  where  the
availability of training data is scarce. Inspired by its de-
velopers’ proposed examples of studies done on Named
Entity  Recognition  (https://huggingface.co/transformers/
examples.html), we adjusted discussed classifying method
to work on the data annotated for direct speech utterances.

BERT is based on Transformer architecture, “an attention
mechanism that learns contextual relations between words
(or sub-words) in a text. In its vanilla form, Transformer
includes two separate mechanisms – an encoder that reads
the text input and a decoder that produces a prediction for
the task.” (Horev, 2018).  As learning in BERT happens
both in left-to-right and right-to-left contexts, it manages
to detect semantic and syntactic relations with greater ac-
curacy than previous approaches. The model is trained on
the entire Wikipedia and Book Corpus (a total of ~3,300
million tokens), currently covering 70 languages. The last
part  was  specifically  important  for  our  purposes,  given
that we aimed to provide a solution that could work well
across all languages in ELTeC corpus.

Our solution consisted of several steps. First, we sampled
five 10,000 word samples per language collection of EL-
TeC and manually annotated it for direct speech. We fol-
lowed  TEI  guidelines  annotating  spoken  and  marked
thought-out  utterances  into  <said>  </said> tags.
Based on that, we converted our datasets into BERT-ac-
cepted column format of token and label (I for direct, O
for  indirect  speech),  with  spaces  marking  the  end  of  a
paragraph (in alteration to NER solution that divided the
text into sentences). Our sample paragraph <said>»Ich
bin  derselben  Meinung«</said>,  rief
Benno  Tönnchen  eifrig.</p> would  thus  be
turned into:

Ich I
bin I
derselben I
Meinung I
, O
rief O
Benno O
Tönnchen O
eifrig O
. O

In the next step, we collated our samples together and di-
vided our dataset into train, test, and dev text files, follow-
ing proportion of 0.8, 0.1, 0.1, ending with ~40,000 tokens
per  language,  and  360,000  or  320,000  tokens  total  in
training data, depending on the test conducted. The num-
ber  depended on whether  we included  all  languages  or
conducted a leave-one-out test. To ensure that the model
learned  a  multilingual  perspective,  we  introduced  para-
graph mixing, so a paragraph in a given language would
occur every 8 or 9 paragraphs.

We trained our model with similar parameters as the NER
solution we followed, that is with 3 or 2 epochs and batch
size  of  32.  We  found  that  decreasing  the  number  of
epochs to 2 improved model performance by 1–2%. We
also increased the maximal length of a sequence, due to
errors coming from longer sentences in some of the lan-
guages.

While we attempted increasing the number of epochs in
the  training,  we  realized  the  model  performance  was
reaching  its  plateau  at  3,  pointing to  the  need to  adopt
other  solutions  to  further  boost  its  efficiency.  We have
also tried training on 1/2 and 3/4 of the training dataset,
noting that performance drop would only occur when go-
ing to half of the training set, again indicating the possibil-
ity of having reached plateau, or a need for introducing
more variance of conventions when increasing the amount
of training data.

4. Results
General  model  performance  is  presented  in  Table  4.
Aligning with our intuition,  the overall  behavior  of  the
multi-language  model  performs  slightly  worse  than  the
rule-based  approach  applied  individually  to  each  lan-
guage.

Loss Precision Recall F1-score

0.306 0.873 0.874 0.873

Table 4: General model performance.

To scrutinize the above intuition, we performed a series of
leave-one-out  tests,  recording  the  performance  of  each
model with one of the languages being excluded. The re-
sults are shown in Table 5. The scores obtained while ex-
cluding Norwegian and Italian suggest that in our com-
posite  model,  some  of  the  less-standardized  languages
might distort  the final results. While this in itself might
speak  against  choosing  a  multi-language  approach,  the
fact that inclusion of the more-standardized languages in
the model improves direct speech recognition for all lan-
guages indicates the usefulness of such model for  auto-
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matic tagging of  these parts  of multilingual  corpora  for
which  regular  expression  based  solutions  are  not  good
enough. The difference between the general model and the
set of its leave-one-out variants turned out to be minor,
leading  to  a  conclusion  that  the  general  model  exhibits
some potential to extract direct speech despite local differ-
ences between the languages – suffice to say that the dis-
persion between the languages in the rule-based approach
was much more noticeable.

Excluded 
language

Loss Precision Recall F1-score

German 0.29 0.89 0.89 0.89

English 0.35 0.87 0.86 0.86

French 0.31 0.87 0.89 0.88

Italian 0.32 0.86 0.90 0.88

Norwegian 0.30 0.89 0.91 0.90

Portuguese 0.33 0.88 0.88 0.88

Romanian 0.30 0.89 0.89 0.89

Slovene 0.34 0.86 0.86 0.86

Serbian 0.40 0.87 0.88 0.89

Table 5: Leave-one-out performance.

Examination of the misclassifications of the model reveal
three major sources of errors: narrative structures, size-re-
lated uncertainty and noise in pattern-learning. First per-
son narration is often labeled as “direct speech” and lin-
guistically these cases may appear inseparable.  This ap-
plies not only to a general narrative mode of a novel, but
also to the pseudo-documental entries (like letters, diaries)
and other “intradiagetic” shifts, with characters becoming
narrators. This points to the possible need of using sepa-
rate DSR models for different narrative modes.

Size of the paragraph seems to influence model’s judge-
ment  substantially:  in  longer  paragraphs  the  model  ex-
pects a mix of direct and indirect clauses (even if the text
is homogenous), while one-sentence paragraphs tend to be
marked as direct speech. This is in line with findings of
Kovaleva et al. (2019) and Clark et al. (2019),  showing
that attention of BERT is strongly connected to delimiters
between BERT input chunks and token alignment within
them, as  well  as  sentences  across  the training data  that
share similar syntax structure but not semantics. We also
observed that many cases that would be easily detected by
a rule-based approach are recognized wrongly by BERT-
based  model:  this  suggests  a  certain  level  of  noise  in
model’s decisions (e.g., quotation marks are used for dif-
ferent  purposes  within  the  corpus).  Abundance  of  the
[reported clause] -> [reporting clause]
-> [reported clause] pattern also blurs the model
and forces it to anticipate this structure.

It is unclear how important are linguistic features of direct
and non-direct speech for the model, but errors suggest it
pays  some attention  to  imperative  mode,  personal  pro-
nouns, proper names, interjections and verb forms, while
heavily relying on punctuation. The last one seems partic-
ularly  important  for  misclassifications  originating  from
the  expectation  that  a  sentence  preceded  by  a  colon  or
ending  with  a  question  or  exclamation  mark  should  be
classified as direct speech. In a few cases we do not know
if the model is wrong or right, because a context of one

paragraph  could  be  not  enough  for  a  human  reader  to
make a correct judgement. 

5. Conclusions
Our project gave us a number of findings in regard to the
possibility  of  developing  a  uniform  solution  for  direct
speech annotation. First of all, we observe that inclusion
of languages marking direct speech in more standardized
conventions in the model boosts its general performance,
improving classification also for literary traditions (or lan-
guages) with less regularities in spelling and typography.
This  is  particularly  important  in  the  context  of  corpora
such  as  ELTeC,  which  gather  texts  from  several  lan-
guages, including ones that are given relatively little atten-
tion in terms of  the development of  suitable NLP solu-
tions, and present historical variants of the languages, of-
ten not well covered in contemporary language represen-
tations. It is also important for annotation of texts that fea-
ture  extensive  interjections  from  other  languages,  e.g.
French dialogue in Polish and Russian novels, a phenome-
non common in 19th-century literature involving gentry
and bourgeoise characters.

The performance of the model also hints at possible latent
imbalances in the corpus which may introduce additional
noise  and  structural  problems.  In future  tests  it  will  be
necessary to control the effects of texts coming from first
editions (historical language and typographic conventions)
and modern reprints (used in some of the ELTeC subcol-
lections); and, while we have not observed significant cor-
related impact on the results, perhaps also account for lan-
guage  families  (Germanic  vs. Romance  vs. Slavic)  and
scripts (Cyrillic vs. Latin). The impact of first-person nar-
ratives on the instability of the performance also seems to
be  a  factor.  Finally,  imbalance  of  “quote”-based  and
“dash”-based conventions of marking direct speech in the
corpus may have introduced additional punctuation-driven
noise.  Given the above, it  is reasonable to attempt con-
ducting experiments with removed direct speech marks al-
together,  examining  the  possibility  of  guiding  a  model
away from the surface-level punctuation features.

Since the transformers-based solution performs better than
the baseline in the situations of increased uncertainty and
lack of orthographical  marks,  it  is  feasible to expect  its
stable performance also in texts with poor OCR or in his-
toric texts in European languages unseen by the model.
These conditions are easily testable in the future.
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Abstract
This paper describes the first edition of EvaLatin, a campaign totally devoted to the evaluation of NLP tools for Latin. The two shared
tasks proposed in EvaLatin 2020, i. e. Lemmatization and Part-of-Speech tagging, are aimed at fostering research in the field of language
technologies for Classical languages. The shared dataset consists of texts taken from the Perseus Digital Library, processed with UDPipe
models and then manually corrected by Latin experts. The training set includes only prose texts by Classical authors. The test set,
alongside with prose texts by the same authors represented in the training set, also includes data relative to poetry and to the Medieval
period. This also allows us to propose the Cross-genre and Cross-time subtasks for each task, in order to evaluate the portability of NLP

tools for Latin across different genres and time periods. The results obtained by the participants for each task and subtask are presented
and discussed.

Keywords: evaluation, lemmatization, PoS tagging

1. Introduction
EvaLatin 2020 is the first campaign being totally devoted to
the evaluation of Natural Language Processing (NLP) tools
for the Latin language.1 The campaign is designed follow-
ing a long tradition in NLP,2 with the aim of answering two
main questions:

• How can we promote the development of resources
and language technologies for the Latin language?

• How can we foster collaboration among scholars
working on Latin and attract researchers from differ-
ent disciplines?

EvaLatin is proposed as part of the Workshop on Lan-
guage Technologies for Historical and Ancient Languages
(LT4HALA), co-located with LREC 2020.3 EvaLatin is an
initiative endorsed by the Italian association of Computa-
tional Linguistics4 (AILC), and is organized by the CIRCSE
research centre5 at the Università Cattolica del Sacro Cuore
in Milan, Italy, with the support of the LiLa: Linking Latin
ERC project.6

Data, scorer and detailed guidelines are all available in a
dedicated GitHub repository.7

1https://circse.github.io/LT4HALA/
2See for example other campaigns such as MUC (Message Un-

derstanding Conference), a competition dedicated to tools and
methods for information extraction, SemEval (Semantic Evalu-
ation), which is focused on the evaluation of systems for seman-
tic analysis, CoNLL (Conference on Natural Language Learning),
which since 1999 has been including a different NLP shared task
in every edition, and EVALITA, a periodic evaluation campaign of
NLP tools for the Italian language.

3https://lrec2020.lrec-conf.org/en/
4http://www.ai-lc.it/
5https://centridiricerca.unicatt.it/

circse_index.html
6https://lila-erc.eu/
7https://github.com/CIRCSE/LT4HALA/tree/

master/data_and_doc

2. Tasks and Subtasks
EvaLatin 2020 has two tasks:

1. Lemmatization, i. e. the process of transforming any
word form into a corresponding, conventionally de-
fined “base” form, i. e. its lemma, applied to each to-
ken;

2. Part-of-Speech tagging, in which systems are re-
quired to assign a lexical category, i. e. a Part-of-
Speech (PoS) tag, to each token, according to the Uni-
versal Dependencies (UD) PoS tagset (Petrov et al.,
2011).8

Each task has three subtasks:

1. Classical: the test data belong to the same genre and
time period of the training data;

2. Cross-genre: the test data belong to a different genre,
namely lyric poems, but to the same time period com-
pared to the ones included in the training data;

3. Cross-time: the test data belong to a different time
period, namely the Medieval era, compared to the ones
included in the training data.

Through these subtasks, we aim to enhance the study of the
portability of NLP tools for Latin across different genres
and time periods by analyzing the impact of genre-specific
and diachronic features.
Shared data and a scorer are provided to the participants,
who can choose to take part in either a single task, or in all
tasks and subtasks.

3. Dataset
The EvaLatin 2020 dataset consists of texts taken from the
Perseus Digital Library (Smith et al., 2000).9 These texts

8https://universaldependencies.org/u/pos/
index.html

9http://www.perseus.tufts.edu/
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are first processed by means of UDPipe models (Straka and
Straková, 2017) trained on texts by the same author, and
then manually corrected by Latin language experts.
Our author-specific models are trained on Opera Latina
(Denooz, 2004), a corpus which has been manually anno-
tated at the Laboratoire d’Analyse Statistique des Langues
Anciennes (LASLA) of the University of Liège since 1961.10

Based on an agreement with LASLA, the Opera Latina cor-
pus cannot be released to the public, but we are allowed to
use it to create models for NLP tasks. Thus, we convert the
original space-separated format of the Opera Latina into
the field-based CoNLL-U format,11 on which we train an-
notation models using the UDPipe pipeline.12 These mod-
els are then run on the raw texts extracted from the Perseus
files,13 which are originally in XML format, after removing
punctuation. Finally, the outputs of our automatic annota-
tion are manually checked and corrected by two annotators;
any doubts are resolved by a third Latin language expert.
Figure 1 and Figure 2 show examples of our CoNLL-U-
formatted training and test data respectively. Please note
that our training and test data lack any tagging of syntac-
tic dependencies or morphological features, since EvaLatin
2020 does not focus on the corresponding tasks; besides,
tree-structured syntactic data are not available from the
Opera Latina corpus.

3.1. Training data
The texts provided as training data are by five Classical au-
thors: Caesar, Cicero, Seneca, Pliny the Younger and Tac-
itus. For each author we release around 50,000 annotated
tokens, for a total of almost 260,000 tokens. Each author is
represented by prose texts: treatises in the case of Caesar,
Seneca and Tacitus, public speeches for Cicero, and letters
for Pliny the Younger. Table 1 presents details about the
training dataset of EvaLatin 2020.

AUTHORS TEXTS # TOKENS
Caesar De Bello Gallico 44,818
Caesar De Bello Civili (book II) 6,389
Cicero Philippicae (books I-XIV) 52,563
Seneca De Beneficiis 45,457
Seneca De Clementia 8,172
Pliny the Younger Epistulae (books I-VIII) 50,827
Tacitus Historiae 51,420
TOTAL 259,646

Table 1: Texts distributed as training data.

3.2. Test data
Tokenization is a central issue in the evaluation of Lemma-
tization and PoS tagging: as each annotation system pos-
sibly applies different tokenization rules, these might lead
to outputs which are difficult to compare to each other. In

10http://web.philo.ulg.ac.be/lasla/
textes-latins-traites/

11https://universaldependencies.org/
format.html

12http://ufal.mff.cuni.cz/udpipe
13https://github.com/PerseusDL/

canonical-latinLit

order to avoid such problem, we provide our test data in an
already tokenized format, one token per line, with a white
line separating each sentence.
Our test data consist only of tokenized words, but neither
lemmas nor PoS tags, as these have to be added by the par-
ticipating systems submitted for the evaluation. The com-
position of the test dataset for the Classical subtask is given
in Table 2. Details for the data distributed in the Cross-
genre and Cross-time subtasks are reported in Tables 3 and
4 respectively.

AUTHORS TEXTS # TOKENS
Caesar De Bello Civili (book I) 10,898
Cicero In Catilinam 12,564
Seneca De Vita Beata 7,270
Seneca De Providentia 4,077
Pliny the Younger Epistulae (book X) 9,868
Tacitus Agricola 6,737
Tacitus Germania 5,513
TOTAL 56,927

Table 2: Test data for the Classical subtask.

AUTHORS TEXTS # TOKENS
Horatius Carmina 13,290

Table 3: Test data for the Cross-genre subtask.

AUTHORS TEXTS # TOKENS

Thomas Aquinas
Summa Contra Gentiles
(part of Book IV)

11,556

Table 4: Test data for the Cross-time subtask.

4. Evaluation
The scorer employed for EvaLatin 2020 is a modified
version of that developed for the CoNLL18 Shared Task
on Multilingual Parsing from Raw Text to Universal
Dependencies.14 The evaluation starts by aligning the
outputs of the participating systems to the gold standard:
given that our test data are already tokenized and split by
sentences, the alignment at the token and sentence levels is
always perfect (i. e. 100.00%). Then, PoS tags and lemmas
are evaluated and the final ranking is based on accuracy.

Each participant was permitted to submit runs for either one
or all tasks and subtasks.
It was mandatory to produce one run according to the so-
called “closed modality”: the only annotated resources that
could be used to train and tune the system were those dis-
tributed by the organizers. Also external non-annotated re-
sources, like word embeddings, were allowed.
The second run could be produced according to the “open
modality”, for which the use of annotated external data, like
the Latin datasets present in the UD project, was allowed.
As for the baseline, we provided the participants with the
scores obtained on our test data by UDPipe, using the

14https://universaldependencies.org/
conll18/evaluation.html
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Figure 1: Format of training data. Figure 2: Format of test data.

Classical Cross-genre Cross-time
UDPipe-open 1 96.19 (0.89) UDPipe-open 1 87.13 UDPipe-open 1 91.01
UDPipe-closed 1 95.90 (0.83) JHUCB-closed 2 85.49 UDPipe-closed 1 87.69
JHUCB-closed 2 94.76 (1.04) UDPipe-closed 1 85.47 JHUCB-closed 2 85.75
Leipzig-closed 1 94.60 (1.11) JHUCB-closed 1 82.69 Leipzig-closed 1 83.92
JHUCB-closed 1 94.22 (1.38) Leipzig-closed 1 81.69 JHUCB-closed 1 83.76
Baseline 72.26 (2.88) Baseline 62.19 Baseline 76.78

Table 5: Results of the Lemmatization task for the three subtasks in terms of accuracy. The number in brackets indicates
standard deviation calculated among the seven documents of the test set for the Classical subtask.

model trained on the Perseus UD Latin Treebank15 (Bam-
man and Crane, 2011), the same available in the tool’s web
interface.16

5. Participants and Results
A total of five teams are taking part in the PoS tagging
task; three of them are also taking part in the Lemmati-
zation task. All the teams have submitted runs for all three
subtasks. Only one team (namely, UDPipe) has submitted
a run following the open modality for each task and sub-
task, whereas the others have submitted runs in the closed
modality, thus eschewing additional training data. In total,
we have received five runs for the Lemmatization task and
nine runs for the PoS tagging task. Details on the partici-
pating teams and their systems are given below:

• UDPipe, Charles University, Prague, Czech Repub-
lic. This team proposes a multi-task model jointly pre-
dicting both lemmas and PoS tags. The architecture
is a bidirectional long short-term memory (BiLSTM)
softmax classifier fed by end-to-end, character-level,
pre-trained and contextualized word embeddings. In
the run submitted for the open modality, they use all
UD Latin treebanks as additional training data (Straka
and Straková, 2020).

• Leipzig, Leipzig University, Germany. PoS tags are
predicted with a gradient boosting framework fed with
word embeddings pre-computed on a corpus of Latin
texts of different genres and time periods. Lemma-
tization is instead based on a character-level transla-
tion performed by a long short-term memory (LSTM)
sequence-to-sequence model (Celano, 2020).

15https://github.com/
UniversalDependencies/UD_Latin-Perseus/

16http://lindat.mff.cuni.cz/services/
udpipe/

• JHUBC, Johns Hopkins University and University of
British Columbia, Canada. This team tests two sys-
tems for both Lemmatization and PoS tagging. The
first one is an off-the-shelf neural machine transla-
tion toolkit, whereas the second puts together two dif-
ferent learning algorithms in an ensemble classifier:
the aforementioned machine translation system and a
BiLSTM sequence-to-sequence model (Wu and Nico-
lai, 2020).

• Berkeley, University of California, Berkeley, USA.
The proposed model for the PoS tagging task consists
in a grapheme-level LSTM network whose output is the
input of a word-level BiLSTM network. This model is
fed by a set of grapheme and word embeddings pre-
trained on a corpus of over 23 million words (Bacon,
2020).

• TTLab, Goethe University, Frankfurt, Germany. This
team tests three approaches to the PoS tagging task
(Stoeckel et al., 2020): 1) an ensemble classifier based
on a two-stage recurrent neural network combining the
taggers MarMoT (Müller et al., 2013) and anaGo;17

2) a BiLSTM-CRF (conditional random fields) se-
quence tagger using pooled contextualized embed-
dings and a FLAIR character language model (Akbik
et al., 2019); 3) another ensemble classifier combining
the taggers MarMoT, anaGo, UDify (Kondratyuk and
Straka, 2019) and UDPipe.

Tables 5 and 6 report the final rankings, showing the results
in terms of accuracy, including our baseline. For each run,
the team name, the modality and the run number are spec-
ified. Please note that for the Classical subtask the score
corresponds to the macro-average accuracy obtained on the
single text.

17https://github.com/vunb/anago-tagger
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Classical Cross-genre Cross-time
UDPipe-open 1 96.74 (0.65) UDPipe-open 1 91.11 UDPipe-open 1 87.69
UDPipe-closed 1 96.65 (0.63) TTLab-closed 2 90.64 TTLab-closed 3 87.00
TTLab-closed 2 96.34 (0.60) UDPipe-closed 1 90.15 UDPipe-closed 1 84.93
Leipzig-closed 1 95.52 (0.65) Leipzig-closed 1 88.54 Leipzig-closed 1 83.96
TTLab-closed 3 95.35 (0.85) JHUCB-closed 2 88.40 TTLab-closed 2 82.99
JHUCB-closed 2 94.15 (0.64) TTLab-closed 3 86.95 JHUCB-closed 1 82.62
TTLab-closed 1 93.24 (0.92) TTLab-closed 1 83.88 TTLab-closed 1 81.38
JHUCB-closed 1 92.98 (1.27) JHUCB-closed 1 82.93 JHUCB-closed 2 80.78
Berkeley-closed 1 90.65 (1.98) Berkeley-closed 1 73.47 Berkeley-closed 1 76.62
Baseline 70.25 (1.65) Baseline 62.96 Baseline 67.58

Table 6: Results of the PoS tagging task for the three subtasks in terms of accuracy. The number in brackets indicates
standard deviation calculated among the seven documents of the test set for the Classical subtask.

6. Discussion

All the participating teams employ deep learning, and
largely overcome the baseline. Systems mainly adopt LTSM
networks, often in a bidirectional variant. Two teams also
test the efficiency of ensemble classifiers, and one team a
neural machine translation approach. Different types of
embeddings are adopted: for example, grapheme embed-
dings, word embeddings, contextualized embeddings. In
many cases, these embeddings are trained specifically for
EvaLatin 2020 starting from large collections of Latin texts
available online.
Not surprisingly, the addition of annotated data to the train-
ing set proves to be beneficial: in particular, an increase
in accuracy is registered in the Cross-genre (+1.64 points
of accuracy with respect to the best system in the closed
modality) and Cross-time (+3.32 points of accuracy with
respect to the best system in the closed modality) subtasks
of the Lemmatization task.
The standard deviation among the texts of the test set in the
Classical subtask fluctuates between 0.83 and 1.30 in the
Lemmatization task, and between 0.60 and 1.98 in the PoS
tagging task. With regard to the Lemmatization task, the
easiest text to tackle for all the systems is In Catilinam by
Cicero (accuracy ranging from 95.94 to 97.61), followed
by the first book of the De Bello Civili by Caesar (accuracy
ranging from 95.66 to 96.94). In the PoS tagging task, the
situation is reversed: all the systems obtain better scores
on the De Bello Civili (accuracy ranging from 93.08 to
97.91) than on In Catilinam (accuracy ranging from 93.02
to 97.44).
All the systems suffer from the shift to a different genre or
to a different time period with a drop in the performances
which, in some cases, exceeds 10 points. Taking a more
in-depth look at the results, we can notice that, in general,
the participating systems perform better on the Medieval
text by Thomas Aquinas than on the Classical poems by
Horace in the Lemmatization task, whereas the opposite is
true for the PoS tagging task.
As for Lemmatization, Thomas Aquinas presents a less
rich and varied vocabulary with respect to Horace: the
lemma/token ratio is 0.09 and the percentage of out-of-
vocabulary lemmas (i. e. lemmas not present in the train-
ing data) is 26%, while in the Carmina the lemma/token
ratio is 0.26 and the percentage of out-of-vocabulary lem-

mas is 29%.
As for PoS tagging, Thomas Aquinas proves to be more
challenging than Horace. This is probably due to the higher
percentage and different distribution of tokens belonging to
the categories of prepositions (ADP), conjunctions (CCONJ
and SCONJ), auxiliaries (AUX) and numerals (NUM), as a
consequence of a different textual and syntactic structure
(with respect to the training set) that is more similar to that
of modern Romance languages.
In particular, in Thomas Aquinas we observe a more fre-
quent use of prepositional phrases: in Classical Latin, case
inflection alone often suffices to convey the syntactic role of
a noun phrase, whereas in the same context Medieval Latin
might prefer that same phrase to be introduced by a prepo-
sition, extending a trend that is already present in Classical
Latin (Palmer, 1988). We also find a greater number of sub-
ordinate clauses introduced by subordinating conjunctions
(for example, the Classical construction of Accusativus cum
infinitivo tends to be replaced by subordinate clauses in-
troduced by subordinating conjunctions like quia/quod/ut
‘that’ (Bamman et al., 2008)), as well as of coordinated
structures with coordinating conjunctions, the latter fact be-
ing possibly due to the very infrequent use of the enclitic
particle -que ‘and’. As for auxiliaries, their high number
in the text of Thomas Aquinas is due to the fact that its an-
notation, carried out in the context of the Index Thomisticus
Treebank (IT-TB) project (Passarotti, 2019), strictly follows
the UD guidelines, so that the AUX tag is applied also to
verbal copulas. This rule does not apply to the other texts
employed in EvaLatin 2020, thus causing a discrepancy in
the annotation criteria. Finally, the high occurrence of nu-
merals is caused by the frequent use of biblical quotations
(e. g. Iob 26 14 ‘Book of Job, chapter 26, verse 14’, from
Summa contra Gentiles, book 4, chapter 1, number 1).

7. Conclusion
This paper describes the first edition of EvaLatin, an evalu-
ation campaign dedicated to NLP tools and methods for the
Lemmatization and PoS tagging of the Latin language.
The call for EvaLatin 2020 has been spurred by the real-
ization that times are mature enough for such an initiative.
Indeed, despite the growing amount of linguistically anno-
tated Latin texts which have become available over the last
decades, today large collections of Latin texts are still lack-
ing any layer of linguistic annotation, a state of affairs that
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prevents users from taking full advantage of digital corpora
for Latin.
One aspect that heavily impacts on any NLP task for Latin
is the high degree of variability of the texts written in this
language, due to its wide diachronic and diatopic diversity,
which spans across several literary genres all over Europe
in the course of more than two millennia. Just because
we need to understand how much this aspect of Latin af-
fects NLP, two subtasks dedicated respectively to the cross-
genre and cross-time evaluation of data have been included
in EvaLatin 2020.
If it holds true that variation is a challenging issue that af-
fects NLP applications for Latin, one advantage of dealing
with Latin data is that Latin is a dead language, thus provid-
ing a substantially closed corpus of texts (contemporary ad-
ditions are just a few, like for instance the documents of the
Vatican City or song lyrics (Cecchini et al., forthcoming)).
This warrants us to speak of a possible complete linguistic
annotation of all known Latin documents in the future.
In the light of such considerations, we have decided to de-
vote the first edition of EvaLatin to Lemmatization and PoS
tagging, as we feel the need to understand the state of the art
of these two fundamental annotation layers for what con-
cerns Latin.
We hope that the results of our evaluation campaign will
help the community move towards the enhancement of an
ever-increasing number of Latin texts by means of Lemma-
tization and PoS tagging as a first step towards a full lin-
guistic annotation that includes also morphological features
and syntactic dependencies, and that it will also help foster
interest for Latin among the NLP community, confronting
the challenge of portability of NLP tools for Latin across
time, place and genres.
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In Jan Hajič et al., editors, Proceedings of the CoNLL
2017 Shared Task: Multilingual Parsing from Raw Text
to Universal Dependencies, pages 88–99, Vancouver,
Canada, August. Association for Computational Lin-
guistics (ACL). Available at http://www.aclweb.
org/anthology/K/K17/K17-3009.pdf.
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Abstract
Textual data in ancient and historical languages such as Latin is increasingly available in machine readable forms, yet computational
tools to analyze and process this data are still lacking. We describe our system for part-of-speech tagging in Latin, an entry in the
EvaLatin 2020 shared task. Based on a detailed analysis of the training data, we make targeted preprocessing decisions and design our
model. We leverage existing large unlabelled resources to pre-train representations at both the grapheme and word level, which serve as
the inputs to our LSTM-based models. We perform an extensive cross-validated hyperparameter search, achieving an accuracy score of
up to 93 on in-domain texts. We publicly release all our code and trained models in the hope that our system will be of use to social
scientists and digital humanists alike. The insights we draw from our inital analysis can also inform future NLP work modeling syntactic
information in Latin.
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1. Introduction
Textual data in historical and ancient languages (such as
Latin and Ancient Greek) is increasingly available in dig-
ital form. As such, computational tools for analyzing and
processing this data are highly useful among social scien-
tists and digital humanists. In order to promote the devel-
opment of resources and language technologies for Latin,
the CIRCSE research centre1 organized EvaLatin: a shared
competition on part-of-speech tagging and lemmatization
in Latin. This paper describes our system that participated
in the part-of-speech tagging task of EvaLatin (Sprugnoli et
al., 2020).
Our system was heavily informed by a detailed exploratory
analysis of the training data. This analysis guided both
our preprocessing decisions as well as the structure of the
model. We assembled a large unlabelled corpus of Latin to
train embeddings at both the grapheme and word level. Our
system combines these pre-trained embeddings in LSTMs
to predict part-of-speech tags. In this way we are able to
leverage the wealth of unlabelled but machine-readable text
in Latin available, as well as recent progress in neural net-
work models of language. To fine-tune our system, we per-
form an extensive cross-validated hyperparameter search.
The remainder of the paper is structured as follows. In
the next section, we outline the main findings of our ex-
ploratory data analysis that guided our approach. We then
discuss the preprocessing decisions that were informed by
this analysis in section 3. Section 4 describes our system,
including our cross-validated hyperparameter optimization.
In section 5 we present our results. Finally, section 6 high-
lights our plans for improving our method as well as the
open and reproducible nature of this research.

2. Exploratory data analysis
Prior to making any modeling decisions, we performed a
detailed exploratory analysis of the EvaLatin dataset. The
goal was to find insights in the data that could be lever-
aged during the modeling stage. To do this, we analyzed

1https://github.com/CIRCSE

the training data from three viewpoints, each focusing on a
different level of the data: dataset-wide, orthographic forms
and part-of-speech labels. In this section, we highlight the
main findings from our analysis that guided the develop-
ment of our system.

The training dataset contains 14,399 sentences with a to-
tal of 259,645 words. This is sizeable yet still signifi-
cantly smaller than part-of-speech datasets in many other
languages. The moderate size of labelled data available
motivated us to investigate external unlabelled data (de-
scribed in Section 4.1). Most (75%) sentences have under
24 tokens, with the average having 18. The vast majority
(95%) of sentences have at most 40 tokens. A common
concern in sequence-based neural networks is their recency
bias which is a shortcoming when the data displays long-
distance dependencies. However, with sentences of such
moderate length, this concern is not pressing.

At the level of the orthographic form, we found numerous
insights that guided our modeling. There are 43,767 unique
forms in the training data, of which more than half (24,376)
only appear once. The vast majority (90%) of forms ap-
pear at most 7 times in the training data. The large number
of forms, and especially the large number of hapax legom-
ena, suggest the need to include sub-word information, e.g.
character-based models. There are 126 unique characters
in the training data, a number which we could massively
reduce by focusing on Latin characters (47 unique). Within
the Latin characters, we noted that over 98% of instances
are lower case. We further noted that capitalization is used
in one of four ways: i) as the first character of a sentence, ii)
as the first character of a proper noun (abbreviated or not),
iii) in Roman numerals, or iv) in the token “HS”. Although
capital letters are an important signal for proper nouns, case
folding would again halve the size of the character vocabu-
lary. Full stops were also used in one of four ways: i) in ab-
breviations of proper nouns, ii) in lacunae, iii) for the noun
“salus”, almost always preceded by “suus”, or iv) other ab-
breviations, whose full form is not found elsewhere in the
sentence. As all Greek forms have the part-of-speech X,
we can effectively represent any Greek word with a single
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Figure 1: The frequency distribution over part-of-speech
tags in the training data. Nouns and verbs are by far the
most frequent tags, while AUX, NUM, X and INTJ are ex-
tremly rare.

form. Taken together, these insights suggest heavy prepro-
cessing to reduce the character vocabulary, which we de-
scribe in Section 3.
Although there are a total of 15 part-of-speech tags in the
dataset, the tags are clearly separated into three groups by
frequency. The distribution over tags is illustrated in 1.
Nouns and verbs are by far the most frequent tags (each ac-
counting for around 23% of all tokens, totalling over 45%
together). The next group consists of ADJ, ADV, PRON,
DET, CCONJ, ADP, PROPN, SCONJ and PART tags, and each
account for 1-8% of tags. The last group consists of AUX,
NUM, X and INTJ tags, which each account for less than
1% of tokens. As a baseline, predicting NOUN for all words
would have an accuracy of 23% in the training data. The
NOUN, VERB, ADJ tags and PRON are identified by lexical
root, morphology and syntactic context. Thus, it is impor-
tant to explicitly include these information sources in the
model, for example, with a contextual model. The ADV,
DET, ADP and CCONJ tags are often tied to a particular or-
thographic form, which suggests that word-type represen-
tations would be effective in identifying them. Identifying
tags which rely on inflectional morphology could be han-
dled by character-based models and sub-word representa-
tions. As Latin’s inflectional morphology is entirely suffix-
ing, models would benefit from explicit end of word infor-
mation.

3. Preprocessing
Based on our initial data analysis, our preprocessing was
designed to remove as much noise from the data as possi-
ble that is not relevant to the task of part-of-speech tagging.
To that end, we made significant preprocessing decisions.
We replaced the following classes of word forms with
placeholder characters as their specific forms do not mat-
ter for part-of-speech tagging: i) Greek words, ii) proper
noun abbreviations and iii) lacunae. All remaining forms
were lowercased. We also added start and end characters
for word boundaries to assist modeling inflectional mor-
phology. Furthermore, we tokenized orthographic forms

into graphemes rather than characters (Moran and Cysouw,
2018). Thus, character bigrams such as 〈qu〉 and 〈ph〉 are
represented as a single grapheme in our models, rather than
two.

4. System
Our system is broadly composed of three sections: i) pre-
trained domain-specific grapheme and word embeddings,
ii) grapheme-level LSTMs, and iii) word-level bidirectional
LSTMs. In this section, we first describe the unlabelled cor-
pus of Latin text we curated to pre-train embeddings. We
then describe the training procedure of the embeddings, fol-
lowed by the structure of our model. Finally, we describe
our extensive hyperparameter search to fine-tune our sys-
tem.

4.1. Unlabelled corpus
Given the moderate size of the labelled training data dis-
cussed in Section 2, we opted to leverage unlabelled data
to improve performance. Concretely, we curated an unla-
belled corpus of Latin texts in order to learn non-contextual
grapheme and word embeddings. We sourced this corpus
from the Perseus Project, the Latin Library and the Tesserae
Project through the CLTK library (Johnson, 2014 2020).
The resulting corpus totalled over 23 million words.

4.2. Embeddings
We trained grapheme and word embeddings on this un-
labelled corpus. In order to capture as much inflec-
tional morphology as possible in the word embeddings,
we used fastText (Bojanowski et al., 2017) which ben-
efits from sub-word information. For grapheme embed-
dings, where subsymbolic information is not available
we used the closely related word2vec (Mikolov et al.,
2013). We trained grapheme embeddings of dimension
dg ∈ {5, 10, 20} and word embeddings of dimension dw ∈
{10, 25, 50, 100, 200, 300} with n-gram lengths from 2 to
4. As part-of-speech tagging is a syntactic task, we fixed
a low window size (3) for both sets of embeddings and
trained for 10 epochs.

4.3. Model
Our part-of-speech tagging model is structured as follows.
A unidirectional LSTM reads words as the preprocessed
sequence of graphemes, representing them with their pre-
trained embeddings. The final hidden state of that model
is concatenated with the pre-trained word embedding. This
concatenation (of size dg + dw) represents the input to a
bidirectional LSTM at a single time step. At each time step,
the output of the bidirectional LSTM is passed through
a linear layer to produce probabilities over part-of-speech
tags. All parameters within the model, including the pre-
trained embeddings, are trainable.

4.4. Hyperparameter optimization
We ran extensive hyperparameter optimization to fine-
tune our model. In particular, we performed a grid
search over the following hyperparameters: grapheme em-
beddings (dg ∈ {5, 10, 20}), word embeddings (dw ∈
{10, 25, 50, 100, 200, 300}), hidden size of bidirectional
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Subtask Text Accuracy
Classical Bellum Civile 93.08

In Catilinam 93.02
De Providentia 90.63
De Vita Beata 90.72

Agricola 89.71
Germania 87.38
Epistulae 90.02

Cross-Genre Carmina 73.47
Cross-Time Summa Contra Gentiles 76.62

Table 1: The official evaluation results of our system on
the EvaLatin shared task. Our system performed well on
other Classical texts but saw significant performance drops
on out-of-domain texts.

LSTM (dh ∈ {50, 100, 200, 300}) and batch size (b ∈
{8, 16}). To evaluate each hyperparameter setting, we used
5-fold cross-validation of the training data. We trained for
up to 10 epochs, with early stopping. In total, we trained
1,440 models on a single GPU.

5. Results
In this section, we analyze the results of our hyperparameter
search and the errors our system makes, as well as report on
the official evaluation.
Averaging over the five cross-validation folds, our best per-
forming model achieved 95.3% accuracy on the training
set. We observed a strong positive correlation between the
dimensionality of the word embeddings and performance
(Pearson’s correlation ρ = 0.725) and a moderate positive
correlation between the dimensionality of the hidden state
of the bidirectional LSTM and performance (ρ = 0.253).
The dimensionality of the grapheme embeddings and per-
formance were weakly correlated (ρ = 0.042). All of the
1,440 models we trained achieved above 99% top 3 accu-
racy. The most common errors we observed were incor-
rectly tagging adjectives as nouns (12 % of errors) or nouns
as adjectives (11%).
The official evaluation metric used in the EvaLatin evalu-
ation was accuracy. The scores of our model on individ-
ual texts across the three subtasks are illustrated in Table 1.
Our system performed well on in-domain texts (the Clas-
sical subtask) but saw significant drops in performance in
out-of-domain texts spanning different genres and time pe-
riods of the language.

6. Discussion
Our approach was one heavily informed by an initial ex-
ploratory data analysis of the training dataset. We relied
on significant preprocessing to remove noise from the data
and leveraged a large unlabelled corpus of Latin texts. Our
extensive hyperparameter search fine-tuned our system. Al-
though our system performed well on in-domain texts, this
high performance did not carry well across to other do-
mains and time periods. Future work could investigate the
use of external labelled resources to improve performance
out of domain.
In order to facilitate engagement with our work, we make
all our code and trained models publicly available at

https://github.com/geoffbacon/verrius. In
future work, we plan to make our models freely avail-
able through an API for research purposes. With the in-
creased availability of digitized documents in ancient lan-
guages like Latin, computational tools for processing lin-
guistic data grow in usage. We hope that our system will be
of use to social scientists and digital humanists alike.
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Abstract
We describe the JHUBC submission to the EvaLatin Shared task on lemmatization and part-of-speech tagging for Latin. We view
the task as a special case of morphological inflection, and adopt and modify a state-of-the-art system from this task. We modify
a hard-attentional character-based encoder-decoder to produce lemmas and POS tags with separate decoders, and to incorporate
contextual tagging cues. We observe that although the contextual cues both POS tagging and lemmatization with a single en-
coder, the dual decoder approach fails to leverage them efficiently. While our results show that the dual decoder approach fails
to encode data as successfully as the single encoder, our simple context incorporation method does lead to modest improvements.
Furthermore, the implementation of student-forcing, which approximates a test-time environment during training time, is also bene-
ficial. Error analysis reveals that the majority of the mistakes made by our system are due to a confusion of affixes across parts-of-speech.
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1. Introduction
In this paper, we describe our system as participants in the
EvaLatin Shared Task on lemmatization and part-of-speech
(POS) tagging of Latin (Sprugnoli et al., 2020). Latin repre-
sents an interesting challenge for POS taggers — unlike En-
glish, its substantial inflectional morphology leads to sig-
nificant data sparsity, resulting in large numbers of out-of-
vocabulary (OOV) words for type-based taggers. Addition-
ally, its word order is much more fluid than languages like
English, handicapping n-gram taggers such as HMMs that
rely on language modeling to produce tag sequences.
We consider lemmatization to be a special case of morpho-
logical reinflection (Cotterell et al., 2017), which takes as
input one inflected form of a word and produces another,
given the desired morpho-syntactic description (MSD) of
the output form. Likewise, POS-tagging is a special case of
morphological tagging but with a greatly reduced tagset.
Beginning with the state-of-the-art neural morphological
generator of Makarov and Clematide (2018), we make sev-
eral small modifications to both its input representation and
its learning algorithm to transform it from a context-free
generator into a contextual tagger. These modifications are
described in Section 2. We also experiment with a neural
machine translation system with no modifications.
Our results indicate that out-of-the-box tools already per-
form at a very high level for Latin, but that small boosts
in performance can be observed through simple modifica-
tions and ensembling of different learning algorithms. We
discuss our results in more detail in Section 5.

2. System Description
Since 2016, SIGMORPHON has hosted a series of Shared
Tasks in morphological inflection (Cotterell et al., 2016;
Cotterell et al., 2017; Cotterell et al., 2018; McCarthy et
al., 2019). Increasingly, the tasks have become dominated
by neural encoder-decoder architectures with heavy copy-
biasing. Originally borrowed from the neural machine
translation (NMT) community (Bahdanau et al., 2014), the
systems have converged around hard-attentional transduc-
ers over edit actions (Aharoni and Goldberg, 2017).

Figure 1: The difference between inflection generation and
contextual tagging.

2.1. System 1: Seq-to-seq morphological analysis
As our starting point, we take the system of Makarov and
Clematide (2018), the highest performing system in the
2018 shared task. Note, however, that the inflection task
is quite different from this one. In the 2018 task, partic-
ipants were provided with an input lemma and MSD and
were required to produce an inflected word out of context.
Our task is in many ways the exact opposite: given a word
in context, we must produce a lemma and a POS tag. Fig-
ure 1 illustrates this difference.
Our first task is to convert the initial system from a gener-
ator to a lemmatizer. This step is trivial: we simply spec-
ify the MSD for every input word as “LEMMA”, produc-
ing a context-free lemmatizer. We expand to a context-free
morphological analyzer by appending the POS to the end
of the output — where the initial system would produce
“lego” given legit LEMMA, our system now produces
“lego+VERB”. We refer to this system in future sections
as the single-decoder without context (SDNC).
We introduce context into the system through a modi-
fication to the MSD, appending the two previous POS
tags to the MSD. Given the example sequence in Fig-
ure 1, the input for “scriptum” would be scriptum
LEMMA;-2:SCONJ;-1:VERB. We refer to this system
as the single-decoder with context (SDC).
During training, it is common to feed the gold POS tags
into the system as context, but at test time, the system must
rely on its own predictions and may fall prey to overfitting,
as it has trouble recovering from an incorrectly-predicted
tag. To help mitigate this issue, we also introduce a sys-
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Figure 2: On the left - the single decoder architecture of Makarov et al.; On the right, the dual decoder architecture we
introduce. Some connections have been removed to avoid clutter.

tem that learns via student-forcing, where the tags on the
MSD are not the gold POS tags, but rather the predictions
produced by the decoder. We refer to this system as the
single-decoder with student forcing (SDSF).
Our most significant modification to the baseline system
involves altering the architecture to produce lemmas and
tags separately. By separating the decoders, we simplify the
task of each decoder, allowing each decoder to specialize
in its particular task. Each decoder has its own attention
mechanism that allows it to focus on the parts of the input
most significant to its task. The architecture is illustrated in
Figure 2.
In both the single and dual decoder models, a bidi-
rectional LSTM encoder reads in the input sequence
(legit LEMMA -2:<s> -1:<SCONJ>) character-
by-character1. In the single decoder, a hard attention
mechanism feeds a decoder that generates edit actions
(either “copy”, “step”, or “insert-x”), before producing the
final output: lego+VERB. The dual decoder produces the
lemma in the same way, but uses a second decoder with a
global attention mechanism to produce a single POS tag.

2.2. System 2: Neural Machine Translation
Our second system submission is meant to serve as a strong
baseline to compare with System 1. Treating the lemma-
tization and POS tagging tasks as a sequence prediction
problem, we employ an off-the-shelf neural machine trans-
lation toolkit OpenNMT (Klein et al., 2017) with modifi-
cations to the data preprocessing. For both tasks, the input
is the Latin word with its previous and next words in the
sentence (including sentence boundary tokens). We train
a SentencePiece (Kudo and Richardson, 2018) model with
a vocabulary size of 8000 and apply it on both the input
and output for lemmatization, and only the input for POS
tagging. An example is shown in Table 1.

2.3. Ensembling
In addition to producing multiple individual systems, we
ensemble each system, using a linear combination of each

1MSDs are atomic.

Input: cum dolore in f i d e l it at is
Output (lemma): dolor
Output (POS): NOUN

Table 1: Data format for System 2 after processing with
SentencePiece.

system’s confidence scores from the decoder2. To aid the
ensemble, we produce 10-best lists for each system, which
requires a small modification to the beam search: each de-
coder produces a 10-best list of hypotheses, which are then
combined with a linear combination of their confidence
scores, with ties going to the prediction with the higher
lemma score.

3. Experimental setup
We train our models on a 90% balanced subset of the pro-
vided training data, reserving 10% of the sentences in each
document as a validation set. We train the single- and dual-
decoder models identically. The encoders and decoders
consists of a single layer with 200 hidden units, an embed-
ding size of 100 for actions and characters, and 20 for POS
tags. We train with a batch size of 32, using AdaDelta, a
ReLU non-linearity function, and 50% dropout. All mod-
els are trained for a maximum of 60 epochs, with patience
of 10 epochs.
For the NMT system, we use the default parameters of
OpenNMT, which include a 2 layer encoder and decoder
with 500 hidden units and an embedding size of 500. There
is no difference in architectures for the lemmatization and
POS tagging tasks. We train with a batch size of 64 using
Adam, with 30% dropout, with a patience of 3 epochs.

4. Results
We now present the official test results of our systems in
the three sub-tasks: classical, cross-genre, and cross-time.
Our official submissions correspond to the Ensemble and

2An incompatibility with OpenNMT’s decoder prevents us
from including the NMT system in the ensemble.
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NMT baseline. The classical task presents test data by the
same authors as were used in training, and consists of let-
ters, speeches, and treatises. The cross-genre task tests on
the Odes of Horace, also written in classical Latin but of
a different genre (lyric poetry), while the cross-time task
evaluates on a treatise by St. Thomas Aquinas written in
the Ecclesiastical Latin of the 13th century.

System Setting Lemma POS
Single No Context 94.32 93.38
Dual No Context 93.94 93.20

Single Teacher 94.36 93.87
Dual Teacher 93.61 92.73

Single Student 94.59 93.8
Dual Student 93.45 92.74

Ensemble – 94.76 94.15
NMT – 94.22 92.98

Table 2: Test Accuracy on Classical Task

System Setting Lemma POS
Single No Context 83.98 87.00
Dual No Context 82.47 86.51

Single Teacher 84.67 87.53
Dual Teacher 82.42 86.39

Single Student 84.74 87.92
Dual Student 82.32 86.85

Ensemble – 85.49 88.40
NMT – 82.69 82.93

Table 3: Test Accuracy on Cross-Genre Task

System Setting Lemma POS
Single No Context 85.38 80.32
Dual No Context 84.87 78.5

Single Teacher 85.77 82.49
Dual Teacher 85.36 80.06

Single Student 85.81 81.58
Dual Student 84.26 78.21

Ensemble – 85.75 80.78
NMT – 83.76 82.62

Table 4: Test Accuracy on Cross-Time Task

We observe that for all three sub-tasks, the single-encoder
model outperforms our dual-decoder extension, for both
lemmatization and POS-Tagging. It may be that lemma-
tization and POS-tagging provide complementary informa-
tion that benefits a joint decoder, and splitting the decoders
shifts much of the joint learning to the encoder, which is
not able to learn a sufficient representation to accomodate
the separate decoding mechanisms.
Encouragingly, the contextual information appears to have
been captured by the encoder. POS-tagging and lemmatiza-
tion both benefit from knowing the POS-tag of the previous
POS tags in the sentence. We provide some discussion of
this phenomenon in Section 5. We also observe that lemma-
tization benefits slightly from a student-forcing scenario.

NN VB JJ NNP RB AUX
NN 13333 182 356 63 50 0
VB 105 12037 114 9 12 69
JJ 204 140 4099 91 86 0

NNP 51 3 46 2437 6 0
RB 18 3 72 10 4188 0

AUX 0 273 0 0 0 480

Table 5: POS Confusion Matrix: open classes (y=gold)

Not surprisingly, ensembling multiple systems leads to
small gains over any individual system. The sole exception
occurs in the Cross-Time track, which sees the ensemble
struggle to surpass the individual systems. We hypothe-
size that the low overall accuracy on this track harms the
ensemble, as models produce hypotheses more consistent
with classical Latin. A system that produces a correct me-
dieval analysis is out-voted by the other systems.

5. Discussion
We now begin a detailed discussion of the types of errors
made by our systems. As a test case, we consider the clas-
sical track; the types of errors encountered here are simply
exacerbated in the other tracks.
We first consider the open classes of words: nouns, verbs,
and adjectives. These classes demonstrate prolific inflec-
tional morphology, and account for 82.3% of the lemmati-
zation errors of our ensembled system. Of the remaining
errors, 73% of false lemmatizations concern subordinating
conjunctions or pronouns. Pronouns and conjunctions are
regularly tagged as adverbs — they are incorrectly tagged
as such nearly 10% of the time. All told, more than 90%
of our system’s errors can be attributed to either the open
classes, or to closed words incorrectly tagged and lemma-
tized as such.
Table 5 shows the errors that our system makes on the
open classes. Unsurprisingly, there is much confusion be-
tween auxiliary and main verbs. Given that these are of-
ten the finite form of a verb, the results suggest that our
character-based model is heavily attending to the affixes
of the word for POS-tagging. Likewise, we observe this
phenomenon between common nouns, proper nouns, and
adjectives, which must agree grammatically and often de-
cline similarly. Perhaps the biggest surprise comes from the
confusion between verbs and nouns/adjectives, which have
very different inflectional systems, but account for nearly a
quarter of all open-class errors.
Closer inspection reveals that nominal-verbal confusion
comes about from incorrect affix-boundary identification.
For example, the noun evocatis should be lemmatized as
evocati, but is instead tagged as a verb, and lemmatized as
evoco. The -atis ending is a common verbal suffix denot-
ing the 2nd person plural, and indeed, the noun evocati “a
veteran soldier called back to service” is derived from the
verb evoco “to call out/summon” and in dictionaries is often
listed as a subentry of evoco. In the other direction, meritum
should be analyzed as a conjugation of the verb mereor, but
is instead analysed as the noun meritum. -tum is a common
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SCONJ PRON ADP DT RP CC NUM INT X
SCONJ 1235 182 80 0 43 13 0 0 0
PRON 1 4191 0 26 0 0 0 0 0
ADP 61 0 3646 0 0 0 0 0 0
DT 1 36 0 3644 0 0 95 0 0
RP 19 0 0 0 732 0 0 0 0
CC 5 15 0 0 0 3981 0 0 0

NUM 0 2 12 0 0 0 197 0 0
INT 0 0 0 0 0 0 0 24 0
X 0 0 0 0 0 0 0 0 500

Table 6: POS Confusion Matrix: closed classes (y=gold)

nominal suffix, and meritum is the perfect passive participle
of mereor, which itself belongs to a rare class of deponent
verbs. We see that many of our verb misclassifications oc-
cur when the verb is inflected as a participle, which in Latin
resemble and decline as ordinary adjectives.
Table 6 shows similar statistics for the closed classes. Out-
side of the aforementioned errors, we see some confusion
between conjuctions and pronouns and adpositions, as well
as between determiners and numbers. The latter is un-
derstandable, as the word unus and its inflections can be
both determiner or number. For the former, many subor-
dinating conjunctions share a suffix with relative pronouns
(qui, quae, quod) and interrogative pronouns (quis, quod)
and their inflections. One commonly misclassified word
is quod, which can be translated as “because” (SCONJ) or
“which” (PRON) depending on the context. Several sub-
ordinating conjunctions also function as adpositions de-
pending on context, including cum, which is translated as
“when” (SCONJ) or “with” (ADP). Accurately determin-
ing the function and translation of these words often re-
quires first analyzing the verb, which may appear many
words later in the sentence. A larger context window may
allow our systems to more accurately analyze such words.

5.1. System variants
We next investigate the types of errors that are corrected by
our system variants. As the single decoder dominates the
dual decoder, we will focus our investigation on its variants
in the classical task. When we add context to the model, we
note a 7.5% relative error reduction on POS tagging. Many
of the correct POS tags occur in the closed word classes.
As hinted above, several common Latin function words
such as ante “before”, cum “with/when”, and the inflections
of unus are ambiguous with respect to the part of speech.
Ante, for example, can be an adverb, meaning “ago”, such
as in the sentence: multis ante mensibus in senatu dixit . . .
– “He said many months ago in the senate . . . ” However,
it occasionally also operates as an adposition, as in English
- volui si possem etiam ante Kalendas Ianuarias prodesse
rei publicae – “I wished, if I could, to be useful to the state
even before the first of January.” Often, ante is used in its
adverbial form when it follows an adjective or adverb, but
as an adposition when it follows a verb. Knowing the prior
contextual parts of speech can help disambiguate it, such as
in the test sentence: venisti paulo ante in senatum – “You
came a little while ago into the senate” – where the non-
contextual model predicts an adposition, but the contextual
system corrects it to an adverb.
The teacher-forcing model is heavily dependent on the
quality of the contextual tags. At test time, the tags pro-
duced by the system will occasionally be incorrect, cas-

cading to incorrect lemmatization and subsequent tagging.
Contrary to the POS analysis, we see that it is the open word
classes that benefit most from the student-forcing. POS
accuracy stays stable, but the relative lemmatization error
drops by 4%. The lemmatization model learns to rely less
on the previous POS tags, which may now be incorrect, and
to focus more on the shape of the word; nouns and verbs,
in particular, seem to benefit the most from this model.
Consider the form speret, which is the 3rd person singular
present active subjunctive of the verb spero “to hope”. Un-
der the teacher forcing model, it is lemmatized as “*speo”,
likely following the deletion rule of other verbs like “no-
cere→ noceo”. In this particular POS context, “ere→ eo”
is much more common than “eret→ ro” — the subjunctive
is simply rarer than the indicative — so the model uses the
contextually conditioned transition. Under the student forc-
ing paradigm, the model makes less use of the POS context
for lemmatization, and is able to correct the error.
Finally, we take a look at the dual decoder and why it fails
with respect to the single decoder model. Comparing sim-
ilar systems, we note that the dual decoder and single de-
coder are nearest in accuracy when no context is consid-
ered, and that adding context and noise degrades the dual
decoder even as it improves the single encoder. We investi-
gate some possible reasons why in this section.
The dual decoder fails to correctly apply contextual cues
much more often than the single decoder model. For ex-
ample, when quod is used as a pronoun, it should be lem-
matized as qui. However, when used as a conjunction, it
should remain as quod. The single decoder correctly iden-
tifies this difference, but the dual decoder invariably lem-
matizes quod to the majority class qui. It would appear that
although both decoders share an encoder and an embed-
ding space, the lemmatizing decoder disregards contextual
information for lemmas.
For part-of-speech tagging, somewhat surprisingly, the dual
decoder also fails to leverage contextual information, even
degrading as context is fed into the system. We are at a
loss to describe such a phenomenon, and the errors de-
scribe no clear pattern. It is possible that the encoder is not
strong enough to embed complementary information such
that separate decoders can leverage it in different ways. In
the future, we will investigate increasing the representa-
tional power of the encoder in the dual-decoder model.

6. Conclusion
We have described and analyzed the JHUBC submission
to the 2020 EvaLatin Shared Task on Lemmatization and
POS-Tagging. Viewing the task as an extension of morpho-
logical analysis, we adapted a strong morphological gener-
ator to the tasks, with a high level of success – contextual
cues can be fed to the tagger via an extended tag vocabu-
lary, and student-forcing can help the system recover from
errors at test time. Our best systems perform well across a
series of related tasks, and we feel that our system provides
a strong, intuitive system for future comparison.
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Yarowsky, D., Eisner, J., et al. (2017). CoNLL-
SIGMORPHON 2017 shared task: Universal morpho-
logical reinflection in 52 languages. arXiv preprint
arXiv:1706.09031.

Cotterell, R., Kirov, C., Sylak-Glassman, J., Walther, G.,
Vylomova, E., McCarthy, A. D., Kann, K., Mielke, S.,
Nicolai, G., Silfverberg, M., et al. (2018). The CoNLL–
SIGMORPHON 2018 shared task: Universal morpho-
logical reinflection. arXiv preprint arXiv:1810.07125.

Klein, G., Kim, Y., Deng, Y., Senellart, J., and Rush, A.
(2017). OpenNMT: Open-source toolkit for neural ma-
chine translation. In Proceedings of ACL 2017, System
Demonstrations, pages 67–72, Vancouver, Canada, July.
Association for Computational Linguistics.

Kudo, T. and Richardson, J. (2018). Sentencepiece: A
simple and language independent subword tokenizer and
detokenizer for neural text processing. arXiv preprint
arXiv:1808.06226.

Makarov, P. and Clematide, S. (2018). Neural transition-
based string transduction for limited-resource setting in
morphology. In Proceedings of the 27th International
Conference on Computational Linguistics, pages 83–93,
Santa Fe, New Mexico, USA, August. Association for
Computational Linguistics.

McCarthy, A. D., Vylomova, E., Wu, S., Malaviya, C.,
Wolf-Sonkin, L., Nicolai, G., Kirov, C., Silfverberg,
M., Mielke, S. J., Heinz, J., et al. (2019). The SIG-
MORPHON 2019 shared task: Morphological analysis
in context and cross-lingual transfer for inflection. arXiv
preprint arXiv:1910.11493.

Sprugnoli, R., Passarotti, M., Cecchini, F. M., and Pelle-
grini, M. (2020). Overview of the evalatin 2020 evalua-
tion campaign. In Rachele Sprugnoli et al., editors, Pro-
ceedings of the LT4HALA 2020 Workshop - 1st Work-
shop on Language Technologies for Historical and An-
cient Languages, satellite event to the Twelfth Interna-
tional Conference on Language Resources and Evalua-
tion (LREC 2020), Paris, France, May. European Lan-
guage Resources Association (ELRA).

118



Proceedings of 1st Workshop on Language Technologies for Historical and Ancient Languages, pages 119–123
Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

A Gradient Boosting-Seq2Seq System for
Latin POS Tagging and Lemmatization

Giuseppe G. A. Celano
Leipzig University

Augustusplatz 10, 04109 Leipzig
celano@informatik.uni-leipzig.de

Abstract
The paper presents the system used in the EvaLatin shared task to POS tag and lemmatize Latin. It consists of two components. A
gradient boosting machine (LightGBM) is used for POS tagging, mainly fed with pre-computed word embeddings of a window of
seven contiguous tokens—the token at hand plus the three preceding and following ones—per target feature value. Word embeddings
are trained on the texts of the Perseus Digital Library, Patrologia Latina, and Biblioteca Digitale di Testi Tardo Antichi, which together
comprise a high number of texts of different genres from the Classical Age to Late Antiquity. Word forms plus the outputted POS labels
are used to feed a Seq2Seq algorithm implemented in Keras to predict lemmas. The final shared-task accuracies measured for Classical
Latin texts are in line with state-of-the-art POS taggers (∼96%) and lemmatizers (∼95%).

Keywords: Latin, gradient boosting, Seq2Seq, POS tagging, lemmatization, treebank

1. Introduction
The EvaLatin shared task (Sprugnoli et al., 2020) con-
sists of two NLP tasks, (coarse-grained) POS tagging and
lemmatization, each of which can be addressed in two
modalities, closed and open.
Closed modality does not allow use of annotated external
resources, such as treebanks or lexica, while non-annotated
resources, such as word embeddings, can be used. In open
modality, use of any external resource is allowed.
Participation to the shared task in closed modality only is
possible, the open-modality approach being optional. The
Latin texts provided for training are 7,1 and belong to dif-
ferent works (see Table 1).

author work tokens

Caesar Bellum Civile 6,389
Bellum Gallicum 44,818

Cicero Philippica 52,563
Plinius Secundus Epistulae 50,827

Seneca De Beneficiis 45,456
De Clementia 8,172

Tacitus Historiae 51,420

Table 1: Training data

The Latin data differ in age (slightly) and genre, because
the goal of the shared task is to evaluate how models per-
form not only on similar, but also different, kinds of text.
Caesar’s and Tacitus’ works are historical accounts, Ci-
cero’s Philippica are speeches, Plinius’ work consists in
letters, while Seneca’s are philosophical essays. Caesar
(100 BC–44 BC) and Cicero (106 BC–43 BC) belong to
the Golden Age, while Plinius (61 AD–c. 113 AD), Seneca
(c. 4 BC–65 AD), and Tacitus (c. 56 AD–c. 120 AD) be-
long to the Silver Age.
The released data are provided in the conllu format, with

1https://circse.github.io/LT4HALA/
EvaLatin.html.

sentence split and tokenization/word segmentation already
performed. It is to note that the organizers decided to re-
move punctuation marks and to not tokenize enclitic que
(i.e., “and”), although it usually is, in Latin treebanks, on
syntactic grounds. As a consequence, tokenization/word
segmentation could also be easily accomplished from raw
text by splitting on whitespaces.2

Each token is aligned with only POS and lemma labels ac-
cording to the Universal Dependencies (UD) scheme (Ze-
man et al., 2019).3 As is known, the UD scheme provides
general definitions for its morphosyntactic labels, in that
they are supposed to be used for annotation of many typo-
logically different languages.
There are currently three different UD Latin treebanks,4

which use the same morphosyntactic labels slightly differ-
ently. For example, there is no consensus on whether a sub-
stantivized adjective should be morphologically annotated
as an adjective or a noun (which will affect also lemma
annotation), or how to treat, for example, “ubi” (“where”)
without an antecedent: is it a relative adverb or a subordi-
nate conjunction? Unfortunately, there are many such prob-
lematic cases, still inadequately covered in guidelines. No-
tably, they cause not only divergencies between different
treebanks, but also, often, inconsistencies within a treebank

2Identifying enclitic que is probably the main word segmenta-
tion problem for Latin, because of its high frequency and the fact
that a high number of other words end in non-enclitic que, such
as, for example, quisque, quicumque, or aeque. While almost all
of these can be identified via rule-based algorithms, the series of
tokens quique, quaeque, and quodque cannot: these word forms
signify both pronouns (“everyone”) and relative pronouns + en-
clitic que, and therefore can be disambiguated only by considering
their syntactic contexts.

3See also, more specifically, https://
universaldependencies.org/guidelines.html.

4See https://universaldependencies.org/. The
UD Latin treebanks derive from conversion of similarly annotated
treebanks (Celano, 2019).
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itself, annotators getting easily confused.5

For this reason, I decided to participate only to the closed
modality of the shared task, by proposing a two-step system
(see Figure 1) which employs (i) a gradient boosting ma-
chine for POS tagging and (ii) a Seq2Seq algorithm lever-
aging POS labels for lemmatization.6 I present the former
in Section 3 and the latter in Section 4. In Section 2, I
discuss the pre-computed word embeddings which feed the
gradient boosting machine, while Section 5 contains some
concluding remarks.

sentence-
split and
tokenized

text

POS tag via
LightGBM

pre-trained
word em-
beddings

lemmatize
via

Seq2Seq

POS-
tagged and
lemmatized

text

Figure 1: System pipeline

2. Data preparation and pre-computed
word embeddings

Each text of the released data has been divided into three
sets: training (80%), development (10%), and test (10%).
By the union of all the training, development, and test sets,
the final training, development, and test sets to use for ma-
chine learning have been created. This splitting strategy
guarantees that each final set is, with respect to the data
released, balanced and representative.
Token order within a sentence has been preserved because,
as is shown in Section 3, preceding and following tokens of
any given token has been used to predict the POS of such
a given token. Order of sentences has also been kept be-
cause it is assumed to be irrelevant for the purposes of the
machine learning task at hand.
Word embeddings are a common way to vectorize word
forms. In recent years, FastText (Bojanowski et al., 2016)

5A solution for this are more precise guidelines and
word lists to account for specific phenomena, such as
https://git.informatik.uni-leipzig.de/
celano/latinnlp/-/tree/master/guidelines
and https://git.informatik.uni-leipzig.
de/celano/latinnlp/blob/master/tokenize/
to-tokenize.xml.

6The models are made available at https://github.
com/gcelano/evalatin2020.

has emerged as a successful library for word representation.
Differently from other word embedding algorithms, such as
Word2vec (Goldberg and Levy, 2014), FastText represents
words as the sum of character n-grams, thus allowing any
prefixes, infixes, or suffixes to be weighted.
Some models for Latin, such as the one based on texts from
Common Crawl and Wikipedia, have already been com-
puted and are freely available.7 However, since the data
released for the shared task are literary texts without punc-
tuation, a new model trained exclusively on punctuation-
free literary texts from sources derived from high qual-
ity digitization and post-scan processing is probably ex-
pected to perform better than less specific—even if already
available—models.
I therefore trained a model using the texts from the Perseus
Digital Library (PDL),8 Patrologia Latina (PL),9 and Bib-
lioteca Digitale di Testi Tardo Antichi (BDTTA).10 As the
shared task also aims to evaluate a model on texts of dif-
ferent (i) age and (ii) genre, using the above mentioned
collections, which together comprise most of the existing
pre-medieval Latin texts, guarantees that both variables are
adequately represented.
Another most crucial reason to create a new model is that
the released data adopts the convention of only using the
grapheme “u” to represent both the Latin vocalic (/u/) and
semivocalic (/w/) phonemes. As is known, editors of Latin
texts adopt different conventions in this respect, and there-
fore non-normalized texts are very likely to generate under-
performing models for the shared task at hand.
FastText requires raw text as an input. Its extraction from
the annotated XML files of especially the PDL is a non-
trivial task, which would require a separate study. The texts
of the PDL, as well as those of the PL and BDTTA, follow
the Epidoc Schema, which is a subset of the TEI schema.
An original text is interspersed with a lot of “markup text”
introduced by XML elements such as “del”—to signal that
a certain word should be deleted—or “note”—to add a
comment on a specific point in the text.
The PDL texts also represent a particular challenge because
some of them cannot be parsed by XML parsers:11 indeed,
a number of externally defined character references, such
as “&emacr;”, raise exceptions, and therefore require pre-
processing.
After extracting the text from the above mentioned collec-
tions and converting all “v” into “u”,12 I trained a model
through FastText with the following hyperparameters: skip-
gram mode, minimum length of char n-gram 2, maximum
length of char n-gram 5, dimensions 300, and learning rate

7https://fasttext.cc/docs/en/
crawl-vectors.html.

8https://github.com/PerseusDL/
canonical-latinLit/tree/master/data.

9https://github.com/OpenGreekAndLatin/
patrologia_latina-dev/tree/master/corrected.

10http://digiliblt.lett.unipmn.it/g_bulk_
opere.php.

11I used the Java SAXParser, available in BaseX 9.3.1.
12I did not lowercase the texts, because I did not verify that this

improves accuracy.
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0.03.13

The model so created outperformed the Latin model pro-
vided by FastText in a number of preliminary tests. I also
experimented with a lot of different hyperparameters and
even texts: it is worth mentioning that models relying on
the PHI Latin texts14 turned out to perform worse than the
one based on the above mentioned collections, probably be-
cause the PHI Latin texts comprise a considerable number
of fragmentary works, whose texts mainly consist of broken
words.

3. LightGBM: a powerful gradient boosting
machine

LightGBM (Ke et al., 2017) is an efficient gradient boost-
ing machine which combines high accuracies, fast training
speed, and easy of use. It is developed by Microsoft, and
has so far been successfully employed for a high number of
different machine learning challenges.
Two kinds of features are employed to predict the POS la-
bels:15 (i) word embeddings and (ii) 2-character token end-
ings. Word embeddings are calculated for any given token
and its three preceding and three following tokens. Posi-
tion is always calculated within a given sentence: if no to-
ken precedes or follows, a vector of 0 is used. Similarly,
2-character endings of any of the above mentioned tokens
are extracted and made independent variables—if no token
precedes or follows an underscore is used. Vectorization
for the endings is automatically performed by LightGBM.
After some experimenting, the following hyperparameter
values turned out to be optimal: boosting type = ‘gbdt’,
num leaves = 50, max depth = -1, learning rate = 0.03,
n estimators = 47946, subsample for bin = 100000, objec-
tive = ‘multiclass’, class weight = None, min split gain =
0.0, min child weight = 0.001, min child samples = 1, sub-
sample = 1.0, subsample freq = 0, colsample bytree = 1.0,
reg alpha = 0, reg lambda = 0.001, random state = 1, im-
portance type = ‘split’, max bin = 500.

tagger test accuracy time
LightGBM 96.2 >3h
Marmot 95.18 31.9s
Lapos 95.22 18.78s

Table 2: Taggers compared

As Table 2 shows, the test accuracy of LightGBM16 is
higher than those of two popular taggers, Lapos (Tsuruoka
et al., 2011) and Marmot (Mueller et al., 2013), which have
been used with default hyperparameters. Striking is, how-
ever, training time, in that both Lapos and Marmot are ex-
tremely fast and do not require any pre-computed word em-
beddings. On the other hand, LightGBM required a very
high number of estimators (47,946) in order to get about
1% more accuracy than the other taggers. This therefore

13Refer to the documentation for more details on hyperparame-
ters: https://fasttext.cc/docs/en/options.html

14https://latin.packhum.org/.
15Morphological features are not required in EvaLatin.
16I checked that the POS tag assigned to a Greek word or “la-

cuna” is always “X”, as required by the shared task guidelines.

discouraged me, after finding the hyperparameters, from
re-training the model with the train set + development set.
With more training data (which could even include the test
set), a winning accuracy for the shared task might have been
achieved.
The LightGBM development accuracy calculated is
96.39%, while the test accuracy is 96.2%. These values are
very similar to the final one calculated for Classical Latin
on the shared task test set (95.52%). These accuracies are
in line with state-of-the-art POS taggers for Classic Latin
(Gleim et al., 2019).17 As expected, the shared task cross-
genre and cross-time accuracies calculated are lower (see
Table 3).

classical cross-genre cross-time
95.52 88.54 83.96

Table 3: Final accuracy scores for POS tagging

4. A Seq2Seq algorithm for lemmatization
Lemmatization is the NLP task aiming to associate a group
of morphologically associated word forms to one of these
word forms which is conventionally taken as representative
of the entire group.
Lemmas usually concide with dictionary entries. However,
since dictionaries adopt slightly different conventions and
sometimes are even inconsistent in themselves, there are a
number of open issues, such as, for example, whether an
adverb should be lemmatized with its related adjective.
To solve the lemmatization task, I adopt the Seq2Seq al-
gorithm implemented in Keras.18 It is a popular algorithm
often employed for machine translation. It can be easily ap-
plied to the lemmatization task, in that lemmatization can
be interpreted as a case of translation from a word form to
another.
The algorithm allows translation on a character level. It
consists of a LSTM layer functioning as an encoder, whose
internal states are exploited by another LSTM layer, a de-
coder, to predict the target sequence.
In order to facilitate prediction, a target lemma is associated
with a word form plus its POS label generated by Light-
GBM. POS labels are expected to disambiguate between
morphologically ambiguous word forms.
The following hyperparameters were used: batch size 64,
epochs 10, latent dimensions 2500. The development set
accuracy calculated is 99.82%, while the test set accuracy
is 97.63%. The accuracy calculated on the shared task test
set is 94.6%. The drops in accuracy are arguably due to
both some overfitting and the fact that the POS labels used
for the test sets were not the gold ones, but those predicted
by LightGBM, which therefore contained errors (see Table
4 for all final shared task accuracy scores).
One issue which was met when decoding some input tokens
of the test data released for the shared task is that some
Greek words in it contained a few Greek characters not

17See also, for example, “la proiel” at https:
//universaldependencies.org/conll18/
results-upos.html.

18https://keras.io/examples/lstm_seq2seq/.
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present in the training data. I had to substitute them with
some Greek characters belonging to the set of those used in
the training phase. This was not an issue at all, however,
in that the lemma for any Greek word is always the place-
holder “uox graeca”. Moreover, any “lacuna” in the text
(i.e., any token including more than one period), which is
always associated with “uox lacunosa”, has been automat-
ically assigned the right lemma via a rule-based script.
An unsolved problem is caused by Arabic numbers: they
are not present in the training data provided, and therefore
it is not clear what lemma labels should be predicted.

classical cross-genre cross-time
94.6 81.69 83.92

Table 4: Final accuracy scores for Lemmatization

5. Conclusion
The paper has shown a two-component system to POS tag
and lemmatize Latin. The first consists in a LightGBM al-
gorithm predicting POS labels from word embeddings and
2-character endings of a given token plus its three preced-
ing and following tokens. The algorithm returns accuracies
(∼96%) in line with those of state-of-the-art POS taggers
for Classical Latin. The POS labels outputted plus word
forms are then used to feed a Keras Seq2Seq algorithm,
whose final result calculated on the shared task test set for
Classical Latin (94.6%) can also be considered highly com-
parable to state-of-the-art lemmatizers (for example, the 1st
ranked lemmatizer scored 95.9%, i.e., −1.3%).
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titelu, C., Mitrofan, M., Miyao, Y., Montemagni, S.,
More, A., Moreno Romero, L., Mori, K. S., Morioka,
T., Mori, S., Moro, S., Mortensen, B., Moskalevskyi,
B., Muischnek, K., Munro, R., Murawaki, Y., Müürisep,
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S., Prokopidis, P., Przepiórkowski, A., Puolakainen, T.,
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Abstract
We present our contribution to the EvaLatin shared task, which is the first evaluation campaign devoted to the evaluation of NLP tools
for Latin. We submitted a system based on UDPipe 2.0, one of the winners of the CoNLL 2018 Shared Task, The 2018 Shared Task
on Extrinsic Parser Evaluation and SIGMORPHON 2019 Shared Task. Our system places first by a wide margin both in lemmatization
and POS tagging in the open modality, where additional supervised data is allowed, in which case we utilize all Universal Dependency
Latin treebanks. In the closed modality, where only the EvaLatin training data is allowed, our system achieves the best performance
in lemmatization and in classical subtask of POS tagging, while reaching second place in cross-genre and cross-time settings. In
the ablation experiments, we also evaluate the influence of BERT and XLM-RoBERTa contextualized embeddings, and the treebank
encodings of the different flavors of Latin treebanks.

Keywords: EvaLatin, UDPipe, lemmatization, POS tagging, BERT, XLM-RoBERTa

1. Introduction
This paper describes our participant system to the EvaLatin
2020 shared task (Sprugnoli et al., 2020). Given a seg-
mented and tokenized text in CoNLL-U format with surface
forms as in

# sent_id = 1
1 Dum _ _ _ ...
2 haec _ _ _ ...
3 in _ _ _ ...
4 Hispania _ _ _ ...
5 geruntur _ _ _ ...
6 C. _ _ _ ...
7 Trebonius _ _ _ ...

the task is to infer lemmas and POS tags:

# sent-id = 1
1 Dum dum SCONJ _ ...
2 haec hic DET _ ...
3 in in ADP _ ...
4 Hispania Hispania PROPN _ ...
5 geruntur gero VERB _ ...
6 C. Gaius PROPN _ ...
7 Trebonius Trebonius PROPN _ ...

The EvaLatin 2020 training data consists of 260k words of
annotated texts from five authors. In the closed modality,
only the given training data may be used, while in open
modality any additional resources can be utilized.
We submitted a system based on UDPipe 2.0 (Straka et
al., 2019a). In the open modality, our system also uses all
three UD 2.5 (Zeman et al., 2019) Latin treebanks as addi-
tional training data and places first by a wide margin both
in lemmatization and POS tagging.
In the closed modality, our system achieves the best per-
formance in lemmatization and in classical subtask of POS
tagging (consisting of texts of the same five authors as the

training data), while reaching second place in cross-genre
and cross-time setting.
Additionally, we evaluated the effect of:

• BERT (Devlin et al., 2019) and XLM-RoBERTa (Con-
neau et al., 2019) contextualized embeddings;

• various granularity levels of treebank embed-
dings (Stymne et al., 2018).

2. Related Work
The EvaLatin 2020 shared task (Sprugnoli et al., 2020) is
reminiscent of the SIGMORPHON2019 Shared Task (Mc-
Carthy et al., 2019), where the goal was also to perform
lemmatization and POS tagging, but on 107 corpora in 66
languages. It is also related to CoNLL 2017 and 2018
Multilingual Parsing from Raw Texts to Universal Depen-
dencies shared tasks (Zeman et al., 2017; Zeman et al.,
2018), in which the goal was to process raw texts into to-
kenized sentences with POS tags, lemmas, morphological
features and dependency trees of the Universal Dependen-
cies project (Nivre et al., 2016), which seeks to develop
cross-linguistically consistent treebank annotation of mor-
phology and syntax for many languages.
UDPipe 2.0 (Straka et al., 2016; Straka, 2018) was one of
the winning systems of the CoNLL 2018 shared task, per-
forming the POS tagging, lemmatization and dependency
parsing jointly. Its modification (Straka et al., 2019a) took
part in the SIGMORPHON 2019 shared task, delivering
best performance in lemmatization and comparable to best
performance in POS tagging.
A new type of deep contextualized word representation was
introduced by Peters et al. (2018). The proposed embed-
dings, called ELMo, were obtained from internal states of
deep bidirectional language model, pretrained on a large
text corpus. The idea of ELMos was extended to BERT
by Devlin et al. (2019), who instead of a bidirectional re-
current language model employ a Transformer (Vaswani
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Figure 1: The UDPipe network architecture of the joint tag-
ger and lemmatizer.

et al., 2017) architecture. A multilingual BERT model
trained on 102 languages can significantly improve perfor-
mance in many NLP tasks across many languages. Re-
cently, XLM-RoBERTa, an improved multilingual model
based on BERT, was proposed by Conneau et al. (2019),
which appears to offer stronger performance in multilingual
representation (Conneau et al., 2019; Lewis et al., 2019).

3. Methods
3.1. Architecture Overview
Our architecture is based on UDPipe entry to SIG-
MORPHON 2019 Shared Task (Straka et al., 2019a),
which is available at https://github.com/ufal/
sigmorphon2019. The resulting model is presented in
Figure 1.
In short, the architecture is a multi-task model predict-
ing jointly lemmas and POS tags. After embedding input
words, three shared bidirectional LSTM (Hochreiter and
Schmidhuber, 1997) layers are performed. Then, softmax
classifiers process the output and generate the lemmas and
POS tags.
The lemmas are generated by classifying into a set of edit
scripts which process input word form and produce lem-
mas by performing character-level edits on the word pre-
fix and suffix. The lemma classifier additionally takes the
character-level word embeddings as input. The lemmatiza-
tion is further described in Section 3.2.
The input word embeddings are the same as in the previous
versions of UDPipe 2.0:

• end-to-end word embeddings,
• character-level word embeddings: We employ bidi-

rectional GRUs (Cho et al., 2014; Graves and Schmid-
huber, 2005) of dimension 256 in line with (Ling et al.,
2015): we represent every Unicode character with a
vector of dimension 256, and concatenate GRU out-
put for forward and reversed word characters. The

character-level word embeddings are trained together
with UDPipe network.

• pretrained word embeddings: We use FastText word
embeddings (Bojanowski et al., 2017) of dimension
300, which we pretrain on plain texts provided by
CoNLL 2017 UD Shared Task (Ginter et al., 2017),
using segmentation and tokenization trained from the
UD data.1

• pretrained contextualized word embeddings: We
use the Multilingual Base Uncased BERT (De-
vlin et al., 2019) model to provide contextualized em-
beddings of dimensionality 768, averaging the last
layer of subwords belonging to the same word.

We refer the readers for detailed description of the architec-
ture and the training procedure to Straka et al. (2019a).

3.2. Lemmatization
The lemmatization is modeled as a multi-class classifica-
tion, in which the classes are the complete rules which lead
from input forms to the lemmas. We call each class encod-
ing a transition from input form to lemma a lemma rule. We
create a lemma rule by firstly encoding the correct casing
as a casing script and secondly by creating a sequence of
character edits, an edit script.
Firstly, we deal with the casing by creating a casing script.
By default, word form and lemma characters are treated as
lowercased. If the lemma however contains upper-cased
characters, a rule is added to the casing script to uppercase
the corresponding characters in the resulting lemma. For
example, the most frequent casing script is “keep the lemma
lowercased (don’t do anything)” and the second most fre-
quent casing script is “uppercase the first character and
keep the rest lowercased”.
As a second step, an edit script is created to convert input
lowercased form to lowercased lemma. To ensure meaning-
ful editing, the form is split to three parts, which are then
processed separately: a prefix, a root (stem) and a suffix.
The root is discovered by matching the longest substring
shared between the form and the lemma; if no matching
substring is found (e.g., form eum and lemma is), we con-
sider the word irregular, do not process it with any edits and
directly replace the word form with the lemma. Otherwise,
we proceed with the edit scripts, which process the prefix
and the suffix separately and keep the root unchanged. The
allowed character-wise operations are character copy, addi-
tion and deletion.
The resulting lemma rule is a concatenation of a casing
script and an edit script. The most common lemma rules
present in EvaLatin training data are presented in Table 1.
Using the generated lemma rules, the task of lemmatization
is then reduced to a multiclass classification task, in which
the artificial neural network predicts the correct lemma rule.

3.3. Treebank Embedding
In the open modality, we additionally train on all three UD
2.5 Latin treebanks. In order to recognize and handle pos-
sible differences in the treebank annotations, we employ
treebank embeddings following (Stymne et al., 2018).

1We use -minCount 5 -epoch 10 -neg 10 options.
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Lemma Rule Casing Script Edit Script Most Frequent Examples

↓0;d¦ all lowercase do nothing et→et, in→in, non→non, ut→ut, ad→ad
↓0;d¦-+u+s all lowercase change last char to us suo→suus, loco→locus, Romani→romanus, sua→suus
↓0;d¦---+o all lowercase change last 3 chars to o dare→do, dicere→dico, fieri→fio, uidetur→uideo, data→do
↓0;d¦-+s all lowercase change last char to s quid→quis, id→is, rei→res, omnia→omnis, rem→res
↓0;d¦----+o all lowercase change last 4 chars to o hominum→homo, dedit→do, homines→homo
↓0;d¦--+o all lowercase change last 2 chars to o habere→habeo, dicam→dico, ferre→fero, dat→do
↓0;d¦--+u+s all lowercase change last 2 chars to us publicae→publicus, suis→suus, suam→suus, suos→suus
↓0;d¦- all lowercase remove last character gratiam→gratia, causam→causa, uitam→uita, copias→copia
↓0;d¦-+u+m all lowercase change last char to um belli→bellum, posse→possum, bello→bellum
↓0;d¦---+s all lowercase change last 3 chars to s omnibus→omnis, rebus→res, nobis→nos, rerum→res
↑0¦↓1;d¦ 1st upper, then lower do nothing Caesar→Caesar, Plinius→Plinius, Antonius→Antonius
↓0;d¦-----+o all lowercase change last 5 chars to o uideretur→uideo, uidebatur→uideo, faciendum→facio
↓0;d¦--+i all lowercase change last 2 chars to i quod→qui, quae→qui, quem→qui, quos→qui, quam→qui
↓0;d¦--- all lowercase remove last 3 characters quibus→qui, legiones→legio, legionum→legio, legionis→legio
↓0;d¦--+s all lowercase change last 2 chars to s omnium→omnis, hostium→hostis, parte→pars, urbem→urbs
. . . . . . . . . . . .
↓0;ais all lowercase ignore form, use is eum→is, eo→is, ea→is, eorum→is, eam→is

Table 1: Fifteen most frequent lemma rules in EvaLatin training data ordered from the most frequent one, and the most
frequent rule with an absolute edit script.

System
Lemmatization

classical cross-genre cross-time
UDPipe – open 96.19 (1) 87.13 (1) 91.01 (1)
UDPipe – closed 95.90 (2) 85.47 (3) 87.69 (2)
P2 – closed 1 94.76 (3) 85.49 (2) 85.75 (3)
P3 – closed 1 94.60 (4) 81.69 (5) 83.92 (4)
P2 – closed 2 94.22 (5) 82.69 (4) 83.76 (5)

Post ST – open 96.35 87.48 91.07
Post ST – closed 95.93 85.94 87.88

Table 2: Official ranking of EvaLatin lemmatization. Ad-
ditionally, we include our best post-competition model in
italic.

Furthermore, given that the author name is a known infor-
mation both during training and prediction time, we train a
second model with author-specific embeddings for the indi-
vidual authors. We employ the model with author-specific
embeddings whenever the predicted text comes from one of
the training data authors (in-domain setting) and a generic
model otherwise (out-of-domain setting).

4. Results
The official overall results are presented in Table 2 for
lemmatization and in Table 3 for POS tagging. In the open
modality, our system places first by a wide margin both in
lemmatization and POS tagging. In the closed modality, our
system achieves best performance in lemmatization and in
classical subtask of POS tagging (where the texts from the
training data authors are annotated), and second place in
cross-genre and cross-time settings.

5. Ablation Experiments
The effect of various kinds contextualized embeddings is
evaluated in Table 4. While BERT embeddings yield only a
minor accuracy increase, which is consistent with (Straka et
al., 2019b) for Latin, using XLM-RoBERTa leads to larger

System
Tagging

classical cross-genre cross-time
UDPipe – open 96.74 (1) 91.11 (1) 87.69 (1)
UDPipe – closed 96.65 (2) 90.15 (3) 84.93 (3)
P4 – closed 2 96.34 (3) 90.64 (2) 87.00 (2)
P3 – closed 1 95.52 (4) 88.54 (4) 83.96 (4)
P4 – closed 3 95.35 (5) 86.95 (6) 81.38 (7)
P2 – closed 1 94.15 (6) 88.40 (5) 82.62 (6)
P4 – closed 1 93.24 (7) 83.88 (7) 82.99 (5)
P2 – closed 2 92.98 (8) 82.93 (8) 80.78 (8)
P5 – closed 1 90.65 (9) 73.47 (9) 76.62 (9)

Post ST – open 96.82 91.46 87.91
Post ST – closed 96.76 90.50 84.70

Table 3: Official ranking of EvaLatin lemmatization. Ad-
ditionally, we include our best post-competition model in
italic.

accuracy improvement. For comparison, we include the
post-competition system with XLM-RoBERTa embeddings
in Tables 2 and 3.
To quantify the boost of the additional training data in the
open modality, we considered all models from the above
mentioned Table 4, arriving at the average improvement
presented in Table 5. While the performance on the in-
domain test set (classical subtask) improves only slightly,
the out-of-domain test sets (cross-genre and cross-time sub-
tasks) show more substantial improvement with the addi-
tional training data.
The effect of different granularity of treebank embeddings
in open modality is investigated in Table 6. When treebank
embeddings are removed from our competition system, the
performance deteriorates the most, even if only a little in
absolute terms. This indicates that the UD and EvaLatin an-
notations are very consistent. Providing one embedding for
EvaLatin data and another for all UD treebanks improves
the performance, and more so if three UD treebank specific
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Word BERT XLM-RoBERTa Lemmatization Tagging
embeddings embeddings embeddings classical cross-genre cross-time classical cross-genre cross-time

Open modality
7 7 7 96.04 86.85 90.58 96.46 90.44 87.66
3 7 7 96.27 87.28 90.80 96.64 91.16 87.78
7 3 7 96.19 86.76 90.78 96.70 90.34 87.50
7 7 3 96.33 86.48 90.95 96.80 90.67 87.79
3 3 7 96.28 87.28 90.80 96.74 91.11 87.69
3 7 3 96.35 87.48 91.07 96.82 91.46 87.91

Closed modality
7 7 7 95.62 84.62 87.63 96.14 88.90 83.59
3 7 7 95.79 85.55 88.37 96.44 90.59 84.14
7 3 7 95.65 84.76 87.58 96.44 89.08 84.84
7 7 3 95.93 84.97 87.63 96.67 89.36 84.24
3 3 7 95.96 85.52 88.04 96.65 90.15 84.93
3 7 3 95.93 85.94 87.88 96.76 90.50 84.70

Table 4: The evaluation of various pretrained embeddings (FastText word embeddings, Multilingual BERT embeddings,
XLM-RoBERTa embeddings) on the lemmatization and POS tagging.

Lemmatization Tagging
classical cross-genre cross-time classical cross-genre cross-time

The improvement of open modality,
i.e., using all three UD Latin treebanks

+0.430 +1.795 +2.975 +0.177 +1.100 +3.315

Table 5: The average percentage point improvement in the open modality settings compared to the closed modality. The
results are averaged over all models in Table 4.

Lemmatization Tagging
classical cross-genre cross-time classical cross-genre cross-time

Per-author embeddings, per-UD-treebank embeddings 96.28 87.28 90.80 96.74 91.11 87.69
Single EvaLatin embedding, per-UD-treebank embeddings 96.28 87.28 90.80 96.70 91.11 87.69
Single EvaLatin embedding, single UD-treebank embedding 96.23 87.22 90.78 96.68 91.14 87.63
EvaLatin and UD treebanks merged 96.18 87.23 90.77 96.52 91.01 86.12

Table 6: The effect of various kinds of treebank embeddings in open modality – whether the individual authors in EvaLatin
get a different or the same treebank embedding, and whether the UD treebanks get a different treebank embedding, same
treebank embedding but different from the EvaLatin data, or the same treebank embedding as EvaLatin data.

Lemmatization Tagging
classical classical

The improvement of
using per-author
treebank embeddings

0.027 0.043

Table 7: The average percentage point improvement of us-
ing per-author treebank embedding compared to not distin-
guishing among authors of EvaLatin data, averaged over all
models in Table 4.

embeddings are used.
Lastly, we evaluate the effect of the per-author embeddings.
While on the development set the improvement was larger,
the results on the test sets are nearly identical. To get more
accurate estimate, we computed the average improvement
for all models in Table 4, arriving at marginal improve-
ments in Table 7, which indicates that per-author embed-
dings have nearly no effect on the final system performance

(compared to EvaLatin and UD specific embeddings).

6. Conclusion

We described our entry to the EvaLatin 2020 shared task,
which placed first in the open modality and delivered strong
performance in the closed modality.
For a future shared task, we think it might be interesting
to include also segmentation and tokenization or extend the
shared task with an extrinsic evaluation.
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Abstract
Despite the great importance of the Latin language in the past, there are relatively few resources available today to develop modern NLP
tools for this language. Therefore, the EvaLatin Shared Task for Lemmatization and Part-of-Speech (POS) tagging was published in the
LT4HALA workshop. In our work, we dealt with the second EvaLatin task, that is, POS tagging. Since most of the available Latin word
embeddings were trained on either few or inaccurate data, we trained several embeddings on better data in the first step. Based on these
embeddings, we trained several state-of-the-art taggers and used them as input for an ensemble classifier called LSTMVoter. We were
able to achieve the best results for both the cross-genre and the cross-time task (90,64 % and 87,00 %) without using additional annotated
data (closed modality). In the meantime, we further improved the system and achieved even better results (96,91 % on classical, 90,87 %
on cross-genre and 87,35 % on cross-time).

Keywords: Part-of-Speech Tagging, Statistical and Machine Learning Methods, Corpus (Creation, Annotation, etc.)

1. Introduction

EvaLatin is the first evaluation campaign totally devoted
to the evaluation of NLP tools for Latin (Sprugnoli et al.,
2020). For this purpose, two tasks have been released (i.e.
Lemmatization and Part of Speech (POS) tagging), each
of which is divided into three subgroups: classical, cross-
genre and cross-time. In this work we describe an approach
to the task of EvaLatin regarding POS tagging, that is, the
task of assigning each token in a text its part of speech. A
part of speech is a category of words with similar gram-
matical properties. For many natural language process-
ing (NLP) tasks, such as information retrieval, knowledge
extraction or semantic analysis, POS tagging is a crucial
pre-processing step. However, in morphologically rich lan-
guages such as Latin, this task is not trivial due to the vari-
ability of lexical forms. In order to perform POS tagging
automatically, it has to be understood as a sequence label-
ing problem, where an output class is assigned to each input
word so that the length of the input sequence corresponds
to the length of the output sequence.
There already exist approaches for POS tagging for Latin
(Gleim et al., 2019; vor der Brück and Mehler, 2016; Eger
et al., 2016; Eger et al., 2015; Straka and Straková, 2017;
Kestemont and De Gussem, 2016; Kondratyuk and Straka,
2019; Manjavacas et al., 2019). These approaches mostly
utilize the increasingly popular neural network based meth-
ods for POS-tagging – by example of Latin. Part of this
contribution is to extend this work and to train state-of-the-
art neural network based sequence labeling tools (Straka
and Straková, 2017; Lample et al., 2016; Akbik et al.,
2019a; Kondratyuk and Straka, 2019) for Latin.
These neural network based sequence labeling tools usu-
ally require pre-trained word embeddings (e.g. Mikolov
et al. (2013a) or Pennington et al. (2014)). These word
embeddings are trained on large unlabeled corpora and are
more useful for neural network sequence labeling tools if
the corpora are not only large but also from the same do-

main as the documents to be processed. Therefore another
part of this contribution is to create word embeddings for
Latin for different genres and epochs. Since Latin is a mor-
phologically rich language, sub-word-embeddings (Grave
et al., 2018; Heinzerling and Strube, 2018) must be created
to reflect its morphological peculiarities.
The various sequence labeling tools provide different re-
sults, making it advisable to combine them in order to bun-
dle their strengths. For this reason LSTMVoter (Hemati
and Mehler, 2019) was used to create a conglomerate of the
various tools and models (re-)trained here.
To simplify the above mentioned process of training em-
beddings and sequence labeling tools on the one hand
and creating an ensemble thereof, we developed a generic
pipeline architecture which takes a labeled corpus in Con-
LLU format as input, trains the different taggers and finally
creates an LSTMVoter ensemble. The idea is to make this
architecture available for the solution of related tasks in or-
der to systematically simplify the corresponding training
pipeline.
The article is organized as follows: Section 2 describes the
data sets we used to train our word embeddings. Section 3
describes the training process of the taggers and how they
were integrated into our system. In Section 4, we present
and discuss our results, while Section 5 provides a summary
of this study and prospects for future work.

2. Datasets
This section gives a brief overview about the datasets sup-
plied for EvaLatin as well as other corpora we used for the
closed modality run of the POS task.
Current state-of-the-art sequence labeling systems for POS
tagging make use of word embeddings or language mod-
els (Akbik et al., 2018; Bohnet et al., 2018; Gleim et al.,
2019, LMs). These tools are usually trained and evaluated
on high-resource languages; making use of the availability
of large unlabeled corpora to build feature-rich word em-
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beddings. This leads to an ever-increasing ubiquitousness
of embeddings for all kinds of languages.
Unfortunately, the number of available, high-quality cor-
pora for Latin is stretched thin; historically the Latin
Wikipedia has often been used as a corpus for training word
embeddings (Grave et al., 2018; Heinzerling and Strube,
2018). But the Latin Wikipedia is composed of modern
texts written by scholars of different backgrounds, which
cannot properly reflect the use of Latin language throughout
history. Thus we compiled a corpus of historical, Medieval
Latin texts covering different epochs which is presented in
the following section.

2.1. Historical Corpora
An overview of the corpora used is shown in table 1. It lists
each corpus together with its numbers of sentences, tokens
and characters and provides a summary of the overall cor-
pus with the total number and unique counts. In addition
to the corpus published for EvaLatin, we added other pub-
licly accessible corpora: the Universal Dependencies Latin
(Nivre et al., 2016a, UD Latin) corpora UD Latin-PROIEL
(Haug and Jøhndal, 2008), UD Latin-ITTB (Cecchini et al.,
2018) and UD Latin-Perseus (Bamman and Crane, 2011a),
the Capitularies (Mehler et al., 2015) and the Cassiodorus
Variae (Variae, 2020). But the main bulk of text comes from
the Latin text repository of the eHumanties Desktop (Gleim
et al., 2009; Gleim et al., 2012) and the CompHistSem
(Cimino et al., 2015) project comprising a large number
of Medieval Latin texts.1 For all corpora we extracted the
plain text without annotations and compiled a single corpus
called Historical Latin Corpus (HLC).

Corpus Sentences Tokens Chars

UD-Perseus 2 260 29 078 1 444 884
Cassiodor. Variae 3 129 135 352 748 477
EvaLatin 14 009 258 861 1 528 538
Capitularies 15 170 477 247 2 432 482
UD-PROIEL 18 526 215 175 1 157 372
UD-ITTB 19 462 349 235 1 771 905
CompHistSem 2 608 730 79 136 129 384 199 772

Total
2 665 840

80 129 332 389 576 106
Unique 971 839 434

Table 1: Plain text corpora statistics.

3. System Description
3.1. Embeddings
While there are some word embeddings and language mod-
els trained on Latin texts, these are either trained on small,
but higher-quality datasets (eg. Nivre et al. (2016b), trained
on the Latin part of the UD corpus; Sprugnoli et al. (2019),
trained on the 1 700 000 token Opera Latin corpus), or
larger datasets which suffer from poor OCR quality (eg.
Bamman and Crane (2011b) trained on noisy data) or are of
modern origin (eg. Grave et al. (2018) and Heinzerling and
Strube (2018) trained on Wikipedia). Therefore we trained

1The texts are available via www.comphistsem.org or the
eHumanities Desktop (hudesktop.hucompute.org).

our own embeddings2 on the HLC of Section 2.1 to ob-
tain high quality word embeddings for our sequence label-
ing models. In the following sections we describe the type
of embeddings we used and their hyperparameters adjusted
during training.

3.1.1. Word Embeddings
wang2vec (Ling et al., 2015) is a variant of word2vec em-
beddings (Mikolov et al., 2013a; Mikolov et al., 2013b)
which is aware of the relative positioning of context words
by making a separate prediction for each context word po-
sition during training.

GloVe embeddings (Pennington et al., 2014) are trained
on global word-word co-occurrence statistics across an en-
tire corpus rather than considering local samples of co-
occurrences.

3.1.2. Sub-word Embeddings
fastText embeddings (Grave et al., 2018) are trained on
character n-grams of words rather than words themselves.
They are able to capture character-based information which
may be related to morphological information in addition to
distributional information.

Byte-Pair Embeddings (Heinzerling and Strube, 2018,
BPEmb) are composed of sub-word token embeddings.
They utilize a vocabulary of character sequences which are
induced from a large text corpus using a variant of byte-
pair encoding for textual data (Sennrich et al., 2016). We
used the SentencePiece’s3 implementation of the byte-pair
algorithm to encode the HLC (see Section 4).

3.1.3. FLAIR Language Model
Current methods for sequence labeling use language mod-
els (LMs) trained on large unlabeled corpora to obtain con-
textualized embeddings, achieving state-of-the-art perfor-
mance in POS tagging and named entity recognition for En-
glish, German and Dutch (Peters et al., 2018; Akbik et al.,
2018). Some recent sequence labeling models with strong
performance leverage FLAIR character language models
(Akbik et al., 2018; Akbik et al., 2019b). These models
are available through the FLAIR framework (Akbik et al.,
2019a) which, since its first release, has been expanded
with character language models for various languages by
the NLP community, but none for Latin. Thus, we trained
our own Latin character language model on the HLC of
Section 2.1.

3.2. Taggers
In the following sections we briefly describe the taggers we
have selected for our evaluation.

3.2.1. MarMoT
MarMoT is a generic CRF framework (Mueller et al.,
2013). It implements a higher order CRF with approxima-
tions such that it can deal with large output spaces. It can
also be trained to fire on predictions of lexical resources and
on word embeddings.

2http://embeddings.texttechnologylab.org
3https://github.com/google/sentencepiece
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3.2.2. anaGo
anaGo is a neural network-based sequence labeling system.
It is based on the Glample Tagger (Lample et al., 2016),
which combines a bidirectional Long Short-term Memory
(LSTM) with Conditional Random Fields (CRF).

3.2.3. UDPipe
UDPipe provides a trainable pipeline for tokenization, tag-
ging, lemmatization and dependency parsing. It offers 94
pre-trained models of 61 languages, each of which has been
trained on UD Treebank (Nivre et al., 2016a) datasets. The
POS model itself is based on MorphoDiTa (Straková et al.,
2014) and can be easily trained on new data; no additional
embeddings or features are required.

3.2.4. UDify
UDify is a single BERT-based (Devlin et al., 2018) model
which was trained on 124 treebanks of 75 different lan-
guages for tagging, lemmatization and dependency parsing
as well. Besides a pre-trained BERT model, the pipeline
does not require any other features to be trained on new
data.

3.2.5. FLAIR
Utilizing the FLAIR language model introduced above, we
trained a BiLSTM-CRF sequence tagger using pooled con-
textualized embeddings (Akbik et al., 2019b, PCEs). PCEs
are aggregated during the tagging process to capture the
meaning of underrepresented words, which have already
been seen by the tagger previously in contexts that are more
specified.

3.2.6. Meta-BiLSTM
The Meta-BiLSTM tagger (Bohnet et al., 2018) combines
two separate classifiers using a meta-model and achieves
very good results on POS tagging. Each intermediate
model is trained on the sequence labeling task using a dif-
ferent view of sentence-level representations, namely word
and character embeddings. Then, a meta-model is trained
on the same task while using the hidden states of the two
other models as its input.

3.2.7. LSTMVoter
LSTMVoter (Hemati and Mehler, 2019) is a two-stage re-
current neural network system that integrates the optimized
sequence labelers from our study into a single ensemble
classifier: in the first stage, we trained and optimized all
POS taggers mentioned so far. In the second stage, we com-
bined the latter sequence labelers with two bidirectional
LSTMs using an attention mechanism and a CRF to build
an ensemble classifier. The idea of LSTMVoter is to learn,
so to speak, which output of which embedded sequence la-
beler to use in which context to generate its final output.

4. Experiments
In this section we discuss our experiments and outline the
parameters used to train each of the models. After the end
of the task’s evaluation window we were able to fine-tune
our models using the gold-standard evaluation dataset. All
of our experiments were conducted according to the closed
modality of the second EvaLatin task, i.e. no additional
labeled training data was used.

Tool Classical Cross-Genre Cross-Time

LSTMVoterV1e 93,24 % 83,88 % 81,38 %
FLAIRe† 96,34 % 90,64 % 83,00 %
LSTMVoterV2e 95,35 % 86,95 % 87,00 %
UDPipe 93,68 % 84,65 % 86,03 %
UDify 95,13 % 86,02 % 87,34 %
Meta-BiLSTM† 96,01 % 87,95 % 82,32 %
FLAIR† 96,67 % 90,87 % 83,36 %
LSTMVoterV3† 96,91 % 90,77 % 87,35 %

Table 2: F1-scores (macro-average) for the different test
datasets. All tools were trained according to the closed
modality. † denotes models that were trained using our em-
beddings, while e denotes models which were submitted
during the tasks evaluation window.

4.1. Training
4.1.1. Embeddings
For each of the methods mentioned in Section 3.1.1 we cre-
ated 300 dimensional word embeddings by
• setting the window size to 10 for wang2vec and training

for 50 epochs,
• using default parameters in the case of fastText and by

training it for 100 epochs,
• choosing a window size of 15 with default parameters for

GloVe and training for 100 epochs.
We encoded the HLC by means of the byte-pair algo-
rithm, experimented with different vocabulary sizes c ∈
{5 000, 10 000, 100 000, 200 000} and trained 300 dimen-
sional GloVe embeddings on them using the same hyperpa-
rameters for GloVe as with the plain text corpus.
For our FLAIR language model we choose our parameters
according to the recommendations of Akbik et al. (2018)
and set the hidden size of both forward and backward lan-
guage models to 1024, the maximum character sequence
length to 250 and the mini-batch size to 100. We trained
the model until after 50 epochs the learning rate annealing
stopped with a remaining perplexity of 2,68 and 2,71 for
the forward and backward model, respectively.

4.1.2. Taggers
We trained a BiLSTM-CRF sequence tagger using FLAIR
with pooled contextualized embeddings together with our
language model. We added all our word and subword em-
beddings as features for up to 150 epochs and used learning
rate annealing with early stopping. In our experiments the
byte-pair embeddings with the smallest vocabulary size of
5 000 performed best. We choose one hidden LSTM layer
with 256 nodes and default parameters otherwise.
The Meta-BiLSTM tagger was trained with our GloVe em-
beddings using default parameters. UDPipe was trained
with the default settings on the data set. POS was trained
independently of the lemmatizer, as this achieved better re-
sults. The UDify BERT model was also only trained on
POS, while all other modules were removed. This con-
cerned a variant of BERT-Base-Multilingual4 which also
processed Latin data.

4https://github.com/google-research/bert/
blob/master/multilingual.md
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ADJ ADP ADV AUX CCONJ DET INTJ NOUN NUM PART PRON PROPN SCONJ VERB X

Classical
Meta 90 % 99 % 93 % 85 % 99 % 97 % 98 % 97 % 76 % 99 % 97 % 97 % 89 % 97 % 75 %
UDPipe 85 % 98 % 91 % 64 % 99 % 96 % 88 % 95 % 69 % 98 % 95 % 95 % 85 % 95 % 89 %
UDify 87 % 99 % 92 % 88 % 99 % 96 % 00 % 96 % 74 % 99 % 96 % 97 % 91 % 97 % 00 %
FLAIR 91 % 99 % 95 % 86 % 99 % 97 % 91 % 97 % 78 % 100 % 97 % 97 % 93 % 98 % 82 %
VoterV1 83 % 98 % 90 % 67 % 99 % 96 % 70 % 94 % 69 % 99 % 95 % 95 % 86 % 95 % 00 %
VoterV2 88 % 99 % 93 % 84 % 99 % 97 % 96 % 96 % 74 % 99 % 96 % 97 % 90 % 97 % 95 %
VoterV3 91 % 99 % 95 % 88 % 99 % 97 % 96 % 97 % 78 % 99 % 98 % 98 % 92 % 98 % 90 %

Cross-Genre
Meta 79 % 96 % 85 % 57 % 97 % 94 % 77 % 90 % 67 % 97 % 96 % 80 % 75 % 91 % —
UDPipe 69 % 93 % 80 % 13 % 98 % 92 % 79 % 86 % 55 % 98 % 96 % 86 % 75 % 87 % —
UDify 73 % 97 % 80 % 50 % 98 % 89 % 00 % 88 % 55 % 98 % 95 % 87 % 79 % 88 % —
FLAIR 82 % 97 % 87 % 80 % 98 % 94 % 91 % 93 % 64 % 97 % 96 % 87 % 78 % 94 % —
VoterV1 66 % 95 % 81 % 29 % 98 % 92 % 70 % 86 % 71 % 98 % 95 % 85 % 73 % 86 % —
VoterV2 73 % 97 % 84 % 50 % 98 % 93 % 77 % 88 % 74 % 98 % 96 % 86 % 78 % 89 % —
VoterV3 79 % 97 % 86 % 80 % 98 % 93 % 80 % 92 % 71 % 98 % 97 % 87 % 80 % 93 % —

Cross-Time
Meta 74 % 97 % 72 % 42 % 90 % 89 % 60 % 89 % 29 % 100 % 84 % 65 % 70 % 86 % —
UDPipe 70 % 97 % 68 % 36 % 90 % 89 % 50 % 93 % 97 % 100 % 82 % 98 % 72 % 86 % —
UDify 74 % 98 % 68 % 46 % 90 % 87 % 00 % 95 % 97 % 100 % 85 % 93 % 76 % 88 % —
FLAIR 74 % 98 % 71 % 44 % 90 % 86 % 75 % 90 % 50 % 100 % 85 % 52 % 72 % 89 % —
VoterV1 69 % 97 % 68 % 38 % 90 % 89 % 55 % 88 % 29 % 100 % 81 % 55 % 70 % 86 % —
VoterV2 73 % 98 % 69 % 43 % 90 % 89 % 100 % 94 % 97 % 100 % 84 % 95 % 74 % 88 % —
VoterV3 75 % 98 % 73 % 43 % 90 % 89 % 46 % 94 % 96 % 100 % 86 % 81 % 74 % 89 % —

Table 3: F-Scores (micro-average) for each tool per tag and dataset. Model names are abbreviated: VoterVi denotes
LSTMVoter Vi and Meta denotes the Meta-BiLSTM model. Bold entries mark the best values prior to rounding.

For LSTMVoter we used a 40-10-40-10 split of the training
data in line with Hemati and Mehler (2019). Using the first
40-10 split, all taggers from Section 3.2 were trained and
their hyperparameters were optimized. The second split
was then used to train LSTMVoter and to optimize its hy-
perparameters. We created the following ensembles:

V1: MarMoT and anaGo.
V2: MarMoT, anaGo and UDify, UDPipe.
V3: MarMoT, anaGo, UDify, UDPipe and FLAIR.

4.2. Results
An overview of the results of our taggers is provided by Ta-
ble 2, while a more detailed report listing the performance
of each tool for each POS and data type is given by Table 3.
The first three rows of Table 2 show our submissions dur-
ing the EvaLatin evaluation window. The best model for the
classical and cross-genre sub-task is the FLAIR BiLSTM-
CRF tagger with 96,34 % and 90,64 % while the LST-
MVoter V2 model performs best on the cross-time sub-task
with 87,00 %. With these results we placed first among
other closed modality EvaLatin participants for both out-
of-domain tasks and second for the Classical sub-task.
With fine-tuning after the release of the gold-standard an-
notations (while still following closed modality rules) we
were able to increase all our results significantly by means
of the third variant (V3) of our LSTMVoter ensemble
model, while the performance of the fine-tuned FLAIR tag-
ger only increased marginally.

5. Conclusion
We presented our experiments and results for the EvaLatin
task on POS tagging. We trained and optimized various
state-of-the-art sequence labeling systems for the POS tag-
ging of Latin texts. Current sequence labeling systems re-
quire pre-trained word embeddings. In our experiments
we trained a number of such models. In the end a com-
bination of tools, which were integrated into an ensemble

classifier by means of LSTMVoter, led to the best results.
The reason for this might be that the LSTMVoter combines
the strengths of the individual taggers as much as possible,
while at the same time not letting their weaknesses get too
many chances. The best model submitted during the eval-
uation window for the classical and cross-genre sub-task
was the FLAIR BiLSTM-CRF tagger with 96,34 % and
90,64 % while the LSTMVoter V2 model performed at this
time best on the cross-time sub-task with 87,00 %. With
these results we placed first among other closed modality
EvaLatin participants for both out-of-domain tasks and sec-
ond for the classical sub-task. With fine-tuning after the
release of the gold-standard annotations we were able to
increase all our results significantly with the help of LST-
MVoter V3. However, it is rather likely that we reached
the upper bound of POS tagging for classic texts, because
the inter-annotator agreement for POS tagging seems to be
limited by a number in the range of 97 %–98 % (Brants,
2000; Plank et al., 2014). Our results for cross-genre and
cross-time are top performers in EvaLatin, but they still
offer potential for improvements. Future work should de-
velop models that are specialized for each genre and time
period. This also regards the inclusion of additional infor-
mation such as lemma-related and morphological features
to a greater extent, since Latin is a morphologically rich
language.

The data and the code used and implemented in this
study are available at https://github.com/
texttechnologylab/SequenceLabeling; the
embeddings are available at http://embeddings.
texttechnologylab.org. All presented tools are
accessible through the TextImager (Hemati et al., 2016)
interface via the GUI 5 and as REST services6.

5textimager.hucompute.org
6textimager.hucompute.org/rest/doku/
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