
LREC 2020 Workshop
Language Resources and Evaluation Conference

11–16 May 2020

The 4th Workshop on Open-Source Arabic Corpora and
Processing Tools

with a Shared Task on Offensive Language Detection

PROCEEDINGS

Editors:

Hend Al-Khalifa, Walid Magdy, Kareem Darwish, Tamer Elsayed
and Hamdy Mubarak

Proceedings of the LREC 2020
4th Workshop on Open-Source Arabic

Corpora and Processing Tools

with a Shared Task on Offensive Language Detection
(OSACT 2020)

Edited by: Hend Al-Khalifa, Walid Magdy, Kareem Darwish, Tamer Elsayed and Hamdy Mubarak

ISBN: 979-10-95546-51-1
EAN: 9791095546511

For more information:
European Language Resources Association (ELRA)
9 rue des Cordelières
75013, Paris
France
http://www.elra.info
Email: lrec@elda.org

c© European Language Resources Association (ELRA)

These workshop proceedings are licensed under a Creative Commons
Attribution-NonCommercial 4.0 International License

ii

Preface

Given the success of the first, second, and third workshops on Open-Source Arabic Corpora and Corpora
Processing Tools (OSACT) in LREC 2014, LREC 2016 and LREC 2018, the fourth workshop comes
to encourage researchers and practitioners of Arabic language technologies, including computational
linguistics (CL), natural language processing (NLP), and information retrieval (IR) to share and discuss
their research efforts, corpora, and tools. The workshop gives special attention to Human Language
Technologies based on AI/Machine Learning, which is one of LREC 2020 hot topics. In addition to the
general topics of CL, NLP and IR, the workshop gives special emphasis to Offensive Language Detection
shared task.

OSACT4 had an acceptance rate of 50%, where we received 12 regular papers from which 6 papers were
accepted, in addition to 11 shared task papers. We believe that the accepted papers are of high quality
and present a mixture of interesting topics.

This year, we introduced the Shared Task on Offensive Language Detection. The shared task attempts
to detect such speech in the realm of Arabic social media in two Subtasks. In subtask A, SemEval
2020 Arabic offensive language dataset, which contains 10,000 tweets that were manually annotated
for offensiveness was used. Offensive tweets contain explicit or implicit insults or attacks against other
people, or inappropriate language. Subtask B targets the identification of Hate Speech. A hate speech
tweet contains insults or threats targeting a group based on their nationality, ethnicity, gender, political
or sport affiliation, religious belief, or other common characteristics. Subtasks A and B share the same
data splits. Subtask B is more challenging than Subtask A as only 5% of the tweets are labeled as hate
speech, while 20% of the tweets are labeled as offensive. The shared task attracted many teams from
different countries in the Middle East, Europe and US. In all, 40 and 33 teams signed up to participate
in Subtasks A and B; among them, 14 and 13 teams submitted their system outputs in the two subtasks
respectively.

We would like to thank everyone who in one way or another helped in making this workshop a success.
Our special thanks go to the members of the program committee, who did an excellent job in reviewing
the submitted papers, and to the LREC organizers. Last but not least, we would like to thank our authors
and the workshop participants.

Hend Al-Khalifa, Walid Magdy, Kareem Darwish, Tamer Elsayed, and Hamdy Mubarak

OSACT4 Organizing Committee

iii

Organizers:

Hend Al-Khalifa, King Saud University, KSA
Walid Magdy, University of Edinburgh, UK
Kareem Darwish, Qatar Computing Research Institute, Qatar
Tamer Elsayed, Qatar University, Qatar
Hamdy Mubarak, Qatar Computing Research Institute, Qatar

Program Committee:

Nizar Habash, New York University Abu Dhabi, UAE
Wajdi Zaghouani, Hamad Bin Khalifa University, Qatar
Wassim El-Hajj, American University of Beirut, Lebanon
Ayah Zirikly, George Washington University, USA
Irina Temnikova, Sofia, Sofia City Province, Bulgaria
Shady Elbassuoni, American University of Beirut, Lebanon
Nora Al-Twairesh, King Saud University, KSA
Abeer Aldayel, University of Edinburgh, UK
Khaled Shaalan, The British University in Dubai, UAE
Almoataz B. Elsaid, Cairo University, Egypt
Ahmed Mourad, RMIT University, Australia
Hassan Sawaf, Amazon, USA
Fethi Bougares, Université du Maine, Avenue Laënnec, France
Nada Ghneim, Higher Institute for Applied Science and Technology, Syria
Maha Althobaiti, Taif University, KSA
Nasser Zalmout, New York University Abu Dhabi, UAE
Mohammad Salameh, University of Alberta, Canada
Alexis Nasr, Université Aix Marseille, France
AbdelRahim Elmadany, The University of British Columbia, Canada
Mohamed Abdelmageed, The University of British Columbia, Canada
Ahmed Ali, Qatar Computing Research Institute, Qatar
Haithem Afli, Cork Institute of Technology, Ireland
Preslav Nakov, Qatar Computing Research Institute, Qatar
Fahim Dalvi, Qatar Computing Research Institute, Qatar
Salam Khalifa, NYU-AD, UAE
Hassan Sajjad, Qatar Computing Research Institute, Qatar
Maha Alamri, Bangor University, UK
Sarah Kohail, University of Hamburg, Germany
Azzeddine Mazroui, Université Mohammed Premier, Morocco
Bassam Haddad, University of Petra, Jordan
Younes Samih, Qatar Computing Research Institute, Qatar
Khaled Shaban, Qatar University, Qatar
Reem Suwaileh, Qatar University, Qatar
Mucahid Kutlu, TOBB University, Turkey
Maram Hasanain , Qatar University, Qatar
Raghad Alshalaan, Imam Abdulrahman Bin Faisal University, KSA
Shahad Alshalaan, Imam Abdulrahman Bin Faisal University, KSA
Maha Alrabiah, Al Imam Mohammad Ibn Saud Islamic, KSA
Ibrahim Abu Farha, University of Edinburgh, UK

iv

Table of Contents

An Arabic Tweets Sentiment Analysis Dataset (ATSAD) using Distant Supervision and Self Training
Kathrein Abu Kwaik, Stergios Chatzikyriakidis, Simon Dobnik, Motaz Saad

and Richard Johansson . 1

AraBERT: Transformer-based Model for Arabic Language Understanding
wissam antoun, Fady Baly and Hazem Hajj . 9

AraNet: A Deep Learning Toolkit for Arabic Social Media
Muhammad Abdul-Mageed, Chiyu Zhang, Azadeh Hashemi and El Moatez Billah Nagoudi16

Building a Corpus of Qatari Arabic Expressions
Sara Al-Mulla and Wajdi Zaghouani . 24

From Arabic Sentiment Analysis to Sarcasm Detection: The ArSarcasm Dataset
Ibrahim Abu Farha and Walid Magdy . 32

Understanding and Detecting Dangerous Speech in Social Media
Ali Alshehri, El Moatez Billah Nagoudi and Muhammad Abdul-Mageed . 40

Overview of OSACT4 Arabic Offensive Language Detection Shared Task
Hamdy Mubarak, Kareem Darwish, Walid Magdy, Tamer Elsayed and Hend Al-Khalifa 48

OSACT4 Shared Task on Offensive Language Detection: Intensive Preprocessing-Based Approach
Fatemah Husain . 53

ALT Submission for OSACT Shared Task on Offensive Language Detection
Sabit Hassan, Younes Samih, Hamdy Mubarak, Ahmed Abdelali, Ammar Rashed and Shammur

Absar Chowdhury . 61

ASU_OPTO at OSACT4 - Offensive Language Detection for Arabic text
Amr Keleg, Samhaa R. El-Beltagy and Mahmoud Khalil .66

OSACT4 Shared Tasks: Ensembled Stacked Classification for Offensive and Hate Speech in Arabic
Tweets

Hafiz Hassaan Saeed, Toon Calders and Faisal Kamiran . 71

Arabic Offensive Language Detection with Attention-based Deep Neural Networks
Bushr Haddad, Zoher Orabe, Anas Al-Abood and Nada Ghneim. .76

Offensive language detection in Arabic using ULMFiT
Mohamed Abdellatif and Ahmed Elgammal . 82

Multitask Learning for Arabic Offensive Language and Hate-Speech Detection
Ibrahim Abu Farha and Walid Magdy . 86

Combining Character and Word Embeddings for the Detection of Offensive Language in Arabic
Abdullah I. Alharbi and Mark Lee . 91

Multi-Task Learning using AraBert for Offensive Language Detection
Marc Djandji, Fady Baly, wissam antoun and Hazem Hajj . 97

v

Leveraging Affective Bidirectional Transformers for Offensive Language Detection
AbdelRahim Elmadany, Chiyu Zhang, Muhammad Abdul-Mageed and Azadeh Hashemi 102

Quick and Simple Approach for Detecting Hate Speech in Arabic Tweets
Abeer Abuzayed and Tamer Elsayed . 109

vi

Workshop Program

An Arabic Tweets Sentiment Analysis Dataset (ATSAD) using Distant Supervision
and Self Training
Kathrein Abu Kwaik, Stergios Chatzikyriakidis, Simon Dobnik, Motaz Saad and
Richard Johansson

AraBERT: Transformer-based Model for Arabic Language Understanding
wissam antoun, Fady Baly and Hazem Hajj

AraNet: A Deep Learning Toolkit for Arabic Social Media
Muhammad Abdul-Mageed, Chiyu Zhang, Azadeh Hashemi and El Moatez Billah
Nagoudi

Building a Corpus of Qatari Arabic Expressions
Sara Al-Mulla and Wajdi Zaghouani

From Arabic Sentiment Analysis to Sarcasm Detection: The ArSarcasm Dataset
Ibrahim Abu Farha and Walid Magdy

Understanding and Detecting Dangerous Speech in Social Media
Ali Alshehri, El Moatez Billah Nagoudi and Muhammad Abdul-Mageed

Overview of OSACT4 Arabic Offensive Language Detection Shared Task
Hamdy Mubarak, Kareem Darwish, Walid Magdy, Tamer Elsayed and Hend Al-
Khalifa

OSACT4 Shared Task on Offensive Language Detection: Intensive Preprocessing-
Based Approach
Fatemah Husain

ALT Submission for OSACT Shared Task on Offensive Language Detection
Sabit Hassan, Younes Samih, Hamdy Mubarak, Ahmed Abdelali, Ammar Rashed
and Shammur Absar Chowdhury

ASU_OPTO at OSACT4 - Offensive Language Detection for Arabic text
Amr Keleg, Samhaa R. El-Beltagy and Mahmoud Khalil

OSACT4 Shared Tasks: Ensembled Stacked Classification for Offensive and Hate
Speech in Arabic Tweets
Hafiz Hassaan Saeed, Toon Calders and Faisal Kamiran

Arabic Offensive Language Detection with Attention-based Deep Neural Networks
Bushr Haddad, Zoher Orabe, Anas Al-Abood and Nada Ghneim

vii

Offensive language detection in Arabic using ULMFiT
Mohamed Abdellatif and Ahmed Elgammal

Multitask Learning for Arabic Offensive Language and Hate-Speech Detection
Ibrahim Abu Farha and Walid Magdy

Combining Character and Word Embeddings for the Detection of Offensive Lan-
guage in Arabic
Abdullah I. Alharbi and Mark Lee

Multi-Task Learning using AraBert for Offensive Language Detection
Marc Djandji, Fady Baly, wissam antoun and Hazem Hajj

Leveraging Affective Bidirectional Transformers for Offensive Language Detection
AbdelRahim Elmadany, Chiyu Zhang, Muhammad Abdul-Mageed and Azadeh
Hashemi

Quick and Simple Approach for Detecting Hate Speech in Arabic Tweets
Abeer Abuzayed and Tamer Elsayed

viii

Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, pages 1–8
with a Shared Task on Offensive Language Detection.

Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020
c© European Language Resources Association (ELRA), licensed under CC-BY-NC

An Arabic Tweets Sentiment Analysis Dataset (ATSAD) using Distant
Supervision and Self Training

Kathrein Abu Kwaik∗, Motaz Saad†, Stergios Chatzikyriakidis∗,
Simon Dobnik∗, Richard Johansson¶

∗CLASP, Department of Philosophy, Linguistics and Theory of Science, University of Gothenburg, Sweden
¶Department of Computer Science and Engineering, University of Gothenburg, Sweden

†The Islamic University of Gaza, Palestine
{kathrein.abu.kwaik,richard.johansson,stergios.chatzikyriakidis,simon.dobnik}@gu.se , motaz.saad@gmail.com

Abstract
As the number of social media users increases, they express their thoughts, needs, socialise and publish their opinions. For good social
media sentiment analysis, good quality resources are needed, and the lack of these resources is particularly evident for languages
other than English, in particular Arabic. The available Arabic resources lack of from either the size of the corpus or the quality of
the annotation. In this paper, we present an Arabic Sentiment Analysis Corpus collected from Twitter, which contains 36K tweets
labelled into positive and negative. We employed distant supervision and self-training approaches into the corpus to annotate it. Besides,
we release an 8K tweets manually annotated as a gold standard. We evaluated the corpus intrinsically by comparing it to human
classification and pre-trained sentiment analysis models. Moreover, we apply extrinsic evaluation methods exploiting sentiment analysis
task and achieve an accuracy of 86%.

Keywords: Sentiment Analysis, Distant Supervision, Self Training

1. Introduction
Companies and businesses stakeholders reach out to their
customers through Social Media not only for advertising
and marketing purposes, but also to get customer feed-
back concerning products or services. This is one of the
main reasons that sentiment analysis applications have be-
come increasingly sought out by the industry field. Even
though sentiment analysis programs are widely used in the
commercial sector, they have many other important uses,
including political orientation analysis, electoral programs
and decision-making. Sentiment Analysis is the process of
automatically mining attitudes, opinions, views and emo-
tions from the text, speech, tweets using Natural Language
Processing (NLP) and machine learning (Liu, 2012). Sen-
timent analysis involves classifying opinions into different
classes like positive, negative, mixed or neutral. It can also
refer to Subjectivity Analysis, i.e. the task of distinguishing
between objective and subjective text.
There are so many Arabic speakers in the world and they
speak different varieties of Arabic depending on the region
but with only one variety that is standardised namely, Mod-
ern Standard Arabic MSA. Social media is prevalent and
it is particularly this domain where the local varieties are
used and for which the resources are most limited. The to-
tal number of monthly active Twitter users in the Arab re-
gion is estimated at 11.1 million in March 2017, generating
27.4 million tweets per day according to weedoo.1 Arabic,
especially dialects, still looking for more efficient resources
that can be used for the needs of NLP tasks.
One of the biggest challenges in the construction of Arabic
NLP resources is the big variation found in Arabic language
where there are Modern Standard Arabic (MSA), Classical
Arabic (CA) and the dialects. This has the result, that, in
some tasks, it might be necessary to build stand-alone re-
sources for each individual variation where the available

1https://weedoo.tech/twitter-arab-world-statistics-feb-2017/

tools have been built for MSA can not be adapted for di-
alects and vice-verse (Qwaider et al., 2019). In addition,
building resources requires sufficient time and funding to
produce highly efficient resources. Moreover, deep learn-
ing NLP methods require a huge amount of data. As a result
of the unique Twitter features that are widely used to ex-
press opinions, views, thoughts and feelings, we therefore
present Arabic Tweets Sentiment Analysis Dataset (AT-
SAD) contains 36k tweets classified as positive or negative.

The contributions of this paper can be highlighted under
two headings: a) resource creation and b) resource evalua-
tion. Regarding resource creation, we introduce a sentiment
analysis dataset collected from Twitter, and as for resource
evaluation, we introduce a method that combines the distant
supervision approach with self-training to build a dataset
that satisfies the size and quality requirements. In order to
annotate a large number of tweets, we employ the distant
supervision approach where the emojis are used as a weak
noisy label. We manually annotate a subset of 8k tweets of
the dataset and offer it as gold standard dataset. In order to
improve the quality of the corpus, we apply the self-training
techniques on the dataset and combine it with the distant
supervision approach as a double check approach. Using
our proposed double check approach, we achieve an accu-
racy of 86% on the sentiment analysis task. The dataset is
available online for research usage.2

The rest paper is organised as follows: Section 2 reviews
some related works in term of sentiment analysis and social
media resources. In Section 3, the challenges of processing
Twitter text are presented and in Section 4, the details of
collecting and creating the tweets dataset are presented. We
evaluate the dataset in Section 5. Sections 6 and 7 are the
conclusion and future work sections respectively.

2https://github.com/motazsaad/arabic-sentiment-analysis

1

2. Related Work
Arabic Sentiment analysis (ASA) has received considerable
attention in terms of resource creation (Rushdi-Saleh et al.,
2011; Aly and Atiya, 2013; Abdul-Mageed et al., 2014; El-
nagar et al., 2018). These resources are collected from dif-
ferent sources such as (blogs, reviews, tweets, comments,
etc.) and involve a mix of Arabic vernacular and classical
Arabic. Furthermore, they have been used extensively in
research on SA for Arabic such as (Al Shboul et al., 2015;
Obaidat et al., 2015; Al-Twairesh et al., 2016). Most NLP
work on SA uses machine learning classifiers with feature
engineering. For example (Azmi and Alzanin, 2014; El-
Beltagy et al., 2016) used machine learning classifiers on
polarity and subjectivity classifications. However, recent
papers (Al Sallab et al., 2015; Dahou et al., 2016; Alayba
et al., 2018) investigated the use of Deep Neural Networks
for Arabic sentiment analysis. Most of the datasets are col-
lected from web blogs and customer reviews. Some are
manually annotated following a specific annotation guide-
lines, while other corpora like LABR (Aly and Atiya, 2013)
depend on the stars ratings done by users where the stars are
used as polarity labels, the 5 stars denote a high positive, 1
star denotes a high negative and the 3 stars indicate the neu-
tral and mixed label.
In the AraSenTi-tweets corpus (Al-Twairesh et al., 2017),
many approaches to collect the tweets were adopted, e.g the
utilisation of emoticons, sentiment hashtags as well as the
sentiment keywords. Then, the authors only keep the tweets
that have their location set to a Saudi location. The dataset
is manually annotated and sets some annotation guidelines.
It contains 17 573 tweets each of which is classified to one
of four classes (positive, negative, mixed or neutral). A
sentiment baseline is built depending on TFIDF and us-
ing SVM with a linear kernel which achieved an F-score
of 60.05%.
In (Nabil et al., 2015), the authors presented the Arabic
Sentiment Tweets Dataset (ASTD). It is a dataset of 10,000
Egyptian tweets. It is composed of 799 positive, 1,684 neg-
ative, 832 mixed and 6,691 neutral tweets. The authors also
conducted a set of benchmark experiments for four way
sentiment classification as (positive, negative, mixed, neu-
tral) and two-way sentiment classification as (positive, neg-
ative). When focusing on two-way classification, the cor-
pus is unbalanced and small to be useful for the two-way
sentiment analysis task.
A corpus for Jordanian tweets is also presented in (Atoum
and Nouman, 2019). The authors collected tweets accord-
ing to location, and then they filtered them to collect dif-
ferent types of terminologies to identify Jordanian Arabic
dialect keywords efficiently. The corpus contains 3,550
Jordanian dialect tweets manually annotated as follows:
616 positive tweets, 1,313 negative tweets, and 1,621 neu-
tral tweets. They conducted several experiments both with
and without stemming/rooting applying them to several
models with uni-grams/bi-grams and trying NB and SVM
classifiers. The result shows that the SVM classifier per-
forms better than the NB classifier. The ROC performance
reached an average of 0.71, 0.77 on NB and SVM respec-
tively on all experiments. A similar corpus for Levantine
dialects is presented in Shami-Senti (Qwaider et al., 2019).

It has approximately 2.5k posts from social media sites in
general topics classified manually as positive, negative and
neutral. The corpus is still under development.
Recently, a 40K tweets dataset is presented in (Mohammed
and Kora, 2019). The authors extracted tweets written in
Arabic. After that, they reprocessed the tweets and cleaned
them very carefully by two experts, they corrected every
misspelling words and removed all the repeating characters,
in addition to the normal cleaning steps like normalisation.
The total size of the dataset is 40,000 tweets classified into
positive and negative equally. The corpus is considered a
reliable resource but by manually cleaning all the data, it
turns to a very hard crafted corpus where the resulted clean
corpus differ than the real tweets, where the goal of clean-
ing is to normalise text and remove spelling mistakes but
keep the style of the author. This has been normalised too
much in this corpus and hence important information was
lost.
Even though in most of the Arabic tweet corpus creation
procedures, the authors used the emoticons to extract as
many sentiment tweets as possible such as (Al-Twairesh
et al., 2017; Refaee and Rieser, 2014), however none of
them using the emojis and the emoticons as a sentiment
label. An emoticon is built from keyboard characters that
when put together in a certain way represent a facial ex-
pression like :) ;) :(and so on, while an emoji is an actual
image3. The Stanford Twitter Sentiment (STS), is one of
the most well-known dataset for English Twitter sentiment
analysis (Go et al., 2009). The dataset provides training
and testing sets. The tweets were collected on the con-
dition to contain at least one emoticon. Then they auto-
matically classified the tweets in regard to the emoticons
to positive and negative. The process resulted in a train-
ing set of 1.6 million annotated tweets and a test set of 359
manually annotated tweets that are used as a gold standard.
The data set has been extensively used for different tasks
related to sentiment analysis and subjectivity classification
(Bravo-Marquez et al., 2013; Saif et al., 2012; Bakliwal et
al., 2012; Speriosu et al., 2011). Refaee and Rieser (2014)
presented Arabic subsets of tweets using emoticons, hash-
tags and keywords. They apply distant supervision on the
emoticons subset. After the evaluation process, they get an
accuracy 95% and 51% for subjectivity analysis and senti-
ment classification respectively. They comment that emoti-
cons can be used efficiently with subjectivity detection but
not for the polarity classification task.
As obvious from the previous discussion, these corpora or
dataset have lacked some aspect. They have some limita-
tion in term of the size of the corpus as ASTD, the number
of presented dialects as AraSenti and the annotation pro-
cedure like LABR. We are looking for Arabic sentiment
analysis corpus that concerns the Arabic social media text
and that handles multiple dialects in a reasonable number
of instances size to conduct experiments and find a way to
do the annotation as accurate as possible. In this paper, and
similarly to STS (Go et al., 2009), we constructed a dataset
based on emojis for extracting and classifying tweets. Ad-
ditionally, we manually annotated 20% of this data, which

3https://grammarist.com/new-words/emoji-vs-emoticon/

2

can then be used as a gold standard for any tweets sentiment
analysis task and as the test set for our corpus.

3. Challenges of processing text from social
media

Natural language processing must be adapted to the type
of text to be processed (formal, scientific, colloquial), but
furthermore, humans differ in the way they write in that
specific type of text. This variety in writing style has in-
creased with the advent of social media, where people are
using their style of writing and daily conversational lan-
guage to post, reply, or tweet more often. In addition to
specific idiosyncrasies of Arabic in terms of processing,
Twitter has unique features that make tweets have differ-
ent characteristics from other social media (Alwakid et al.,
2017; Giachanou and Crestani, 2016). Detecting sentiment
in social media text in general and Twitter in particular is a
non-trivial task. There are many challenges as follows:

• The short text length is the unique characteristics of
tweets, which can be up to 280 characters.

• Due to the constraint on the length of the tweet (280
characters), users tend to employ abbreviations in the
tweets to make room for other words.

• Tweets, as well as other social media text, are an ex-
ample of User Generated Content, and contain un-
structured language, orthographic mistakes, use of
slang words, a lot of ironic and sarcastic sentences,
abbreviations and many idiomatic expressions.

• Analysing Arabic tweets in specific is a challenging
task due to the use of Arabic dialects in tweets which
(due to the lack of standard orthography) results to a
lot of spelling inconsistencies. Moreover, the lack of
capitalisation and diacritics, as well as the usage of
connected words like é<Ë @ A ��	� @ increase the complexity
of processing Arabic tweets.

• The extensive of use of misspellings Arabic result in
a Data Sparsity, that has an impact on the overall per-
formance of SA systems. Saif et al. (2012) propose
a semantic smoothing model by extracting semanti-
cally hidden concepts from tweets and then incorpo-
rate them into supervised classifier training through in-
terpolation to reduce the sparseness in English tweets.

• Many Arabic tweets are verses from the Holy
Quran. There prayers to refer to different situations
with different meanings are used, for example,�é 	Jm.Ì'@ ú

	̄ ½ªÓ A 	JªÒm.�'
ð ½ÔgQK
 é<Ë @ . Q�
�J» ½Ê�̄ A�J ���. AÓAÓ,

which in English means Mam I miss you a lot. I ask
God to have mercy on you and to bring us together
in heaven, even though it ostensibly carries a positive
meaning of empathy and paradise, it carries negative
feelings of longing and loss due to death.

4. Arabic Tweets Sentiment Analysis
Dataset (ATSAD)

To create and build the sentiment analysis corpus or
datasets, we first build a sentiment emoji lexicon. The lex-

icon contains both positive and negative emojis express-
ing the feelings corresponding to different sentiment cate-
gories. We collect the emojis as well as their indicated sen-
timent from “Emojis Sentiment Ranking Lexicon” (Kralj
Novak et al., 2015) which is available at http://kt.
ijs.si/data/Emoji_sentiment_ranking/ and
Emojipedia4. Then, this lexicon is employed as the seed for
the Twitter retrieval procedure. The Lexicon is composed
of 91 negative emojis and 306 positive emojis.
Instead of collecting tweets by hashtags or query terms we
exploit the emojis and their assigned sentiment and condi-
tion the tweet language set to Arabic. We extracted 59k of
the tweets using the Twitter API in April 2019. The corpus
contains multiple dialects from all over the Arab world as
it is not geographically constrained. To automatically an-
notate the tweets either as positive or negative, we use the
emojis as a noisy (weak) label. If the tweet is fetched by the
positive emojis from the lexicon like , then it is labelled as
positive and the tweets fetched by the negative lexicon are
labelled as negative.
More specifically, we perform the following cleaning ac-
tions:

1. Remove all metadata generated by Twitter API like
tweet id, username, time, location, RT

2. Remove all special characters but not emojis

3. Remove non-Arabic characters

4. Remove links

5. Remove diacritics from the text

6. Remove duplicated tweets

Table 1 shows the statistics of the corpus before and after
the pre-processing phase which gives us 36K tweets.

Positive Negative Total Vocabs Words
Before 30,607 29,232 59,839 95,538 76,2673
After 18,173 18,695 36,868 95,057 41,8857

Table 1: Statistics of the Twitter sentiment analysis corpus
(ATSAD) before and after the pre-processing

5. Corpus Evaluation
The process of building a resource is not limited to data
collection, but it must be checked and verified in order to
be trustworthy and used as a resource. In this section, we
evaluate the Tweets corpus by introducing two well-known
methodologies: Intrinsic and extrinsic evaluations.
In intrinsic evaluation, the corpus is directly evaluated in
terms of its accuracy and quality. We check whether the
rule-based annotation (simply an emojis annotation) can be
used to build a reliable corpus and use it effectively in the
desired functionality. On the other hand, in extrinsic evalu-
ation, the dataset is going to be assessed with respect to its

4https://emojipedia.org/people/emojis

3

impact on an external task which in our case is the senti-
ment analysis model (Resnik and Lin, 2010).
To check the quality of the corpus, we have asked two an-
notators, one an NLP expert, the second an educated native
Arabic speaker, to annotate subsets of the corpus. We start
with a random sample containing 180 instances (1% of the
data) for both positive and negative classes. When the an-
notation was completed, the two annotators agreed on the
90% of the sample.
In case of disagreement, we choose the expert annotator’s
choice as the class label. The annotation process is cu-
mulative, in the sense that we pick random samples every
time from the corpus and ask the annotators to annotate.
For each sample we calculate the number of mismatched
labels between the emoji-based annotation and the human
annotation, and we also compute the accuracy of the emoji-
based annotation by taking the number of right classified
instances divided by the total number of the sample. Ta-
ble 2 shows the number of errors (mismatches) and accu-
racy for annotation samples in the range from 1% to 10%
of the corpus. Figure 1 plots the accuracy results. It is clear
that after manually annotating 10% of the whole corpus,
the percentage of matches tweets between the human and
the emoji-based annotation is 77.2%.
Obtaining 77.2% is not good enough to use it for a task to
predict the real sentiment of the tweets even though it is less
time-consuming compared to manual annotation. There-
fore, later we are going to present a combination method of
self training and distant supervision to improve the quality
of the dataset.

Sample % Samples #errors Accuracy
1% 360 106 70.5%
2% 720 200 72.2%
3% 1,080 293 72.9%
4% 1,400 370 74.3%
5% 1,800 450 75%
10% 3,608 823 77.2%

Table 2: Human annotation accuracy compared to the emo-
jis based annotation. The first two columns show the per-
centage and number of the sampled tweets, # error shows
the number of mismatched samples and the Accuracy col-
umn calculates the percentage of the matches between both
annotations.

Moreover, we check the quality of the corpus with pre-
trained sentiment analysis models that have been built and
trained on existing datasets. The following datasets are
used in our experiments and shown in Table 3:

• 40k dataset (Mohammed and Kora, 2019): as men-
tioned in the related work section, this is a tweets
dataset containing 40,000 instances. It is manually an-
notated into positive and negative and the tweets are
subsequently manually cleaned.

• LABR (Aly and Atiya, 2013): a large SA dataset for
Arabic sentiment analysis. The data are extracted from
a book review website and contain over 63k book re-
views written in MSA with some dialectal phrases.

1 2 3 4 5 6 7 8 9 10

70

71

72

73

74

75

76

77

78

Number of Samples in percentage

A
cc

ur
ac

y
in

pe
rc

en
ta

ge
Figure 1: Accuracy of dataset comparing to human annota-
tion

Given that our corpus concerns two-way classification,
we only use the binary balanced subsets of LABR.
LABR can be considered to be a human annotated cor-
pus, where the users rate books using the stars system
(1 to 5).

Ratings of 4 and 5 stars are considered positive, rat-
ings of 1 and 2 stars negative and 3-star ratings are
taken as neutral. In the binary classification case, 3-
star ratings are ignored, keeping only the positive and
negative labels.

• ASTD (Nabil et al., 2015): an Arabic SA corpus col-
lected from Twitter and focusing on Egyptian Arabic.
It consists of approximately 10k tweets which are clas-
sified as objective, subjective positive, subjective neg-
ative, and subjective mixed. We use only the positive
and negative subset.

• Shami-Senti (Qwaider et al., 2019): a Levantine SA
corpus. It contains approximately 2.5k posts from so-
cial media sites in general topics classified manually
as positive, negative and neutral from the four main
countries where Levantine is spoken: Palestine, Syria,
Lebanon and Jordan.

Corpus NEG POS
40k tweets 20,002 19,998
LABR 2 Balanced 6,578 6,580
ASTD 1,496 665
Shami-Senti 935 1,064

Table 3: The number of instances per category in the cor-
pora used in our experiments

We build a model on each corpus and apply the resulting
model to our Twitter corpus. The model uses a combination
of (1-3) word grams and a LinearSVC classifier. Table 4

4

shows the accuracy of the models built (trained and tested)
on the original datasets, while the ASTAD column shows
the accuracy of the trained model when we use it to predict
the class on our Twitter dataset. It is clear that none of the
models works for this dataset and the accuracy does not
exceed 60%. This is an expected result, given that the data
are from a very different domain, i.e. book reviews. Even
though both ASTD and the ATSAD share the same domain,
the ASTD only contains Egyptian dialects. In the case of
the Shami corpus, it only contains Levantine dialects with
a limited number of examples (2k). The 40k tweets model
and ATSAD also share the same domain (tweets) but the
manual hard prepossessing and cleaning of the data make
it hard to predict real tweets as people post it, also the 40k
corpus only has Egyptian dialect.

Same corpus ATSAD
40k tweets 79% 60%
LABR 82% 54%
ASTD 81% 59%
SHAMI-SENTI 84% 59%

Table 4: Accuracy of models trained on different SA cor-
pora; the same corpus column indicates the accuracy of
the model when the train dataset and the test dataset are
both from the same corpus, the last column for the accu-
racy when we test the models on the ATSAD

Summing up, it is clear from the previous discussion that
the ATSAD is a challenge for the models trained on the
available datasets that are standardised and regularised.
Therefore we have to create an ML model that would be
successful on this ATSAD. To achieve a good accuracy on
the model, then the dataset should be improved in term of
the data quality and annotation quality.

6. Self training on Distant supervision
Corpus

Creating a good resource requires the collection of a big
amount of data that are preprocessed and annotated. The
annotation is usually done by hiring annotators and spec-
ifying annotation rules they have to follow to produce a
reasonable annotation agreement. This process is time and
money consuming. There is another approach to build a
large enough dataset more quickly. The process is called
Distant supervision or weak supervision (Yao et al., 2010).
Distant supervision involves heuristically matching the
contents of a database to the corresponding text (Hoffmann
et al., 2011). In our case, we use the emojis in the tweets to
work as weak labels with which we can annotate the 36K
tweets automatically. Although this is sometimes not pro-
ducing high-quality dataset, it works in some tasks.
We annotate the 36k tweets by distant supervision and then
extract 4k tweets (10% of the total dataset). We ask the two
annotators to label them manually. We compute the number
of agreed annotation between the human annotation and the
emojis annotation we have an agreement of 77.2%.
To use the human annotation dataset as a gold standard we
extract other 4K tweets and also manually annotate them,

upgrading the final manually annotated dataset to 8k tweets
of which 3705 are classified as positive, 3911 negative and
384 instances are mixed. We exclude the mixed class from
our experiments.
We build a baseline with TF-IDF unigram word model and
a Linear-SVC classifier. Moreover, we build another com-
plex model -from some previous work - by combining word
n-grams (1-5), character n-grams (2-5) with and without
word boundary consideration (Qwaider et al., 2019). The
models are built for sentiment analysis and the problem
is recognised as two-way classification, so every tweet is
classified either as positive or negative. Table 5 shows the
number of tweets per class for the human annotation dataset
and the remaining tweets in the emojis dataset which were
weakly annotated by the distant supervision.

Human annotated Emojis annotated
Label Distribution

#Positive 3,705 14,468
#Negative 3,911 14,784

Train/Test Distribution
#Train set 6,092 23,401
#Test set 1,524 5,851
#Total set 7,616 29,252

Table 5: Statistics of the human annotation subset and the
emojis distant supervision subset after subtract the human
dataset

We apply both the baseline and the complex model on the
manually annotated dataset and we get an accuracy of %71
and %79 respectively. We refer to this experiment as (Man-
ual experiment). To check again the quality of the emojis
based dataset we applied the previous model trained on the
human labels on the emojis dataset of 29k tweets to predict
the label. After testing the two models, the resulted accu-
racy is %63 and %76 for both the baseline and the complex
model respectively (Mixed experiment). The mixed experi-
ment is to some extent similar to the agreement between the
manual annotation and the emojis annotation experiment
we have done first and got an accuracy of 76% using 4k
subset.
To improve the quality of the automatic annotation and
therefore the proposed tweets corpus, we will exploit the
manual annotation dataset to enhance the entire dataset.
Therefore, a self-training approach is to be employed on
the data to improve the classification and increase the ac-
curacy of the annotation. Self-training is a commonly used
method for semi-supervised learning (Yarowsky, 1995; Ab-
ney, 2002). The idea of Self-training is to train a classifier
with a small amount of labelled data and incrementally re-
train the classifier by adding the most confidently labelled
instances that were previously unlabelled as a new data.
This process continues until most of the unlabelled data be-
comes labelled (Gao et al., 2014). We can implement a self-
training technique with little modification of the existing
configuration: our dataset is not completely unlabelled but
has weak emoji-based annotations. From the mixed model
experiments, rather than extracting the instances predicted
with the highest confidence, we extract instances where the

5

Figure 2: Self training (double-check) approach applied on the TSAD

model prediction label matches the emojis label. This is the
case for 22,542 out of 29,252 tweets in the dataset. We add
these tweets to the training set which consists of the human
annotated dataset (6,092). Thus, to re-train the classifier
we have a total of 22,542 + 6,092 = 28,634 tweets. We call
this experiment (double check) where we combine the self
training with distant supervision. The 28K tweets are now
a dataset with strong supervised labelling where the small
amount of human annotation dataset and distant supervis-
ing from emojis helps to annotate more data. We re-build
both the baseline and the complex models and retrain them
on the dataset we produced from the double check exper-
iment (28k tweets), then apply the model to the test set
from the human annotation dataset (1,524 tweets).We use
the same dataset across all the experiments in order to allow
for the comparison. The baseline and the complex model
accuracy increases to 77% and 86% respectively. Figure 2
shows the diagram for the self-training approach.
To evaluate our self-training experiment and our method
to extract only those instances where the model prediction
matches the emojis annotation, we conduct a small experi-
ment of self-training called (Non-check) where we:

1. Use the model from the (mixed experiment) to predict
the label for the automatically labelled dataset (29k
tweets).

2. Retrain the model with the human annotated training
dataset in addition to the predicted labelled dataset
(from the previous model). Thus, this re-train dataset
consists of 6,092 + 29,252 = 35,341 tweets.

3. Use the manually annotated test set (1524 tweets) and
use the model to predict the sentiment.

4. The accuracy of the baseline is 70% and 81% for the
complex model.

Consequently, it is clear that (i) using the emojis as a noisy
label, (ii) matching with the human annotation and (iii) ap-
ply the self training technique to annotate the dataset leads

to an improvement of the data. Table 6 shows the perfor-
mance of the models on different datasets. These are repre-
sented as plots in Figure 3.

Experiment #Train #test Baseline Complex
Manual 6,092 1,524 71% 79%
Mixed 6,092 29,252 63% 76%
double-check 28,634 1,524 77% 86%
Non-check 35,341 1,524 70% 81%

Table 6: The performance of the baseline and complex
models on different datasets.

Figure 3: plotting the accuracy for all the experiments for
both the baseline and complicated models

When we were done with the experiments, we extracted all
the emojis and examined the emoji frequencies per cate-
gory. We found some emojis are shared between the pos-
itive and the negative class, such as the smiley face with
tears. We also discover that people used the black smiley
face to indicate the negative feeling more often than the
positive. These emojis are considered tricky emojis and
they decrease the quality of the annotation. We modified

6

our conditions by removing all the misleading emojis to
collect more accurate data. Up to now we have collected
over 200k tweets. Table 7 views the number of occurrence
for the most 10 frequent emojis per sentiment category.

Table 7: Number of occurrence for the most 10 frequent
emojis per category, the last row show the total number of
the whole emojis in the dataset per category

7. Future work
Based on our emojis analysis and the subsequent modifica-
tion of the data collection and annotation conditions, we are
planning to further increase the size of the dataset and use
it for different tasks like building custom sentiment word
embeddings and to fine-tune deep learning networks.

8. Conclusion
To extend the limited Dialectal Arabic resources, we col-
lected an Arabic Tweets Sentiment Analysis Dataset (AT-
SAD). The corpus has been collected from Twitter during
April 2019 and employs emojis as seeds for extraction of
candidate instances. After the pre-processing, we apply dis-
tant supervision using emojis as weak labels to annotate the
entire dataset. In addition, we commissioned two annota-
tors to manually annotate a subset of 8k tweets. We evaluate
the corpus by comparing the emoji-based annotation with
the human annotation and we get an observed agreement
of 77.2%. We built a sentiment analysis machine learn-
ing model with the unigram features as a baseline and an-
other complex model that utilises word grams and character
grams. We exploit the human annotation dataset to help us
improve the annotation of the automatically labelled dataset
by self-training approaches. Over several experiments we
achieve an accuracy of 86%.
Using the distant supervision approaches for automatically
data annotation process can saves us a lot of effort, time
and money. Distant supervision is a very valuable method
to annotate large number of instances automatically, in our
case based on emojis to denote the category. The self train-
ing approach can be used together with a small number of
manually annotated instances to improve the quality of the
automatically labelled dataset.

Acknowledgements
Kathrein Abu Kwaik, Stergios Chatzikyriakidis and Simon
Dobnik are supported by grant 2014-39 from the Swedish
Research Council, which funds the Centre for Linguistic
Theory and Studies in Probability (CLASP) in the Depart-
ment of Philosophy, Linguistics, and Theory of Science
at the University of Gothenburg. Richard Johansson was
funded by the Swedish Research Council under grant 2013–
4944.

9. Bibliographical References
Abdul-Mageed, M., Diab, M., and Kübler, S. (2014).

Samar: Subjectivity and sentiment analysis for Arabic
social media. Computer Speech & Language, 28(1):20–
37.

Abney, S. (2002). Bootstrapping. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 360–367.

Al Sallab, A., Hajj, H., Badaro, G., Baly, R., El Hajj, W.,
and Shaban, K. B. (2015). Deep learning models for
sentiment analysis in Arabic. In Proceedings of the sec-
ond workshop on Arabic natural language processing,
pages 9–17.

Al Shboul, B., Al-Ayyoub, M., and Jararweh, Y. (2015).
Multi-way sentiment classification of Arabic reviews. In
2015 6th International Conference on Information and
Communication Systems (ICICS), pages 206–211. IEEE.

Al-Twairesh, N., Al-Khalifa, H., and Al-Salman, A.
(2016). AraSenTi: Large-Scale Twitter-Specific Arabic
Sentiment Lexicons. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 697–705, Berlin,
Germany, August. Association for Computational Lin-
guistics.

Al-Twairesh, N., Al-Khalifa, H., Al-Salman, A., and Al-
Ohali, Y. (2017). Arasenti-tweet: A corpus for Arabic
sentiment analysis of saudi tweets. Procedia Computer
Science, 117:63–72.

Alayba, A. M., Palade, V., England, M., and Iqbal, R.
(2018). A combined CNN and LSTM model for Ara-
bic sentiment analysis. In International Cross-Domain
Conference for Machine Learning and Knowledge Ex-
traction, pages 179–191. Springer.

Alwakid, G., Osman, T., and Hughes-Roberts, T. (2017).
Challenges in sentiment analysis for Arabic social net-
works. Procedia Computer Science, 117:89–100.

Aly, M. and Atiya, A. (2013). Labr: A large scale Arabic
book reviews dataset. In Proceedings of the 51st Annual
Meeting of the Association for Computational Linguis-
tics (Volume 2: Short Papers), volume 2, pages 494–498.

Atoum, J. O. and Nouman, M. (2019). Sentiment Anal-
ysis of Arabic Jordanian Dialect Tweets. (IJACSA) In-
ternational Journal of Advanced Computer Science and
Applications, 10:256–262.

Azmi, A. M. and Alzanin, S. M. (2014). Aara’–a system
for mining the polarity of Saudi public opinion through
e-newspaper comments. Journal of Information Science,
40(3):398–410.

7

Bakliwal, A., Arora, P., Madhappan, S., Kapre, N., Singh,
M., and Varma, V. (2012). Mining sentiments from
tweets. In Proceedings of the 3rd Workshop in Compu-
tational Approaches to Subjectivity and Sentiment Anal-
ysis, pages 11–18.

Bravo-Marquez, F., Mendoza, M., and Poblete, B. (2013).
Combining strengths, emotions and polarities for boost-
ing twitter sentiment analysis. In Proceedings of the Sec-
ond International Workshop on Issues of Sentiment Dis-
covery and Opinion Mining, page 2. ACM.

Dahou, A., Xiong, S., Zhou, J., Haddoud, M. H., and Duan,
P. (2016). Word embeddings and convolutional neural
network for Arabic sentiment classification. In Proceed-
ings of coling 2016, the 26th international conference
on computational linguistics: Technical papers, pages
2418–2427.

El-Beltagy, S. R., Khalil, T., Halaby, A., and Hammad,
M. (2016). Combining lexical features and a super-
vised learning approach for Arabic sentiment analy-
sis. In International Conference on Intelligent Text Pro-
cessing and Computational Linguistics, pages 307–319.
Springer.

Elnagar, A., Khalifa, Y. S., and Einea, A. (2018). Ho-
tel Arabic-reviews dataset construction for sentiment
analysis applications. In Intelligent Natural Language
Processing: Trends and Applications, pages 35–52.
Springer.

Gao, W., Li, S., Xue, Y., Wang, M., and Zhou, G.
(2014). Semi-supervised sentiment classification with
self-training on feature subspaces. In Workshop on Chi-
nese Lexical Semantics, pages 231–239. Springer.

Giachanou, A. and Crestani, F. (2016). Like It or Not: A
Survey of Twitter Sentiment Analysis Methods. ACM
Comput. Surv., 49(2):28:1–28:41, June.

Go, A., Bhayani, R., and Huang, L. (2009). Twitter sen-
timent classification using distant supervision. CS224N
Project Report, Stanford, 1(12):2009.

Hoffmann, R., Zhang, C., Ling, X., Zettlemoyer, L., and
Weld, D. S. (2011). Knowledge-based weak supervision
for information extraction of overlapping relations. In
Proceedings of the 49th Annual Meeting of the Associ-
ation for Computational Linguistics: Human Language
Technologies-Volume 1, pages 541–550. Association for
Computational Linguistics.

Kralj Novak, P., Smailović, J., Sluban, B., and
Mozetič, I. (2015). Sentiment of emojis. PLoS ONE,
10(12):e0144296.

Liu, B. (2012). Sentiment analysis and opinion min-
ing. Synthesis lectures on human language technologies,
5(1):1–167.

Mohammed, A. and Kora, R. (2019). Deep learning ap-
proaches for Arabic sentiment analysis. Social Network
Analysis and Mining, 9(1):52.

Nabil, M., Aly, M., and Atiya, A. (2015). ASTD: Arabic
Sentiment Tweets Dataset. In Proceedings of the 2015
Conference on Empirical Methods in Natural Language
Processing, pages 2515–2519.

Obaidat, I., Mohawesh, R., Al-Ayyoub, M., Mohammad,
A.-S., and Jararweh, Y. (2015). Enhancing the determi-

nation of aspect categories and their polarities in Ara-
bic reviews using lexicon-based approaches. In 2015
IEEE Jordan Conference on Applied Electrical Engi-
neering and Computing Technologies (AEECT), pages
1–6. IEEE.

Qwaider, C., Chatzikyriakidis, S., and Dobnik, S. (2019).
Can Modern Standard Arabic Approaches be used for
Arabic Dialects? Sentiment Analysis as a Case Study.
In Proceedings of the 3rd Workshop on Arabic Corpus
Linguistics, pages 40–50.

Refaee, E. and Rieser, V. (2014). Evaluating distant super-
vision for subjectivity and sentiment analysis on Arabic
twitter feeds. In Proceedings of the EMNLP 2014 work-
shop on Arabic natural language processing (ANLP),
pages 174–179.

Resnik, P. and Lin, J. (2010). 11. evaluation of NLP sys-
tems. The handbook of computational linguistics and
natural language processing, 57.

Rushdi-Saleh, M., Martı́n-Valdivia, M. T., Ureña-López,
L. A., and Perea-Ortega, J. M. (2011). OCA: Opin-
ion Corpus for Arabic. Journal of the American Society
for Information Science and Technology, 62(10):2045–
2054.

Saif, H., He, Y., and Alani, H. (2012). Alleviating data
sparsity for twitter sentiment analysis. CEUR Workshop
Proceedings (CEUR-WS. org).

Speriosu, M., Sudan, N., Upadhyay, S., and Baldridge, J.
(2011). Twitter polarity classification with label propa-
gation over lexical links and the follower graph. In Pro-
ceedings of the First workshop on Unsupervised Learn-
ing in NLP, pages 53–63. Association for Computational
Linguistics.

Yao, L., Riedel, S., and McCallum, A. (2010). Collec-
tive cross-document relation extraction without labelled
data. In Proceedings of the 2010 Conference on Em-
pirical Methods in Natural Language Processing, pages
1013–1023. Association for Computational Linguistics.

Yarowsky, D. (1995). Unsupervised word sense disam-
biguation rivaling supervised methods. In 33rd annual
meeting of the association for computational linguistics,
pages 189–196.

8

Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, pages 9–15
with a Shared Task on Offensive Language Detection.

Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020
c© European Language Resources Association (ELRA), licensed under CC-BY-NC

AraBERT: Transformer-based Model for
Arabic Language Understanding

Wissam Antoun*, Fady Baly*, Hazem Hajj
American University of Beirut
{wfa07, fgb06, hh63}@aub.edu.lb

Abstract
The Arabic language is a morphologically rich language with relatively few resources and a less explored syntax compared to English.
Given these limitations, Arabic Natural Language Processing (NLP) tasks like Sentiment Analysis (SA), Named Entity Recognition
(NER), and Question Answering (QA), have proven to be very challenging to tackle. Recently, with the surge of transformers based
models, language-specific BERT based models have proven to be very efficient at language understanding, provided they are pre-trained
on a very large corpus. Such models were able to set new standards and achieve state-of-the-art results for most NLP tasks. In this paper,
we pre-trained BERT specifically for the Arabic language in the pursuit of achieving the same success that BERT did for the English
language. The performance of AraBERT is compared to multilingual BERT from Google and other state-of-the-art approaches. The re-
sults showed that the newly developed AraBERT achieved state-of-the-art performance on most tested Arabic NLP tasks. The pretrained
araBERT models are publicly available on github.com/aub-mind/araBERT hoping to encourage research and applications for Arabic NLP.

Keywords: Arabic, transformers, BERT, AraBERT, Language Models

1. Introduction
Pretrained contextualized text representation models have
enabled massive advances in Natural Language Under-
standing (NLU) tasks, and achieved state-of-the-art perfor-
mances in multiple NLP tasks (Howard and Ruder, 2018;
Devlin et al., 2018). Early pretrained text representation
models aimed at representing words by capturing their dis-
tributed syntactic and semantic properties using techniques
like Word2vec (Mikolov et al., 2013) and GloVe (Penning-
ton et al., 2014). However, these models did not incorpo-
rate the context in which a word appears into its embedding.
This issue was addressed by generating contextualized rep-
resentations using models like ELMO (Peters et al., 2018)).
Recently, there has been a focus on applying transfer learn-
ing by fine-tuning large pretrained language models for
downstream NLP/NLU tasks with a relatively small num-
ber of examples, resulting in notable performance improve-
ment for these tasks. This approach takes advantage of
the language models that had been pre-trained in an un-
supervised manner (or sometimes called self-supervised).
However, this advantage comes with drawbacks, particu-
larly the huge corpora needed for pre-training, in addition
to the high computational cost of days needed for training
(latest models required 500+ TPUs or GPUs running for
weeks (Conneau et al., 2019; Raffel et al., 2019; Adiwar-
dana et al., 2020)). These drawbacks restricted the avail-
ability of such models to English mainly and a handful of
other languages. To remedy this gap, multilingual mod-
els have been trained to learn representations for +100 lan-
guages simultaneously, but still fall behind single-language
models due to little data representation and small language-
specific vocabulary. While languages with similar struc-
ture and vocabulary can benefit from the shared represen-
tations (Conneau et al., 2019), this is not the case for other
languages, like Arabic, which differ in morphological and
syntactic structure and share very little with other abundant

*Equal Contribution

Latin-based languages.
In this paper, we describe the process of pretraining the
BERT transformer model (Devlin et al., 2018) for the Ara-
bic language, and which we name ARABERT. We eval-
uate ARABERT on three Arabic NLU downstream tasks
that are different in nature: (i) Sentiment Analysis (SA),
(ii) Named Entity Recognition (NER), and (iii) Ques-
tion Answering (QA). The experiments results show that
ARABERT achieves state-of-the-art performances on most
datasets, compared to several baselines including previous
multilingual and single-language approaches. The datasets
that we considered for the downstream tasks contained
both Modern Standard Arabic (MSA) and Dialectal Arabic
(DA).
Our contributions can be summarized as follows:

• A methodology to pretrain the BERT model on a
large-scale Arabic corpus.

• Application of ARABERT to three NLU downstream
tasks: Sentiment Analysis, Named Entity Recognition
and Question Answering.

• Publicly releasing ARABERT on popular NLP li-
braries.

The rest of the paper is structured as follows. Section 2.
provides a concise literature review of previous work on
language representation for English and Arabic. Sec-
tion 3. describes the methodology that was used to develop
ARABERT. Section 4. describes the downstream tasks and
benchmark datasets that are used for evaluation. Section 5.
presents the experimental setup and discusses the results.
Finally, section 6. concludes and points to possible direc-
tions for future work.

2. Related Works
2.1. Evolution of Word Embeddings
The first meaningful representations for words started with
the word2vec model developed by (Mikolov et al., 2013).

9

Since then, research started moving towards variations of
word2vec like of GloVe (Pennington et al., 2014) and fast-
Text (Mikolov et al., 2017). While major advances were
achieved with these early models, they still lacked contex-
tualized information, which was tackled by ELMO (Peters
et al., 2018). The performance over different tasks im-
proved noticeably, leading to larger structures that had su-
perior word and sentence representations. Ever since, more
language understanding models have been developed such
as ULMFit (Howard and Ruder, 2018), BERT (Devlin et
al., 2018), RoBERTa (Liu et al., 2019), XLNet (Yang et al.,
2019), ALBERT (Lan et al., 2019), and T5 (Raffel et al.,
2019), which offered improved performance by exploring
different pretraining methods, modified model architectures
and larger training corpora.

2.2. Non-contextual Representations for Arabic
Following the success of the English word2vec (Mikolov
et al., 2013), the same feat was sought by NLP researchers
to create language specific embeddings. Arabic word2vec
was first attempted by (Soliman et al., 2017), and then
followed by a Fasttext model (Bojanowski et al., 2017)
trained on Wikipedia data and showing better performance
than word2vec. To tackle dialectal variations in Ara-
bic (Erdmann et al., 2018) presented techniques for train-
ing multidialectal word embeddings on relatively small and
noisy corpora, while (Abu Farha and Magdy, 2019; Abdul-
Mageed et al., 2018) provided Arabic word embeddings
trained on ∼250M tweets.

2.3. Contextualized Representations for Arabic
For non-English languages, Google released a multilin-
gual BERT (Devlin et al., 2018) supporting 100+ lan-
guages with solid performance for most languages. How-
ever, pre-training monolingual BERT for non-English lan-
guages proved to provide better performance than the mul-
tilingual BERT such as Italian BERT Alberto (Polignano
et al., 2019) and other publicly available BERTs (Martin et
al., 2019; de Vries et al., 2019). Arabic specific contextu-
alized representations models, such as hULMonA (ElJundi
et al., 2019), used the ULMfit structure, which had a lower
performance that BERT on English NLP Tasks.

3. ARABERT: Methodology
In this paper, we develop an Arabic language representa-
tion model to improve the state-of-the-art in several Ara-
bic NLU tasks. We create ARABERT based on the BERT
model, a stacked Bidirectional Transformer Encoder (De-
vlin et al., 2018). This model is widely considered as the
basis for most state-of-the-art results in different NLP tasks
in several languages. We use the BERT-base configura-
tion that has 12 encoder blocks, 768 hidden dimensions, 12
attention heads, 512 maximum sequence length, and a to-
tal of ∼110M parameters1. We also introduced additional
preprocessing prior to the model’s pre-training, in order
to better fit the Arabic language. Below, we describe the
pre-training setup, the pre-training dataset for ARABERT,

1Further details about the transformer architecture can be
found in (Vaswani et al., 2017)

the proposed Arabic-specific preprocessing, and the fine-
tuning process.

3.1. Pre-training Setup

Following the original BERT pre-training objective, we
employ the Masked Language Modeling (MLM) task by
adding whole-word masking where; 15% of the N input
tokens are selected for replacement. Those tokens are re-
placed 80% of the times with the [MASK] token, 10% with
a random token, and 10% with the original token. Whole-
word masking improves the pre-training task by forcing the
model to predict the whole word instead of getting hints
from parts of the word. We also employ the Next Sentence
Prediction (NSP) task that helps the model understand the
relationship between two sentences, which can be useful
for many language understanding tasks such as Question
Answering.

3.2. Pre-training Dataset

The original BERT was trained on 3.3B words extracted
from English Wikipedia and the Book Corpus (Zhu et al.,
2015). Since the Arabic Wikipedia Dumps are small com-
pared to the English ones, we manually scraped Arabic
news websites for articles. In addition, we used two pub-
licly available large Arabic corpora: (1) the 1.5 billion
words Arabic Corpus (El-Khair, 2016), which is a con-
temporary corpus that includes more than 5 million articles
extracted from ten major news sources covering 8 coun-
tries, and (2) OSIAN: the Open Source International Ara-
bic News Corpus (Zeroual et al., 2019) that consists of 3.5
million articles (∼1B tokens) from 31 news sources in 24
Arab countries.

The final size of the pre-training dataset, after removing
duplicate sentences, is 70 million sentences, corresponding
to ∼24GB of text. This dataset covers news from differ-
ent media in different Arab regions, and therefore can be
representative of a wide range of topics discussed in the
Arab world. It is worth mentioning that we preserved words
that include Latin characters, since it is common to mention
named entities, scientific or technical terms in their original
language, to avoid information loss.

3.3. Sub-Word Units Segmentation

Arabic language is known for its lexical sparsity which is
due to the complex concatenative system of Arabic (Al-
Sallab et al., 2017). Words can have different forms and
share the same meaning. For instance, while the definite
article “ È@ - Al”, which is equivalent to “the” in English,
is always prefixed to other words, it is not an intrinsic part
of that word. Hence, when using a BERT-compatible to-
kenization, tokens will appear twice, once with “Al-” and

10

once without it. For instance, both “ H. A �J »- kitAb” and “
H. A �J º Ë@ -AlkitAb” need to be included in the vocabulary,
leading to a significant amount of unnecessary redundancy.

To avoid this issue, we first segment the words using
Farasa (Abdelali et al., 2016) into stems, prefixes and suf-
fixes. For instance, “ �é 	ª

�
ÊË @ - Alloga” becomes �è+ 	©Ë + È@

- Al+ log +a”. Then, we trained a SentencePiece (an un-
supervised text tokenizer and detokenizer (Kudo, 2018)),
in unigram mode, on the segmented pre-training dataset to
produce a subword vocabulary of ∼60K tokens. To evalu-
ate the impact of the proposed tokenization, we also trained
SentencePiece on non-segmented text to create a second
version of ARABERT (AraBERTv0.1) that does not re-
quire any segmentation. The final size of vocabulary was
64k tokens, which included nearly 4K unused tokens to al-
low further pre-training, if needed.

3.4. Fine-tuning

Sequence Classification To fine-tune AraBERT for se-
quence classification, we take the final hidden state of the
first token, which corresponds to the word embedding of
the special “[CLS]” token prepended to the start of each
sentence. We then add a simple feed-forward layer with
standard Softmax to get the probability distribution over
the predicted output classes. During fine-tuning, the classi-
fier and the pre-trained model weights are trained jointly to
maximize the log-probability of the correct class.

Named Entity Recognition For the NER task, each to-
ken in the sentence is labeled with the IOB2 format (Rat-
naparkhi, 1998), where the “B” tag corresponds to the first
word of the entity, the “I” tag corresponds to the rest of the
words of the same entity, and the “O” tag indicates that the
tagged word is not a desired named entity. Hence, we treat
the system as a multi-class classification process, which al-
lows us to use some text classification methods to label the
tokens. Furthermore, after using the AraBERT tokenizer,
we only input the first sub-token of each word to the model.

Question Answering In the QA, given a question and a
passage containing the answer, the model needs to select
a span of text that contains the answers. This is done by
predicting a “start” token and an “end” token on condition
that the “end” token should appear after the “start” token.
During training, the final embedding of every token in the
passage is fed into two classifiers, each with a single set of
weights, which are applied to every token. The dot product
of the output embeddings and the classifier is then fed into
a softmax layer to produce a probability distribution over
all the tokens. The token with the highest probability of
being a “start” toke is then selected, and the same process
is repeated for the “end” token.

4. Evaluation
We evaluated ARABERT on three Arabic language under-
standing downstream tasks: Sentiment Analysis, Named
Entity Recognition, and Question Answering. As a base-
line, we compared ARABERT to the multilingual version
of BERT, and to other state-of-art results on each task.

4.1. Sentiment Analysis
We evaluated ARABERT on the following Arabic senti-
ment datasets that cover different genres, domains and di-
alects.

• HARD: The Hotel Arabic Reviews Dataset (Elnagar
et al., 2018) contains 93,700 hotel reviews written in
both Modern Standard Arabic (MSA) and in dialectal
Arabic. Reviews are split into positive and negative
reviews, where a negative review has a rating of 1 or
2, a positive review has a rating of 4 or 5, and neutral
reviews with rating of 3 were ignored.

• ASTD: The Arabic Sentiment Twitter Dataset (Nabil
et al., 2015) contains 10,000 tweets written in both
MSA and Egyptian dialect. We tested on the balanced
version of the dataset, referred to as ASTD-B.

• ArSenTD-Lev: The Arabic Sentiment Twitter
Dataset for LEVantine (Baly et al., 2018) contains
4,000 tweets written in Levantine dialect with annota-
tions for sentiment, topic and sentiment target. This is
a challenging dataset as the collected tweets are from
multiple domains and discuss different topics.

• LABR: The Large-scale Arabic Book Reviews
dataset (Aly and Atiya, 2013) contains 63,000 book
reviews written in Arabic. The reviews are rated be-
tween 1 and 5. We benchmarked our model on the
unbalanced two-class dataset, where reviews with rat-
ings of 1 or 2 are considered negative, while those with
ratings of 4 or 5 are considered positive.

• AJGT: The Arabic Jordanian General Tweets
dataset (Alomari et al., 2017) contains 1,800 tweets
written in Jordanian dialect. The tweets were
manually annotated as either positive or negative.

Baselines: Sentiment Analysis is a popular Arabic NLP
task. Previous approaches relied on sentiment lexicons
such as ArSenL (Badaro et al., 2014), which is a large-
scale lexicon of MSA words that is developed using the
Arabic WordNet in combination with the English Senti-
WordNet. Recurrent and recursive neural networks were
explored with different choices of Arabic-specific process-
ing (Al Sallab et al., 2015; Al-Sallab et al., 2017; Baly et
al., 2017). Convolutional Neural Networks (CNN) were
trained with pre-trained word embeddings (Dahou et al.,
2019a). A hybrid model was proposed by (Abu Farha and
Magdy, 2019), where CNNs were used for feature extrac-
tion, and LSTMs were used for sequence and context un-
derstanding. Current state-of-the-art results are achieved
by the hULMonA model (ElJundi et al., 2019), which is an
Arabic language model that is based on the ULMfit archi-
tecture (Howard and Ruder, 2018). We compare the results
of ARABERT to those of hULMonA.

11

4.2. Named Entity Recognition

This task aims to extract and detect named entities in the
text. It is framed as a word-level classification (or tagging)
task, where the classes correspond to pre-defined categories
such as names, locations, organizations, events and time
expressions. For evaluation, we use the Arabic NER cor-
pus (ANERcorp) (Benajiba and Rosso, 2007). This dataset
contains 16.5K entity mentions distributed among 4 entities
categories, person (39%), organization: (30.4%), location:
(20.6%), and miscellaneous: (10%).

Baselines: Advances in the NER task have been focus-
ing on English, namely on the CoNLL 2003 (Sang and
De Meulder, 2003) dataset. Initially, NER was tackled
with Conditional Random Fields (CRF) (Lafferty et al.,
2001). Later on, CRFs were used on top of Bi-LSTM
models (Huang et al., 2015; Lample et al., 2016) present-
ing significant improvements over standalone CRFs. Bi-
LSTM-CRF structures were then used with contextualized
embeddings that displayed further improvements (Peters et
al., 2018). Lastly, large pre-trained transformers showed
slight improvement, setting the current state-of-the-art per-
formance (Devlin et al., 2018). As for Arabic, We compare
ARABERT performance with Bi-LSTM-CRF baseline that
set the previous state-of-the-art performance (El Bazi and
Laachfoubi, 2019), and with BERT multilingual.

4.3. Question Answering

Open-domain Question Answering (QA) is one of the goals
of artificial intelligence, this goal can be achieved by lever-
aging natural language understanding and knowledge gath-
ering (Kwiatkowski et al., 2019). English QA research has
been fueled by the release of large datasets such as Stan-
ford Question Answering Dataset (SQuAD) (Rajpurkar et
al., 2016). On the other hand, research in Arabic QA has
been hindered by the lack of such massive datasets, and by
the fact that Arabic presents its own challenges such as:

• Inconsistent name spelling (ex: Syria in Arabic can be
written as “ AK
Pñ� - sOriyA” and “ �éK
Pñ� - sOriyT”)

• Name de-spacing (ex: The name is written as “
	QK
 	Q ª Ë@Y J. « - AbdulAzIz” in the question, and “ Y J. «
	QK
 	QªË@ - Abdul AzIz” in the answer)

• Dual form “ú 	æ�JÖÏ @”, which can have multiple forms (ex:

“ 	àAÒÊ�̄” - “qalamAn” or “ 	á�
ÒÊ�̄” - “qalamyn” meaning
“two pencils”)

• Grammatical gender variation: all nouns, animate and
inanimate objects are classified under two genders ei-
ther masculine or feminine (ex: “Q�
J.»” - “kabIr” and “�èQ�
J.»” - “kabIrT”

We evaluate ARABERT on the Arabic Reading Compre-
hension Dataset (ARCD) (Mozannar et al., 2019) , where

the task is to find the span of the answer in a document
for a given question. ARCD contains 1395 questions
on Wikipedia articles along with 2966 machine translated
questions and answers from the SQuAD dubbed (Arabic-
SQuAD). We train on the whole Arabic-SQuAD and on
50% of ARCD and test on the remaining 50% of ARCD.

Baselines Multilingual BERT had previously achieved
state of the art results on ARCD.

5. Experiments
5.1. Experimental Setup
Pretraining In our experiments, the original implemen-
tation of BERT on TensorFlow was used. The data for
pre-training was sharded, transformed into TFRecords, and
then stored on Google Cloud Storage. Duplication factor
was set to 10, a random seed of 34, and a masking proba-
bility of 15%. The model was pre-trained on a TPUv2-8
pod for 1,250,000 steps. To speed up the training time,
the first 900K steps were trained on sequences of 128 to-
kens, and the remaining steps were trained on sequences
of 512 tokens. The decision of stopping the pre-training
was based on the performance of downstream tasks. We
follow the same approach taken by the open-sourced Ger-
man BERT (DeepsetAI,). Adam optimizer was used, with
a learning rate of 1e-4, batch size of 512 and 128 for se-
quence length of 128 and 512 respectively. Training took 4
days, for 27 epochs over all the tokens.

Fine-tuning Fine-tuning was done independently using
the same configuration for all tasks. We do not run exten-
sive grid search for the best hyper-parameters due to com-
putational and time constraints. We use the splits provided
by the dataset’s authors when available. and the standard
80% and 20% when not2.

5.2. Results
Table 1 illustrates the experimental results of applying
AraBERT to multiple Arabic NLU downstream tasks, com-
pared to state-of-the-art results and the multilingual BERT
model (mBERT).

Sentiment Analysis For Arabic sentiment analysis, the
results in Table 1 show that both versions of AraBERT out-
perform mBERT and other state-of-the-art approaches on
most tested datasets. Even though AraBERT was trained
on MSA, the model was able to preform well on dialects
that were never seen before.

Named Entity Recognition Results in Table 1 show that
AraBERTv0.1 improved results by 2.53 points in F1 score
scoring 84.2 compared with the Bi-LSTM-CRF model,
making AraBERT the new state-of-the-art for NER on AN-
ERcorp. Testing AraBERT with tokenized suffixes and pre-
fixes showed results similar to that of the Bi-LSTM-CRF
model. We believe that the reason this happened is that the
start token (B-label) is referenced to the suffixes most of the

2The scripts used to create the datasets are available on our
Github repo https://github.com/aub-mind/arabert

12

Table 1: Performance of AraBERT on Arabic downstream
tasks compared to mBERT and previous state of the art sys-
tems

Task metric prev. SOTA mBERT AraBERTv0.1/ v1
SA (HARD) Acc. 95.7* 95.7 96.2 / 96.1
SA (ASTD) Acc. 86.5* 80.1 92.2 / 92.6
SA (ArsenTD-Lev) Acc. 52.4* 51.0 58.9 / 59.4
SA (AJGT) Acc. 92.6** 83.6 93.1 / 93.8
SA (LABR) Acc. 87.5† 83.0 85.9 / 86.7

NER (ANERcorp) macro-F1 81.7†† 78.4 84.2 / 81.9

Exact Match 34.2 30.1 / 30.6
QA (ARCD) macro-F1 mBERT 61.3 61.2 / 62.7

Sent. Match 90.0 93.0 / 92.0
* (ElJundi et al., 2019)
** (Dahou et al., 2019b)
† (Dahou et al., 2019b)
†† Previous state of the art performance by BiLSTM-CRF model

time. An example of this, “ �éªÓA m.Ì'@” with a label B-ORG

becomes “ È@”, “ �é ª ÓA g. ” with labels B-ORG, I-ORG re-
spectively, providing misleading starting cues to the model.
Testing multilingual BERT, it proved inefficient as we got
results lower than the baseline model.

Question Answering While the results in Table 1 show
an improvement in F1-score, the exact match scores were
significantly lower. Upon further examination of the re-
sults, the majority of the erroneous answers differed from
the true answer by one or two words with no significant im-
pact on the semantics of the answer. Examples are shown
in Tables 2 and 3. We also report a 2% absolute increase
in the sentence match score over mBERT, which is the pre-
vious state-of-the-art. Sentence Match (SM) measures the
percentage of predictions that are within the same sentence
as the ground truth answer.

Table 2: Example of an erroneous results from the ARCD
test set: the only difference is the preposition “ú

	̄ - In”.

Question ? �èYj�JÖÏ @ Õ×

B@ �éÒ 	¢	JÓ �I��

A�K 	áK

�
@

where was the united nations established?

Ground Truth In San Francisco – ñº��
�	�Q 	̄ 	àA� ú

	̄

Predicted Answer San Francisco – ñº��
�	�Q 	̄ 	àA�

Table 3: Another example of an erroneous results from the
ARCD test set: the predicted answer does not include “in-
troductory” words.

Question ? A�Ò	JË @ �éËðYK. �A	mÌ'@ ÐA 	¢ 	JË @ ñë AÓ
What is the type of government in Austria?

Ground Truth Austria is a federal republic – �éJ
Ë @PYJ
 	̄ �éKPñêÔg. ù
 ë A�Ò	JË @
Predicted Answer A federal republic – �éJ
Ë @PYJ
 	̄ �éKPñêÔg.

5.3. Discussion
AraBERT achieved state-of-the-art performance on senti-
ment analysis, named entity recognition, and the question
answering tasks. This adds truth to the assumption that pre-
trained language models on a single language only surpass

the performance of a multilingual model. This jump in per-
formance has many explanations. First, data size is a clear
factor for the boost in performance. AraBERT used around
24GB of data in comparison with the 4.3G Wikipedia used
for the multilingual BERT. Second, the vocab size used in
the multilingual BERT is 2k tokens in comparison with 64k
vocab size used for developing AraBERT. Third, with the
large data size, the pre-training distribution has more di-
versity. As for the fourth point, the pre-segmentation ap-
plied before BERT tokenization improved performance on
SA and QA tasks but reduced it on the NER task. It is also
noted that the pre-processing applied to the pre-training
data took into consideration the complexities of the Arabic
language. Hence, increased the effective vocabulary by ex-
cluding unnecessary redundant tokens that come with cer-
tain common prefixes, and help the model learn better by
reducing the language complexity. We believe these fac-
tors helped to reach state-of-the-art results on 3 different
tasks and 8 different datasets. Obtained results indicate that
the advantage we got in the datasets considered are better
understood in a monolingual model than of a general lan-
guage model trained on Wikipedia crawls such as multilin-
gual BERT.

6. Conclusion
AraBERT sets a new state-of-the-art for several down-
stream tasks for Arabic language. It is also 300MB
smaller than multilingual BERT. By publicly releasing our
AraBERT models, we hope that it will be used to serve
as the new baseline for the various Arabic NLP tasks, and
hope that this work will act as a footing stone to building
and improving future Arabic language understanding mod-
els. We are currently working on publishing an AraBERT
version that won’t depend on external tokenizers. We are
also in the process of training models with a better under-
standing of the various dialects that the Arabic language has
across different Arabic countries.

7. Acknowledgments
We would like to express special thanks to Dr. Ramy Baly
(Massachusetts Institute of Technology) for the useful dis-
cussions and suggestions, to Dr. Dirk Goldhahn (Univer-
sität Leipzig) for access to the OSIAN dataset, to TFRC for
the free access to cloud TPUs, and to As-Safir newspaper,
and Yakshof for providing us with their news articles.

8. References
Abdelali, A., Darwish, K., Durrani, N., and Mubarak, H.

(2016). Farasa: A fast and furious segmenter for ara-
bic. In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational
Linguistics: Demonstrations, pages 11–16.

Abdul-Mageed, M., Alhuzali, H., and Elaraby, M. (2018).
You tweet what you speak: A city-level dataset of ara-
bic dialects. In Proceedings of the Eleventh Interna-
tional Conference on Language Resources and Evalua-
tion (LREC 2018).

Abu Farha, I. and Magdy, W. (2019). Mazajak: An online
Arabic sentiment analyser. In Proceedings of the Fourth

13

Arabic Natural Language Processing Workshop, pages
192–198, Florence, Italy, August. Association for Com-
putational Linguistics.

Adiwardana, D., Luong, M.-T., So, D. R., Hall, J., Fiedel,
N., Thoppilan, R., Yang, Z., Kulshreshtha, A., Nemade,
G., Lu, Y., and Le, Q. V. (2020). Towards a human-like
open-domain chatbot.

Al Sallab, A., Hajj, H., Badaro, G., Baly, R., El-Hajj, W.,
and Shaban, K. (2015). Deep learning models for sen-
timent analysis in arabic. In Proceedings of the second
workshop on Arabic natural language processing, pages
9–17.

Al-Sallab, A., Baly, R., Hajj, H., Shaban, K. B., El-Hajj,
W., and Badaro, G. (2017). Aroma: A recursive deep
learning model for opinion mining in arabic as a low re-
source language. ACM Transactions on Asian and Low-
Resource Language Information Processing (TALLIP),
16(4):1–20.

Alomari, K. M., ElSherif, H. M., and Shaalan, K. (2017).
Arabic tweets sentimental analysis using machine learn-
ing. In International Conference on Industrial, Engi-
neering and Other Applications of Applied Intelligent
Systems, pages 602–610. Springer.

Aly, M. and Atiya, A. (2013). LABR: A large scale Arabic
book reviews dataset. In Proceedings of the 51st Annual
Meeting of the Association for Computational Linguis-
tics (Volume 2: Short Papers), pages 494–498, Sofia,
Bulgaria, August. Association for Computational Lin-
guistics.

Badaro, G., Baly, R., Hajj, H., Habash, N., and El-Hajj,
W. (2014). A large scale arabic sentiment lexicon for
arabic opinion mining. In Proceedings of the EMNLP
2014 workshop on arabic natural language processing
(ANLP), pages 165–173.

Baly, R., Hajj, H., Habash, N., Shaban, K. B., and El-Hajj,
W. (2017). A sentiment treebank and morphologically
enriched recursive deep models for effective sentiment
analysis in arabic. ACM Transactions on Asian and Low-
Resource Language Information Processing (TALLIP),
16(4):1–21.

Baly, R., Khaddaj, A., Hajj, H., El-Hajj, W., and Sha-
ban, K. B. (2018). Arsentd-lev: A multi-topic corpus
for target-based sentiment analysis in arabic levantine
tweets. In OSACT 3: The 3rd Workshop on Open-Source
Arabic Corpora and Processing Tools, page 37.

Benajiba, Y. and Rosso, P. (2007). Anersys 2.0: Conquer-
ing the ner task for the arabic language by combining the
maximum entropy with pos-tag information. In IICAI,
pages 1814–1823.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T.
(2017). Enriching word vectors with subword informa-
tion. Transactions of the Association for Computational
Linguistics, 5:135–146.

Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V.,
Wenzek, G., Guzmán, F., Grave, E., Ott, M., Zettle-
moyer, L., and Stoyanov, V. (2019). Unsupervised
cross-lingual representation learning at scale.

Dahou, A., Elaziz, M. A., Zhou, J., and Xiong, S. (2019a).
Arabic sentiment classification using convolutional neu-

ral network and differential evolution algorithm. Com-
putational intelligence and neuroscience, 2019.

Dahou, A., Xiong, S., Zhou, J., and Elaziz, M. A. (2019b).
Multi-channel embedding convolutional neural network
model for arabic sentiment classification. ACM Transac-
tions on Asian and Low-Resource Language Information
Processing (TALLIP), 18(4):1–23.

de Vries, W., van Cranenburgh, A., Bisazza, A., Caselli, T.,
van Noord, G., and Nissim, M. (2019). Bertje: A dutch
bert model. arXiv preprint arXiv:1912.09582.

DeepsetAI.). Open sourcing german bert.
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.

(2018). Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint
arXiv:1810.04805.

El Bazi, I. and Laachfoubi, N. (2019). Arabic named entity
recognition using deep learning approach. International
Journal of Electrical & Computer Engineering (2088-
8708), 9(3).

El-Khair, I. A. (2016). 1.5 billion words arabic corpus.
arXiv preprint arXiv:1611.04033.

ElJundi, O., Antoun, W., El Droubi, N., Hajj, H., El-Hajj,
W., and Shaban, K. (2019). hulmona: The universal lan-
guage model in arabic. In Proceedings of the Fourth Ara-
bic Natural Language Processing Workshop, pages 68–
77.

Elnagar, A., Khalifa, Y. S., and Einea, A. (2018). Ho-
tel arabic-reviews dataset construction for sentiment
analysis applications. In Intelligent Natural Language
Processing: Trends and Applications, pages 35–52.
Springer.

Erdmann, A., Zalmout, N., and Habash, N. (2018). Ad-
dressing noise in multidialectal word embeddings. In
Proceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short Pa-
pers), pages 558–565.

Howard, J. and Ruder, S. (2018). Universal language
model fine-tuning for text classification. arXiv preprint
arXiv:1801.06146.

Huang, Z., Xu, W., and Yu, K. (2015). Bidirectional
lstm-crf models for sequence tagging. arXiv preprint
arXiv:1508.01991.

Kudo, T. (2018). Subword regularization: Improving neu-
ral network translation models with multiple subword
candidates.

Kwiatkowski, T., Palomaki, J., Redfield, O., Collins, M.,
Parikh, A., Alberti, C., Epstein, D., Polosukhin, I., Kel-
cey, M., Devlin, J., Lee, K., Toutanova, K. N., Jones, L.,
Chang, M.-W., Dai, A., Uszkoreit, J., Le, Q., and Petrov,
S. (2019). Natural questions: a benchmark for question
answering research. Transactions of the Association of
Computational Linguistics.

Lafferty, J. D., McCallum, A., and Pereira, F. C. (2001).
Conditional random fields: Probabilistic models for seg-
menting and labeling sequence data. In ICML.

Lample, G., Ballesteros, M., Subramanian, S., Kawakami,
K., and Dyer, C. (2016). Neural architectures for named
entity recognition. arXiv preprint arXiv:1603.01360.

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma,

14

P., and Soricut, R. (2019). Albert: A lite bert for self-
supervised learning of language representations.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
(2019). Roberta: A robustly optimized bert pretraining
approach.

Martin, L., Muller, B., Suárez, P. J. O., Dupont, Y., Ro-
mary, L., Éric Villemonte de la Clergerie, Seddah, D.,
and Sagot, B. (2019). Camembert: a tasty french lan-
guage model.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. (2013). Distributed representations of words
and phrases and their compositionality. In Advances
in neural information processing systems, pages 3111–
3119.

Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., and
Joulin, A. (2017). Advances in pre-training distributed
word representations. arXiv preprint arXiv:1712.09405.

Mozannar, H., Maamary, E., El Hajal, K., and Hajj, H.
(2019). Neural arabic question answering. In Proceed-
ings of the Fourth Arabic Natural Language Processing
Workshop, pages 108–118.

Nabil, M., Aly, M., and Atiya, A. (2015). ASTD: Ara-
bic sentiment tweets dataset. In Proceedings of the
2015 Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2515–2519, Lisbon, Portugal,
September. Association for Computational Linguistics.

Pennington, J., Socher, R., and Manning, C. (2014).
Glove: Global vectors for word representation. In Pro-
ceedings of the 2014 conference on empirical methods
in natural language processing (EMNLP), pages 1532–
1543.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark,
C., Lee, K., and Zettlemoyer, L. (2018). Deep contextu-
alized word representations. In Proceedings of NAACL-
HLT, pages 2227–2237.

Polignano, M., Basile, P., de Gemmis, M., Semeraro, G.,
and Basile, V. (2019). AlBERTo: Italian BERT Lan-
guage Understanding Model for NLP Challenging Tasks
Based on Tweets. In Proceedings of the Sixth Ital-
ian Conference on Computational Linguistics (CLiC-it
2019), volume 2481. CEUR.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. (2019). Ex-
ploring the limits of transfer learning with a unified text-
to-text transformer.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. (2016).
Squad: 100,000+ questions for machine comprehension
of text. arXiv preprint arXiv:1606.05250.

Ratnaparkhi, A. (1998). Maximum entropy models for nat-
ural language ambiguity resolution.

Sang, E. F. and De Meulder, F. (2003). Introduction to the
conll-2003 shared task: Language-independent named
entity recognition. arXiv preprint cs/0306050.

Soliman, A. B., Eissa, K., and El-Beltagy, S. R. (2017).
Aravec: A set of arabic word embedding models for use
in arabic nlp. Procedia Computer Science, 117:256–265.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,

L., Gomez, A. N., Kaiser, L., and Polosukhin, I. (2017).
Attention is all you need.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov,
R., and Le, Q. V. (2019). Xlnet: Generalized autore-
gressive pretraining for language understanding.

Zeroual, I., Goldhahn, D., Eckart, T., and Lakhouaja, A.
(2019). OSIAN: Open source international Arabic news
corpus - preparation and integration into the CLARIN-
infrastructure. In Proceedings of the Fourth Arabic Nat-
ural Language Processing Workshop, pages 175–182,
Florence, Italy, August. Association for Computational
Linguistics.

Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urtasun,
R., Torralba, A., and Fidler, S. (2015). Aligning books
and movies: Towards story-like visual explanations by
watching movies and reading books.

15

Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, pages 16–23
with a Shared Task on Offensive Language Detection.

Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020
c© European Language Resources Association (ELRA), licensed under CC-BY-NC

AraNet: A Deep Learning Toolkit for Arabic Social Media

Muhammad Abdul-Mageed, Chiyu Zhang, Azadeh Hashemi, El Moatez Billah Nagoudi
Natural Language Processing Lab, University of British Columbia
{muhammad.mageeed, azadeh.hashemi, moatez.nagoudi}@ubc.ca

chiyuzh@mail.ubc.ca

Abstract
We describe AraNet, a collection of deep learning Arabic social media processing tools. Namely, we exploit an extensive host of both
publicly available and novel social media datasets to train bidirectional encoders from transformers (BERT) focused at social meaning
extraction. AraNet models predict age, dialect, gender, emotion, irony, and sentiment. AraNet either delivers state-of-the-art performance
on a number of these tasks and performs competitively on others. AraNet is exclusively based on a deep learning framework, giving it
the advantage of being feature-engineering free. To the best of our knowledge, AraNet is the first to performs predictions across such a
wide range of tasks for Arabic NLP. As such, AraNet has the potential to meet critical needs. We publicly release AraNet to accelerate
research, and to facilitate model-based comparisons across the different tasks.

1. Introduction
The proliferation of social media has made it possible to
study large online communities at scale. This offers oppor-
tunities to make important discoveries, facilitate decision
making, guide policies, improve health and well-being, aid
disaster response, attend to population needs in pandemics
such as the current COVID-19, etc. The wide host of lan-
guages, languages varieties, and dialects used on social me-
dia and the nuanced differences between users of various
backgrounds (e.g., different age groups, gender identities)
make it especially difficult to derive sufficiently valuable in-
sights based on single prediction tasks. For these reasons,
it is highly desirable to develop natural language process-
ing (NLP) tools that can help piece together more complete
pictures of events impacting individuals of different identi-
ties across different geographic regions. In this work, we
propose AraNet , a suit of tools that has the promise to play
such a role of Arabic social media processing.

For Arabic, a collection of languages and varieties spo-
ken by a wide population of ∼ 400 million native speakers
covering a vast geographical region (shown in Figure 1),
no such suite of tools currently exists. Many works have
focused on sentiment analysis, e.g., (Abdul-Mageed et al.,
2014a; Nabil et al., 2015; ElSahar and El-Beltagy, 2015;
Al Sallab et al., 2015; Al-Moslmi et al., 2018; Al-Smadi
et al., 2019; Al-Ayyoub et al., 2019; Farha and Magdy,
2019) and dialect identification (Elfardy and Diab, 2013;
Zaidan and Callison-Burch, 2011; Zaidan and Callison-
Burch, 2014; Cotterell and Callison-Burch, 2014; Zhang
and Abdul-Mageed, 2019b; Bouamor et al., 2019a). How-
ever, there is rarity of tools for other tasks such as gender
and age detection. This motivates our toolkit, which we
hope can meet the current critical need for studying Ara-
bic communities online. This is especially valuable given
the waves of protests, uprisings, and revolutions that have
swept the region during the last decade.

Although we create new models for tasks such as senti-
ment analysis and gender detection as part of AraNet, our
primary focus is to provide strong baselines across the vari-
ous tasks. We believe this will facilitate comparisons across
models. This is particularly useful due to absence of stan-
dardization across datasets for many of the tasks, and given

Figure 1: A map of Arab countries. Our different datasets
cover varying regions of the Arab world as we describe in
each section.

Figure 2: AraNet usage and output as a Python library.

the somewhat ephemeral nature of parts of some types of
these data. In particular, many tasks are developed based
on social media posts such as tweets that are distributed
under restrictive conditions. For example, Twitter terms re-
quire release of data only in the form of tweet ids, making it
challenging to acquire 100% of these tweets especially once
the data are several months old. These reasons make model-
based comparisons appealing, as a way to measure research
progress in absence of easy benchmarking. Our general
approach is to adopt sensible baselines across the various
AraNet tasks, but we do not necessarily explicitly compare
to all previous research. This is the case since most exist-
ing works either exploit smaller data (and so it will not be

16

a fair comparison), use methods pre-dating BERT (and so
will likely be outperformed by our models). In addition, we
note that although it would have been possible to acquire
better results by feature engineering (especially on smaller
datasets), our main goal is to keep our models free of labo-
rious feature engineering. In some tasks, we even acquire
better results that what is reported here by adopting more
involved methods. But, again, we do our best here to keep
all models relatively comparable (and as simple as possi-
ble) in terms of the methods employed to acquire them. Our
hope is that, by adopting model-based comparisons, we can
help accelerate progress on Arabic social media processing.
For these reasons, we also package models from our recent
works on dialect (Zhang and Abdul-Mageed, 2019b) and
irony (Zhang and Abdul-Mageed, 2019a) as part of AraNet.

The rest of the paper is organized as follows: In Sec-
tion 2. we describe our methods. In Section 3., we describe
or refer to published literature for the data we exploit for
each task. Also in Section 3., we provide results from our
models. Section 4. is about AraNet design and use, and
Section 5. is about ethical considerations. We overview
related works in Section 6., and conclude in Section 7..

2. Methods

2.1. Supervised BERT
Transformer. Across all our tasks, we use Bidi-
rectional Encoder Representations from Transformers
(BERT). BERT is based on the Transformer architecture
of (Vaswani et al., 2017), which we briefly introduce here.
The Transformer depends solely on self-attention, thus al-
lowing for parallelizing the network (unlike RNNs). It is an
encoder-decoder architecture where the encoder takes a se-
quence of symbol representations x(i) . . . x(n), maps them
into a sequence of continuous representations z(i) . . . x(n)

that are then used by the decoder to generate an output
sequence y(i) . . . y(n), one symbol at a time. This is per-
formed using self-attention, where different positions of a
single sequence are related to one another. The Transformer
employs an attention mechanism based on a function that
operates on queries, keys, and values. The attention func-
tion maps a query and a set of key-value pairs to an output,
where the output is a weighted sum of the values. For each
value, a weight is computed as a compatibility function of
the query with the corresponding key. This particular ver-
sion of attention is a scaled dot product of queries and keys
(each of dk) that is scaled by a factor of 1√

dk
on which

a softmax is applied to acquire the weights on the values.
The scaled dot product attention is computed as as a set
of queries, keys, and values in three matrices Q, K, and V,
respectively, follows:

Attention (Q, K, V) = softmax

(
QKT

√
dk

)
V (1)

Encoder of the Transformer in (Vaswani et al., 2017) has 6
attention layers, each of which has h attention heads (multi-
head attention) to allow the model to jointly attend to infor-
mation from different representation subspaces across dif-
ferent positions. Each of the 6 layers also has a simple,

fully-connected feed-forward network (FFN) that is applied
to each position separately and identically that different pa-
rameters across the different layers. Decoder of the Trans-
former is similar to the encoder but has a third sub-layer
that performs multi-head attention over the encoder stack.
Since the Transformer discards with both recurrence and
convolution, it resorts to the so-called positional encoding
(based on sin and cosine functions) at the bottoms of the
encoder and decoder stacks as a way to capture order of the
sequence. We now introduce BERT.

BERT. BERT involves two self-supervised learning
tasks, (1) masked language models (Masked LM) and (2)
next sentence prediction. Since BERT uses bidirectional
conditioning, a given percentage of random input tokens
are masked and the model attempts to predict these masked
tokens. This is the Masked LM task, where masked to-
kens are simply replaced by a string [MASK] . (Devlin et
al., 2018) mask 15% of the tokens (the authors use Word-
Pieces) and feed the final hidden vectors of these masked
tokens to an output softmax over the vocabulary. The next
sentence prediction task is just binary classification. For
a given sentence S, two sentences A and B are generated
where A (positive class) is an actual sentence from the cor-
pus and B is a randomly chosen sentence (negative class).
Once trained on an unlabeled dataset, BERT can then be
fine-tuned with supervised data for a downstream task (e.g.,
text classification, question answering).

All our models are trained in a fully supervised fashion,
with dialect id being the only task where we leverage semi-
supervised learning. We briefly outline our semi-supervised
methods next.

2.2. Self-Training
Only for the dialect id task, we investigate augment-
ing our human-labeled training data with automatically-
predicted data from self-training. Self-training is a wrap-
per method for semi-supervised learning (Triguero et al.,
2015; Pavlinek and Podgorelec, 2017) where a classifier is
initially trained on a (usually small) set of labeled samples
Dl, then is used to classify an unlabeled sample set Du.
Most confident predictions acquired by the original super-
vised model are added to the labeled set, and the model is
iteratively re-trained. We perform self-training using differ-
ent confidence thresholds and choose different percentages
from predicted data to add to our dialect training set. We
only report best settings here, and the reader is referred
to our winning system on the MADAR shared task for
more details on these different settings (Zhang and Abdul-
Mageed, 2019b).

2.3. Implementation & Models Parameters
For all our tasks, we use the BERT-Base Multilingual Cased
model released by the authors 1. The model is trained
on 104 languages (including Arabic) with 12 layer, 768
hidden units each, 12 attention heads, and has 110M pa-
rameters in entire model. The model has 119,547 shared
WordPieces vocabulary, and was pre-trained on the entire

1https://github.com/google-research/bert/
blob/master/multilingual.md.

17

Wikipedia for each language. For fine-tuning, we use a
maximum sequence size of 50 tokens and a batch size of
32. We set the learning rate to 2e − 5 and train for 15
epochs 2 and choose the best model based on performance
on a development set. We use the same hyper-parameters
in all of our BERT models. We fine-tune BERT on each
respective labeled dataset for each task. For BERT input,
we apply WordPiece tokenization, setting the maximal se-
quence length to 50 words/WordPieces. For all tasks, we
use a TensorFlow implementation. An exception is the sen-
timent analysis task, where we used a PyTorch implemen-
tation with the same hyper-parameters but with a learning
rate 2e− 6. 3

Pre-processing. Most of our training data in all tasks
come from Twitter. Exceptions are in some of the datasets
we use for sentiment analysis, which we point out in Sec-
tion 3.5.. Our pre-processing thus incorporates methods to
clean tweets, other datasets (e.g., from the news domain)
being much less noisy. For pre-processing, we remove all
usernames, URLs, and diacritics in the data.

3. Data and Models
3.1. Age and Gender
Arab-Tweet. For modeling age and gender, we use Arap-
Tweet (Zaghouani and Charfi, 2018) 4, which we will re-
fer to as Arab-Tweet. Arab-tweet comprises 11 Arabic re-
gions from 17 different countries. 5 For each region, data
from 100 Twitter users were crawled. Users needed to have
posted at least 2,000 tweets and were selected based on
an initial list of seed words characteristic of each region.
The seed list included words such as �é ��QK. /barsha/ ‘many’
for Tunisian Arabic and YK
@ð /wayed/ ‘many’ for Gulf Ara-
bic. (Zaghouani and Charfi, 2018) employed human anno-
tators to verify that users do belong to each respective re-
gion. Annotators also assigned gender labels from the set
male, female and age group labels from the set under-25,
25-to34, above-35 at the user-level, which in turn is the tag
for tweet level. Tweets with less than 3 words and re-tweets
were removed. Refer to (Zaghouani and Charfi, 2018) for
details about how annotation was carried out. We provide
a description of the data in Table 1. Table 1 also provides
class breakdown across our splits.We note that (Zaghouani
and Charfi, 2018) do not report classification models ex-
ploiting the data. Although age and gender are user-level
tasks, note that we train tweet-level age and gender models.
However, tweet-level models can easily be ported to user-
level by simply taking the majority class based on softmax-
thresholding as we show in (Zhang and Abdul-Mageed,
2019b). 6

2For dialect id, we trained only for 10 epochs. This was based
on monitoring loss on a development set.

3We find this learning rate to work better when we use Py-
Torch.

4The resource is an Arabic profiling dataset, and hence the
sequence “Arap” with an “p”.

5Counts are based on the distribution we received from the
authors.

6Arab-Tweet is also distribute only with tweet-level labels
(i.e., without user ids), thus making it not possible to model age
and gender at the user level exploiting the data.

We shuffle the Arab-tweet dataset and split it into 80%
training (TRAIN), 10% development (DEV), and 10% test
(TEST). The distribution of classes in our splits is in Ta-
ble 1. For pre-processing, we reduce 2 or more consecu-
tive repetitions of the same character into only 2 and re-
move diacritics. With this dataset, we train a small unidi-
rectional GRU (small-GRU) with a single 500-units hidden
layer and dropout= 0.5 as a baseline. Small-GRU is trained
with the TRAIN set, batch size = 8, and up to 30 words of
each sequence. Each word in the input sequence is repre-
sented as a trainable 300-dimension vector. We use the top
100K words from TRAIN which are weighted by mutual
information as our vocabulary in the embedding layer. We
evaluate the model on the blind TEST set. Table 2 shows
that small-GRU obtains 36.29% acc. on age classification,
and 53.37% acc. on gender detection. Table 2 also shows
performance of the fine-tuned BERT model. BERT signif-
icantly outperforms our baseline on the two tasks. It im-
proves 15.13% acc. (for age) and 11.93% acc. (for gender)
over the small-GRU.

UBC Twitter Gender Dataset. We also develop an
in-house Twitter dataset for gender. We manually labeled
1,989 users from each of the 21 Arab countries. The data
had 1,246 “male”, 528 “female”, and 215 unknown users.
We remove the “unknown” category and balance the dataset
to have 528 from each of the two “male” and “female”
categories. We ended with 69,509 tweets for “male” and
67,511 tweets for “female”. We split the users into 80%
TRAIN (110,750 tweets for 845 users), 10% DEV (14,158
tweets for 106 users), and 10% TEST (12,112 tweets for
105 users). We then model this dataset with BERT and
evaluate on DEV and TEST. Table 3 shows that fine-tuned
model obtains 62.42% acc. on DEV and 60.54% acc. on
TEST. These results are 2.89% and 4.76% less than perfor-
mance on Arab-Tweet, perhaps reflecting more diversity in
UBC-Gender data which also makes it more challenging.
Another potential reason for this accuracy drop could be
that, for this tweet-level task, some tweets from the same
user occur across our TRAIN/DEV/TEST splits. This was
unavoidable since Arab-Tweet is distributed without user
ids, thus not making it possible for us to prevent user-level
data leakage into the two tweet-level classification tasks
of age and gender we report here. We alleviate this issue
for gender by annotating and developing on UBC-Gender
where we control for user-level data distribution across the
splits as explained earlier.

We also combine the Arab-tweet gender dataset with our
UBC-Gender dataset for gender on training, development,
and test, respectively, to obtain new TRAIN, DEV, and
TEST. We fine-tune BERT on the combined TRAIN and
evaluate on combined DEV and TEST. As Table 3 shows,
the model obtains 65.32% acc. on combined DEV, and
65.32% acc. on combined TEST. This is the model we
package in AraNet.

3.2. Dialect
The dialect identification model in AraNet is based on our
winning system in the MADAR shared task 2 (Bouamor
et al., 2019b) as described in (Zhang and Abdul-Mageed,
2019b). The corpus is divided into training, development,

18

Data split Under 25 25 until 34 35 and up # of tweetsFemale Male Female Male Female Male
TRAIN 215,950 213,249 207,184 248,769 174,511 226,132 1,285,795
DEV 27,076 26,551 25,750 31,111 21,942 28,294 160,724
TEST 26,878 26,422 25,905 31,211 21,991 28,318 160,725
ALL 269,904 266,222 258,839 311,091 218,444 282,744 1,607,244

Table 1: Distribution of age and gender classes in our Arab-Tweet data splits

Age Gender
DEV TEST DEV TEST

small-GRU 36.13 36.29 53.39 53.37
BERT 50.95 51.42 65.31 65.30

Table 2: Model performance in accuracy of Arab-Tweet age
and gender classification tasks.

DEV TEST
UBC TW Gender 62.42 60.54
Gender comb 65.32 65.32

Table 3: Model performance in accuracy.
UBC TW Gender refers to the model trained on UBC
Twitter Gender dataset. Gender Comb denotes the model
trained on the Arab-Tweet and UBC-Gender combined
TRAIN data split. Each model is evaluated on the
corresponding DEV and TEST sets.

and test; and the organizers masked test set labels. We lost
some tweets from TRAIN when we crawled using tweet
ids, ultimately acquiring 2,036 (TRAIN-A), 281 (DEV) and
466 (TEST). We also make use of the task 1 corpus (95,000
sentences (Bouamor et al., 2018)). More specifically, we
concatenate the task 1 data to the training data of task 2, to
create TRAIN-B. Again, note that TEST labels were only
released to participants after the official task evaluation. Ta-
ble 4 shows statistics of the data. More information about
the data is in (Bouamor et al., 2018). We use TRAIN-A to
perform supervised modeling with BERT and TRAIN-B for
self training, under various conditions. We refer the reader
to (Zhang and Abdul-Mageed, 2019b) for more informa-
tion about our different experimental settings on dialect id.
We acquire our best results with self-training, with a classi-
fication accuracy of 49.39% and F1 score at 35.44. This is
the winning system model in the MADAR shared task and
we showed in (Zhang and Abdul-Mageed, 2019b) that our
tweet-level predictions can be ported to user-level predic-
tion. On user-level detection, our models perform superbly,
with 77.40% acc. and 71.70% F1 score on unseen MADAR
TEST.

of tweets
TRAIN DEV TEST

TRAIN-A 193,086 26,588 43,909
TRAIN-B 288,086 – –

Table 4: Distribution of classes within the MADAR twitter
corpus.

3.3. Emotion
We make use of two datasets, LAMA-DINA and LAMA-
DIST (Alhuzali et al., 2018). The LAMA-DINA dataset
is a Twitter dataset with a combination of gold labels
from (Abdul-Mageed et al., 2016) and distant supervision
labels. The tweets are labeled with the Plutchik 8 primary
emotions from the set: {anger, anticipation, disgust, fear,
joy, sadness, surprise, trust}. The distant supervision ap-
proach depends on use of seed phrases with the Arabic first
person pronoun A 	K @ (Eng. “I”) + a seed word expressing an
emotion, e.g., 	àAgQ 	̄ (Eng. “happy”). The manually labeled
part of the data comprises tweets carrying the seed phrases
verified by human annotators 9, 064 tweets for inclusion of
the respective emotion. LAMA-DIST (182, 605 tweets) 7 is
only labeled using distant supervision. For more informa-
tion about the dataset, readers are referred to (Alhuzali et
al., 2018). The data distribution over the emotion classes is
in Table 5. We combine LAMA+DINA and LAMA-DIST
training set and refer to this new training set as LAMA-D2
(189, 903 tweets). We fine-tune BERT on the LAMA-D2
and evaluate the model with same DEV and TEST sets from
LAMA+DINA. On DEV set, the fine-tuned BERT model
obtains 61.43% acc. and 58.83 F1. On TEST set, we ac-
quire 62.38% acc. and 60.32% F1.

LAMA+DINA LAMA-DIST
% # %

anger 1,038 11.45 3,650 2.00
anticipation 933 10.29 24,672 13.51
disgust 1,069 11.79 2,478 1.36
fear 1,434 15.82 28,315 15.51
happy 1,364 15.05 55,253 30.26
sad 1,195 13.18 27,584 15.11
surprise 1,167 12.88 15,106 8.27
trust 864 9.53 25,547 13.99
total 9,064 100.00 182,605 100.00

Table 5: Emotion class distribution in LAMA+DINA and
LAMA-DIST datasets.

3.4. Irony
We use the dataset for irony identification on Arabic tweets
released by IDAT@FIRE2019 shared task (Ghanem et al.,
2019). The shared task dataset contains 5, 030 tweets re-
lated to different political issues and events in the Mid-
dle East taking place between 2011 and 2018. Tweets are

7These statistics are based on minor cleaning of the data to
remove short tweets < 3 words and residuals of the seeds used
for collecting the data.

19

collected using pre-defined keywords (i.e., targeted politi-
cal figures or events) and the positive class involves ironic
hashtags such as #sokhria, #tahakoum, and #maskhara
(Arabic variants for “irony”). Duplicates, retweets, and
non-intelligible tweets are removed by organizers. Tweets
involve both MSA as well as dialects at various degrees of
granularity such as Egyptian, Gulf, and Levantine.
IDAT@FIRE2019 (Ghanem et al., 2019) is set up as a bi-
nary classification task where tweets are assigned labels
from the set {ironic, non-ironic}. A total of 4, 024 tweets
were released by organizers as training data. In addition,
a total of 1, 006 tweets were used by organizers as TEST
data. TEST labels were not release; and teams were ex-
pected to submit the predictions produced by their systems
on the TEST split. For our models, we split the 4, 024 re-
leased training data into 90% TRAIN (n = 3, 621 tweets;
‘ironic’= 1, 882 and ‘non-ironic’= 1, 739) and 10% DEV
(n = 403 tweets; ‘ironic’= 209 and ‘non-ironic’= 194).
We use the same small-GRU architecture of Section 3.1
as our baselines. We fine-tune BERT on our TRAIN, and
evaluate on DEV. The small-GRU obtain 73.70% acc. and
73.47% F1 score. BERT model significantly outperforms
the small-GRU, acquiring 81.64% acc. and 81.62% F1

score.

Acc F1

small-GRU 73.70 73.47
BERT 81.64 81.62

Table 6: Model performance on irony detection.

3.5. Sentiment
We collect 15 datasets related to sentiment analysis of Ara-
bic, including MSA and dialects (Abdul-Mageed and Diab,
2012; Abdulla et al., 2013; Abdul-Mageed et al., 2014b;
Nabil et al., 2015; Kiritchenko et al., 2016; Aly and Atiya,
2013; Salameh et al., 2015; Rosenthal et al., 2017; Alomari
et al., 2017; Mohammad et al., 2018; Baly et al., 2019).
Table 8 shows all the corpora we use. The datasets involve
different types of sentiment analysis tasks such as binary
classification (i.e., negative or positive), 3-way classifica-
tion (i.e., negative, neutral, or positive), and subjective lan-
guage detection. To combine these datasets for binary sen-
timent classification, we normalize different types of labels
to binary tags in the set {‘positive′, ‘negative′} using the
following rules:

• Map {Positive, Pos, or High-Pos} to ‘positive’

• Map {Negative, Neg, or High-Neg} to ‘negative’

• Exclude samples whose label is not ‘positive’ or ‘neg-
ative’ such as ‘obj’, ‘mixed’, ‘neut’, or ‘neutral’.

After label normalization, we obtain 126, 766 samples. We
split this resulting dataset into 80% training (TRAIN), 10%
development (DEV), and 10% test (TEST). The distribution
of classes in our splits is presented in Table 7. We fine-
tune pre-trained BERT on the TRAIN set using PyTorch
implementation with 2e − 6 learning rate and 15 epochs,
as explained in Section 2.. Our best model on the DEV set

obtains 80.24% acc. and 80.24% F1. We evaluate this best
model on TEST set and obtain 77.31% acc. and 76.67%
F1.

TRAIN DEV TEST
pos 61,555 7,030 7,312
neg 39,044 7,314 4,511
Total 100,599 14,344 11,823

Table 7: Distribution of sentiment classes in our data splits.

4. AraNet Design and Use
AraNet consists of identifier tools including age, gender, dialect,
emotion, irony and sentiment. Each tool comes with an embedded
model. The tool comes with modules for performing normaliza-
tion and tokenization. AraNet can be used either as (1) a Python
library or (2) a command-line and interactive tool, as follows:

AraNet as a Python Library: Importing AraNet module as a
Python library provides identifier functions. Prediction is based
on a text input or a path to a file, and returns the identified class
label. The library also returns the probability distribution over all
available class labels if needed. This probability is the outcome of
the softmax function applied to the last layer (with logits) in each
model. Figure 2 shows two examples of using the tool as Python
library.

AraNet as a Command-Line and Interactive Tool: AraNet
provides scripts supporting both command-line and interactive
mode. Command-line mode accepts a text or file path. Interac-
tion mode is good for quick interactive line-by-line experiments
and also pipeline re-directions.

Figure 3: AraNet usage examples as command-line mode,
pipeline, and interactive mode.

AraNet is available through pip or from source on GitHub 12 with
detailed documentation.

5. Ethical Considerations
AraNet is trained on data collected from publicly available

sources. The distribution of classes across the different tasks are
reasonably balanced as listed in the respective sections in the cur-
rent paper. Meanwhile, we note that we have not used AraNet in
real-world situations, nor tested any bias its decisions could in-
volve. As a result, we advise against using AraNet in decision

12https://github.com/UBC-NLP/aranet

20

Authors Task Sources # Data #Class Classes MSA/DIA
Abdul-Mageed and Diab

(2012)
SSA Wiki.8, PAT9,

Forums
5, 382 4 Obj, Subj, Pos, Neg and

Neut
MSA

Abdulla et al. (2013) SA Twitter, 2000 2 Pos, Neg MSA
Abdul-Mageed et al.

(2014b)
SSA Maktoob10,

Twitter
11918 3 Obj, Subj Pos, Subj Neg

and Subj Mixed
MSA+DIA

Nabil et al. (2015) SSA Twitter 10000 4 Obj, Subj Pos, Subj Neg
and Subj Mixed

MSA

Kiritchenko et al. (2016) SI Twitter 1, 366 − Regression [0,1] MSA
Aly and Atiya (2013) SA Book reviews 63, 000 3 Pos, Neg, or Neut MSA
Salameh et al. (2015) SA BBN Parallel

Text11
1200 3 Pos, Neg, or Neut DIA

Salameh et al. (2015) SA Twitter 2000 3 Pos, Neg, or Neut DIA
Rosenthal et al. (2017) SA Twitter 9,500 2 Pos, or Neg MSA
Rosenthal et al. (2017) SA Twitter 3,400 3 Pos, Neut, or Neg MSA
Rosenthal et al. (2017) SA Twitter 9,450 5 High-Pos, Pos, Neut,

Neg, Hihg-Neg
MSA

Alomari et al. (2017) SA Twitter 1800 3 Pos or Neg DIA
Mohammad et al. (2018) SA Twitter 1,800 7 Various levels of Pos,

Neg or Neut [-3,3]
MSA

Saad (2019)* SA Twitter 58,751 2 Pos, or Neg DIA
Baly et al. (2019) SA Twitter 4,000 5 High-Pos, Pos, Neut,

Neg, Hihg-Neg
DIA

Table 8: Sentiment analysis datasets. SA: Sentiment analysis. SSA: Subjectivity and sentiment analysis. *Dataaet from
Saad (2019) is available at https://www.kaggle.com/mksaad/arabic-sentiment-twitter-corpus.

making without prior research as to what its deployment could in-
volve and how best it can be tested. We also do not approve any
use of the AraNet or its decisions in any form for manipulative,
unfair, malicious, dangerous, or otherwise unlawful (including
by international standards) causes by individuals or organiza-
tions. Our conviction is that machine-learning-based software can
be very powerful and useful, if not at times necessary, but must be
tested and deployed only carefully and ethically. AraNet is no
exception.

6. Related Works
As we pointed out earlier, there are several works on some of
the tasks but less on others. By far, Arabic sentiment analy-
sis has been the most popular task. Works focused on both
MSA (Abdul-Mageed et al., 2011; Abdul-Mageed et al., 2014a)
and dialects (Nabil et al., 2015; ElSahar and El-Beltagy, 2015;
Al Sallab et al., 2015; Al-Moslmi et al., 2018; Al-Smadi et al.,
2019; Al-Ayyoub et al., 2019; Farha and Magdy, 2019). A
number of studies have been published on dialect detection, in-
cluding (Zaidan and Callison-Burch, 2011; Zaidan and Callison-
Burch, 2014; Elfardy and Diab, 2013; Cotterell and Callison-
Burch, 2014). Some works took as their target the tasks of age
detection (Zaghouani and Charfi, 2018; Rangel et al., 2019), gen-
der detection (Zaghouani and Charfi, 2018; Rangel et al., 2019),
irony identification (Karoui et al., 2017; Ghanem et al., 2019),
and emotion analysis (Abdul-Mageed et al., 2016; Alhuzali et al.,
2018).

A number of resources and tools exist for Arabic natural lan-
guage processing, including Penn Arabic treebank (Maamouri
et al., 2004), Buckwalter Morphological Analyzer (Buckwalter,
2002), segmenters (Abdelali et al., 2016), POS taggers (Abu-
malloh et al., 2016; Diab et al., 2004), morpho-syntactic analyz-
ers (Abdul-Mageed et al., 2013; Pasha et al., 2014), subjectivity
and sentiment analysis (Abdul-Mageed, 2019; Farha and Magdy,
2019), offensive and hateful language (Elmadany et al., 2020), and

dangerous speech (Alshehri et al., 2020).

7. Conclusion
We presented AraNet, a deep learning toolkit for a host of Ara-

bic social media processing. AraNet predicts age, dialect, gen-
der, emotion, irony, and sentiment from social media posts. It de-
livers either state-of-the-art or competitive performance on these
tasks. It also has the advantage of using a unified, simple frame-
work based on the recently-developed BERT model. AraNet has
the potential to alleviate issues related to comparing across differ-
ent Arabic social media NLP tasks, by providing one way to test
new models against AraNet predictions (i.e., model-based com-
parisons). Our toolkit can be used to make important discoveries
about the Arab world, a vast geographical region of strategic im-
portance. It can enhance also enhance our understating of Arabic
online communities, and the Arabic digital culture in general.

8. Bibliographic References
Abdelali, A., Darwish, K., Durrani, N., and Mubarak, H. (2016).

Farasa: A fast and furious segmenter for arabic. In Proceed-
ings of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Demonstra-
tions, pages 11–16.

Abdul-Mageed, M. and Diab, M. T. (2012). Awatif: A multi-
genre corpus for modern standard arabic subjectivity and senti-
ment analysis. In LREC, volume 515, pages 3907–3914. Cite-
seer.

Abdul-Mageed, M., Korayem, M., and YoussefAgha, A. (2011).
“yes we can?”: Subjectivity annotation and tagging for the
health domain. In Proceedings of RANLP2011.

Abdul-Mageed, M., Diab, M., and Kübler, S. (2013). Asma:
A system for automatic segmentation and morpho-syntactic
disambiguation of modern standard arabic. In Proceedings of
the International Conference Recent Advances in Natural Lan-
guage Processing RANLP 2013, pages 1–8.

21

Abdul-Mageed, M., Diab, M., and Kübler, S. (2014a). Samar:
Subjectivity and sentiment analysis for arabic social media.
Computer Speech & Language, 28(1):20–37.

Abdul-Mageed, M., Diab, M., and Kübler, S. (2014b). Samar:
Subjectivity and sentiment analysis for arabic social media.
Computer Speech & Language, 28(1):20–37.

Abdul-Mageed, M., AlHuzli, H., and Duaa’Abu Elhija, M. D.
(2016). Dina: A multidialect dataset for arabic emotion analy-
sis. In The 2nd Workshop on Arabic Corpora and Processing
Tools, page 29.

Abdul-Mageed, M. (2019). Modeling arabic subjectivity and sen-
timent in lexical space. Information Processing & Manage-
ment, 56(2):291–307.

Abdulla, N., Mahyoub, N., Shehab, M., and Al-Ayyoub, M.
(2013). Arabic sentiment analysis: Corpus-based and lexicon-
based. In Proceedings of The IEEE conference on Applied
Electrical Engineering and Computing Technologies (AEECT).

Abumalloh, R. A., Al-Sarhan, H. M., Ibrahim, O., and Abu-Ulbeh,
W. (2016). Arabic part-of-speech tagging. Journal of Soft
Computing and Decision Support Systems, 3(2):45–52.

Al-Ayyoub, M., Khamaiseh, A. A., Jararweh, Y., and Al-Kabi,
M. N. (2019). A comprehensive survey of arabic sentiment
analysis. Information Processing & Management, 56(2):320–
342.

Al-Moslmi, T., Albared, M., Al-Shabi, A., Omar, N., and Ab-
dullah, S. (2018). Arabic senti-lexicon: Constructing pub-
licly available language resources for arabic sentiment analysis.
Journal of Information Science, 44(3):345–362.

Al Sallab, A., Hajj, H., Badaro, G., Baly, R., El Hajj, W., and Sha-
ban, K. B. (2015). Deep learning models for sentiment analy-
sis in arabic. In Proceedings of the second workshop on Arabic
natural language processing, pages 9–17.

Al-Smadi, M., Talafha, B., Al-Ayyoub, M., and Jararweh, Y.
(2019). Using long short-term memory deep neural networks
for aspect-based sentiment analysis of arabic reviews. In-
ternational Journal of Machine Learning and Cybernetics,
10(8):2163–2175.

Alhuzali, H., Abdul-Mageed, M., and Ungar, L. (2018). Enabling
deep learning of emotion with first-person seed expressions. In
Proceedings of the Second Workshop on Computational Mod-
eling of People’s Opinions, Personality, and Emotions in Social
Media, pages 25–35.

Alomari, K. M., ElSherif, H. M., and Shaalan, K. (2017). Ara-
bic tweets sentimental analysis using machine learning. In In-
ternational Conference on Industrial, Engineering and Other
Applications of Applied Intelligent Systems, pages 602–610.
Springer.

Alshehri, A., Nagoudi, E. M. B., and Abdul-Mageed, M. (2020).
Understanding and detecting dangerous speech in social me-
dia. In The 4th Workshop on Open-Source Arabic Corpora and
Processing Tools (OSACT4), LREC.

Aly, M. and Atiya, A. (2013). Labr: A large scale arabic book
reviews dataset. In Proceedings of the 51st Annual Meeting
of the Association for Computational Linguistics (Volume 2:
Short Papers), volume 2, pages 494–498.

Baly, R., Khaddaj, A., Hajj, H., El-Hajj, W., and Shaban, K. B.
(2019). Arsentd-lev: A multi-topic corpus for target-based
sentiment analysis in arabic levantine tweets. arXiv preprint
arXiv:1906.01830.

Bouamor, H., Habash, N., Salameh, M., Zaghouani, W., Rambow,
O., Abdulrahim, D., Obeid, O., Khalifa, S., Eryani, F., Erd-
mann, A., et al. (2018). The madar arabic dialect corpus and
lexicon. In Proceedings of the Eleventh International Confer-
ence on Language Resources and Evaluation (LREC-2018).

Bouamor, H., Hassan, S., and Habash, N. (2019a). The madar

shared task on arabic fine-grained dialect identification. In Pro-
ceedings of the Fourth Arabic Natural Language Processing
Workshop (WANLP19), Florence, Italy.

Bouamor, H., Hassan, S., and Habash, N. (2019b). The MADAR
Shared Task on Arabic Fine-Grained Dialect Identification. In
Proceedings of the Fourth Arabic Natural Language Process-
ing Workshop (WANLP19), Florence, Italy.

Buckwalter, T. (2002). Buckwalter arabic morphological ana-
lyzer version 1.0. Linguistic Data Consortium, University of
Pennsylvania.

Cotterell, R. and Callison-Burch, C. (2014). A multi-dialect,
multi-genre corpus of informal written arabic. In LREC, pages
241–245.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018).
Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805.

Diab, M., Hacioglu, K., and Jurafsky, D. (2004). Automatic tag-
ging of arabic text: From raw text to base phrase chunks. In
Proceedings of HLT-NAACL 2004: Short papers, pages 149–
152. Association for Computational Linguistics.

Elfardy, H. and Diab, M. T. (2013). Sentence level dialect identi-
fication in arabic. In ACL (2), pages 456–461.

Elmadany, A., Zhang, C., Abdul-Mageed, M., and Hashemi,
A. (2020). Leveraging affective bidirectional transformers
for offensive language detection. In The 4th Workshop on
Open-Source Arabic Corpora and Processing Tools (OSACT4),
LREC.

ElSahar, H. and El-Beltagy, S. R. (2015). Building large ara-
bic multi-domain resources for sentiment analysis. In Interna-
tional Conference on Intelligent Text Processing and Computa-
tional Linguistics, pages 23–34. Springer.

Farha, I. A. and Magdy, W. (2019). Mazajak: An online arabic
sentiment analyser. In Proceedings of the Fourth Arabic Natu-
ral Language Processing Workshop, pages 192–198.

Ghanem, B., Karoui, J., Benamara, F., Moriceau, V., and Rosso,
P. (2019). Idat@fire2019: Overview of the track on irony de-
tection in arabic tweets. In Mehta P., Rosso P., Majumder P.,
Mitra M. (Eds.) Working Notes of the Forum for Information
Retrieval Evaluation (FIRE 2019). CEUR Workshop Proceed-
ings. In: CEUR-WS.org, Kolkata, India, December 12-15.

Karoui, J., Zitoune, F. B., and Moriceau, V. (2017). Soukhria:
Towards an irony detection system for arabic in social media.
Procedia Computer Science, 117:161–168.

Kiritchenko, S., Mohammad, S., and Salameh, M. (2016).
Semeval-2016 task 7: Determining sentiment intensity of en-
glish and arabic phrases. In Proceedings of the 10th inter-
national workshop on semantic evaluation (SEMEVAL-2016),
pages 42–51.

Maamouri, M., Bies, A., Buckwalter, T., and Mekki, W. (2004).
The penn arabic treebank: Building a large-scale annotated ara-
bic corpus. In NEMLAR conference on Arabic language re-
sources and tools, volume 27, pages 466–467. Cairo.

Mohammad, S., Bravo-Marquez, F., Salameh, M., and Kir-
itchenko, S. (2018). Semeval-2018 task 1: Affect in tweets.
In Proceedings of The 12th International Workshop on Seman-
tic Evaluation, pages 1–17.

Nabil, M., Aly, M., and Atiya, A. (2015). Astd: Arabic senti-
ment tweets dataset. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing, pages
2515–2519.

Pasha, A., Al-Badrashiny, M., Diab, M. T., El Kholy, A., Eskan-
der, R., Habash, N., Pooleery, M., Rambow, O., and Roth, R.
(2014). Madamira: A fast, comprehensive tool for morpho-
logical analysis and disambiguation of arabic. In LREC, vol-
ume 14, pages 1094–1101.

22

Pavlinek, M. and Podgorelec, V. (2017). Text classification
method based on self-training and lda topic models. Expert
Systems with Applications, 80:83–93.

Rangel, F., Rosso, P., Charfi, A., Zaghouani, W., Ghanem, B.,
and Sánchez-Junquera, J. (2019). Overview of the track on
author profiling and deception detection in arabic. In Mehta
P., Rosso P., Majumder P., Mitra M. (Eds.) Working Notes of
the Forum for Information Retrieval Evaluation (FIRE 2019).
CEUR Workshop Proceedings. In: CEUR-WS.org, Kolkata, In-
dia, December 12-15.

Rosenthal, S., Farra, N., and Nakov, P. (2017). Semeval-2017
task 4: Sentiment analysis in twitter. In Proceedings of the
11th international workshop on semantic evaluation (SemEval-
2017), pages 502–518.

Salameh, M., Mohammad, S., and Kiritchenko, S. (2015). Sen-
timent after translation: A case-study on arabic social media
posts. In Proceedings of the 2015 conference of the North
American chapter of the association for computational linguis-
tics: Human language technologies, pages 767–777.

Triguero, I., Garcı́a, S., and Herrera, F. (2015). Self-labeled
techniques for semi-supervised learning: taxonomy, software
and empirical study. Knowledge and Information Systems,
42(2):245–284, Feb.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., Kaiser, Ł., and Polosukhin, I. (2017). Attention
is all you need. In Advances in Neural Information Processing
Systems, pages 6000–6010.

Zaghouani, W. and Charfi, A. (2018). Arap-tweet: A large multi-
dialect twitter corpus for gender, age and language variety iden-
tification. In Proceedings of the Eleventh International Confer-
ence on Language Resources and Evaluation (LREC-2018).

Zaidan, O. F. and Callison-Burch, C. (2011). The arabic online
commentary dataset: an annotated dataset of informal arabic
with high dialectal content. In Proceedings of the 49th An-
nual Meeting of the Association for Computational Linguistics:
Human Language Technologies: short papers-Volume 2, pages
37–41. Association for Computational Linguistics.

Zaidan, O. F. and Callison-Burch, C. (2014). Arabic dialect iden-
tification. Computational Linguistics, 40(1):171–202.

Zhang, C. and Abdul-Mageed, M. (2019a). Multi-task bidirec-
tional transformer representations for irony detection. In The
11th meeting of the Forum for Information Retrieval Evalua-
tion 2019.

Zhang, C. and Abdul-Mageed, M. (2019b). No army, no navy:
Bert semi-supervised learning of arabic dialects. In Proceed-
ings of the Fourth Arabic Natural Language Processing Work-
shop, pages 279–284.

23

Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, pages 24–31
with a Shared Task on Offensive Language Detection.

Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020
c© European Language Resources Association (ELRA), licensed under CC-BY-NC

Building a Corpus of Qatari Arabic Expressions

Sara Al-Mulla, Wajdi Zaghouani
Hamad Bin Khalifa University

salmulla@mail.hbku.edu.qa ; wzaghouani@hbku.edu.qa

Abstract

The current Arabic natural language processing resources are mainly build to address the Modern Standard Arabic (MSA), while we

witnessed some scattered efforts to build resources for various Arabic dialects such as the Levantine and the Egyptian dialects. We

observed a lack of resources for Gulf Arabic and especially the Qatari variety. In this paper, we present the first Qatari idioms and

expression corpus of 1000 entries. The corpus was created from on-line and printed sources in addition to transcribed recorded

interviews. The corpus covers various Qatari traditional expressions and idioms. To this end, audio recordings were collected from

interviews and an online survey questionnaire was conducted to validate our data. This corpus aims to help advance the dialectal

Arabic Speech and Natural Language Processing tools and applications for the Qatari dialect.

Keywords: Qatari Dialect, Lexical Resources, Multiword Expressions, Corpus Annotation

1. Introduction

Language and nationalism are strongly connected. In the
1950s, a revival movement called Pan-Arabism or Arabism
founded by Jurji Zaydan, encouraged the unification of the
Arabs who extend from North Africa, West Asia, and the
Atlantic Ocean to the Arabian Sea. Arabism aims to
strengthen Arab countries' alliances against outside forces.
This had an implication which resulted in adopting the
Standard Arabic as the unified official language of the
Arabic countries instead of the dialectical Arabic (Rubin,
1991). This led to the production of numerous studies about
the Mordern Standard Arabic (MSA) in different countries.

On the other hand, there is a lack of studies focusing on the
pecularities of the numerous Arabic dialectal varieties such
as the Qatari Gulf dialect.

The Qatari dialect contains many expressions borrowed
from other languages such as Turkish, Farsi, Hindi and
English. Furthermore, another factor that is believed to
have impacted the Qatari dialect is the country’s
globalization. This has made from English to be the first
used language in different sectors of the country; hence, it
may put the local dialect and especially the traditional
words at risk of being lost in the short future if there aren’t
any preservation attempts yet to face the problem.

Currently, Qatari traditional expressions are available in
limited resources, mainly in the oral form such as
traditional TV shows, interviews, and some printed books.
Several Qatari idioms and expression are no longer used by
the new generation and the only way to document such
expression is by conducting suryeys and interviews with
the older generation in Qatar and create a digital historical
archive of such expressions. Furthermore, with the rapid
development in Qatar, Doha became an international city

1 In this paper, the term expression refer to single words as

to Multiword Expressions (MWEs)

where the Arabic language became less used when
compared to English. In fact, Al-Attiyah (2013) revealed
that there is a high probability of vocabulary loss from the
Qatari dialect, especially the traditional expressions and
idioms. Furthermore, Dialectal Arabic is typically not used
on official platforms such as media, education, and others.
As mentioned by Bouamor et al. (2018), while the MSA is
the commonly used Arabic variety in public and official
events, such as culture, media, and education in the middle
east. But the MSA is not used by any speaker of Arabic in
his or her everyday interactions.

Dialectal Arabic become a hot topic recently and building
dialectal linguistic resources are needed to improve the
current situation of Dialectal Arabic processing and
applications such as dialectal Machine Translation
application covering a large number of Arabic dialects
given that each region has its own Arabic dialect, such as
Egyptian, Gulf, Yemeni, or sub-regionally (e.g., Tunisian,
Algerian, Lebanese, Syrian, Jordanian, Kuwaiti, Qatari).
Moreover, the Dialectal Arabic (DA) differs from region to
region and more precisely from city to city in each region
phonologically, lexically, and morphologically.

Given this context and the lack of resources dedicated to
the Qatari Arabic, we created a pilot corpus of 1000 Qatari
traditional expressions and idioms1 from various sources.
The expressions collected are single word or
Multiword Expressions (MWEs). The intitial version of
corpus is made freely available for the research community.
The corpus was collected from transcribed natural spoken
recordings and written dialect material collected from
various online and written sources. In the next sections, we
will present the related work and the corpus collection
methodology, the survey questionnaire design, and the
corpus details.

24

2. Related Work

Recent years have witnessed a surge in the availability of
corpora and resources for the Arabic Natural Language
Processing, the Modern Standard Arabic (MSA) variety
has received most of the attention as presented in the
surveys of Rosso (2018) and Zaghouani (2014). There are
many parallel and monolingual data collected and
annotated such as the Arabic Treebank (Maamouri et al.,
2010) and the Arabic Propbank as in Palmer et al. (2008),
Diab et al. (2008) and Zaghouani et al (2012). Other
corpora focused on building an error annotated corpus or
an Arabic diacritized corpus such as in Bouamor et al.
(2015) and Zaghouani et al. (2014). Moreover, we observed
a growing interest in collecting and processing Arabic user-
generated content from social media sources as in the
projects discussed in (Rangel et al., 2019a; Rangel et al.,
2019b; Atanasova et al., 2018; Barron-Cedeno et al.
(2018).

Recently, the dialectal Arabic has attracted a considerable
amount of research given the availability of social media
data such as the MADAR project Bouamor et al. (2018) and
Habash et al. (2018) and the ARAP-Tweet project
(Zaghouani et al. 2018). Khalifa et al. (2016) built a large
scale Gulf Arabic lexicon covering various Gulf dialects
while Laoudi et al. (2018) created a Morrocan Arabic
lexicon of words and idioms. On the other hand, Carmen
Berlinches (2019) focused on building a Syrian Arabic
idioms corpus.

Regarding the Gulf dialects, there are multiple studies
conducted by Al-Fahad (2013) who published three books
about the traditional Kuwaiti expressions and sayings.

Moreover, the Lahajat website lists the dialectal Arabic of
various Gulf States and other Arabic regions. Similarly, Al-
Badawi created the Alhewar Almotamadin website which
includes different Arabic words taken from Persia, India,
Turkey, and the West (English) created by Al-Badawi
(2013).

Furthermore, there are several studies related to Qatar. For
instance, Professor AlMuhannadi’s (2006) study examined
traditional Qatari idioms and their equivalent English
idioms. Similarly, Al-Malki (2005) wrote a book about
Qatari idioms with the purpose of use and meanings.

Also, another Qatari author Al-Malki (2015) published a
book about camels and expressions relevant to different
types of camels. His other book, published in (2005),
investigated the pearl diving industry (tools and manes of
pearls) and the related expressions. Moreover, Al-Kuwari
(2014) published an extensive study about marine life in
Qatar as well as the GCC region, in general.

Another Qatari contribution comes from AlNaama (2012)
who documented the stories, expressions, and events that

2 https://en.mo3jam.com/dialect/Qatari
3 https://bit.ly/3dFhNrw
4 http://elbadi.ahlamontada.net/t72-topic
5

http://www.ahewar.org/debat/show.art.asp?aid=360683&r

=0

took place during the Oil discovery era. Recently,
Georgetown University in Qatar created the “Qatari
phrasebook”; a smartphone application that includes 1,500
traditional Qatari words and phrases and explains the
meaning of each in English.

The pilot experiment described in this paper focused only
on the Qatari dialects given the lack of dedicated electronic
resources for the Qatari dialect.

3. Corpus Description

To build our corpus and given the lack of resources of

relied on several scattered online sources listing some

Qatari idioms and expressions and also some printed books.

Moreover, we conducted, recorded and transcribed several

interviews to enrich our corpus. We used multiple primary

and secondary sources to increase the corpus coverage and

the credibility of the acquired data (Liaquat, 2016). Finally,

to validate and annotate our data into semantic categories,

we used a crowdsourcing approach based on volunteers

who filled a survey questionnaire to validate our corpus.

3.1 Corpus Collection and Annotation

The created corpus consists of 1000 colloquial Qatari

traditional expressions (single and multi-word

expressions). The corpus was mainly collected from

various sources such as five printed books, online articles,

and eight online sources such as the Mojam2, the AlArab

newspaper lexicon3, ElBadi message board4, the AlHewar

website5 and the Mufradat online lexicon6.

We automatically collected all the entries from the online

sources above and a performed a manual cleaning process

to remove the duplicates and the non relevant entries. Once,

we are done with data cleaning process, we compiled

around 600 expressions from those sources and we added

400 expressions from the transcribed recorded interviews.

As explained in Burnard (2004) “data about data” or

metadata is essential to be provided for a corpus since it

makes the corpus more useful. In our corpus, metadata

annotation information has been added to each entry. First

of all, the corpus entries were organized by 11 metadata

themes or categories as described below:

1) Category or Theme that groups the expressions

into different buckets and these words share a

common characteristic, such as Kitchenware

related items are objects that can be found only at

6

http://www.hostingangle.com/mufrdat/415/%D9%85%D8

%A7-%D9%85%D8%B9%D9%86%D9%89-

%D8%A7%D9%84%D9%82%D9%84%D8%A7%D9%8

1%D8%9F

25

the kitchen and probably used for cooking

purposes.

2) The Word or the traditional expression in Arabic.

3) The Meaning in Standard Arabic (MSA); the

Arabic translation is required as many of the

expressions are time bounded and aren’t used

currently.

4) The English Translation.

5) The Borrowing status; this column indicates if the

traditional expression is borrowed from another

language, such as English or western, Persian,

Indian, or Turkish.

6) The Part of speech (POS) 7; which determines

whether the word is a noun, verb, adjective or a

pronoun...

7) Word forms (inflection), this column identifies the

other word forms such as the verbs inflected in the

various tenses and nouns inflected in the plural.

8) Example of a sentence that contains the traditional

expression

9) Pronunciation of the traditional expression.

10) Synonyms; in this column, all the synonyms of the

traditional expression are listed.

11) The reference column identifies the source from

which the traditional expression is obtained.

The expressions categorized as borrowing were

categorized separately into four main categories that

represent the countries or regions from which it was

borrowed to the Qatari language and these categories are:

Indian, Turkish, Persian, and Western. The reason for

choosing those four source countries or regions of

borrowing specifically is due to the fact that the majority of

the Qatari loaned words came from these languages

considering the quantity of the loaned words.

The themes that were added to the metadata of the corpus

are Kitchenware, House equipment, Gold, Marine life,

Adjective, Occasions, Verb, Food, Clothes, Traditional

Game, Occupation, Personal items, Plant, Device, Medical,

Hairstyle, Transportation, Education, Old currency,

Animal, Family, Shop, Building, Oil, and Gas. The full

listing of the corpus themes is listed in table 5 of the

Appendix 1 following the references. The above metadata

will be extremly useful to study the Qatari dialects as in

most of the the corpus linguistics studies, linguists usually

rely on the corpus metadata to answer important research

7 We used MADAMIRA Part of Speech tag set (Pasha et

al. 2014)

questions as explained by (Burnard, 2004) “without

metadata, the investigator has no way of answering such

questions. Without metadata, the investigator has nothing

but disconnected words of unknowable provenance or

authenticity”.

Indeed, corpus linguistics is an empirical science, and the

identification of patterns of linguistic behavior is the goal

of the researcher through inspecting, studying, and

analyzing the targeted aspect of the language.

3.2 The Recorded Interviews

Braber and Davies (2016) identified the advantages of the

recorded interviews by discussing the relationship between

the reminiscence, narrative, and identity. It helps us link the

personal to the social and historical, setting a speaker’s use

of language and dialect within a wider cultural context

(Braber & Davies, 2016)

In order to increase the coverage of our corpus, we

conducted eitgh interviews. The targeteded population are

Qatari citizens with an age range of 40-80 years old, and

both genders were considered. We used a snowball

sampling approach to recruit our participants, in which one

participant is interviewed from the targeted population and

based on the interviewee’s suggestion for other applicable

participants, the next interviewee is selected for the study

(Babbie, 2010).

The recorded interviews are considered a useful research

approach as it will provide more information than intended,

which can result in more accurate analysis and outcomes

(Babbie, 2010). This data was recorded and transcribed

from the interviews forms the basis of this experiment. The

interviews were given a list of topics and we explicitly

asked them not to be limited to the provided topics. This

approach made them generate a larger set of Qatari

expressions and idioms as they narrated some traditional

Qatari stories behind the expressions.

Accordingly, the recorded oral information supported the

creation, categorization, and the analysis of the corpus.

Additionally, the audio recordings helped in maintaining

the proper pronunciation of the traditional expressions. The

participants also explained the meaning of these

expressions, while others mentioned examples of the

borrowed expressions. When we interviewed our speakers

and we gave them some technical guidelines to ensure high

recording quality and recording best practices such as

recording in a quiet environment. We used an external

microphone and to maintain a fixed distance from the

microphone while speaking. The audio recording was

anonymized and stored in an MP3 format.

3.3 The Data Validation Survey Questionnaire

To validate and verify the data collected in our corpus, a

survey questionnaire was designed and conducted to verify

26

a sample of the collected expressions and asses the

understanding on the idioms and expressions collected by

the general population. An online survey questionnaire was

created using Google forms and distributed to several

Qatari participants. The age range of the survey participants

ranged from 18 until 40 years old, and both genders

answered the survey. Some participants helped in

recruiting more participants from their family and friends

circle using the snowball sampling methodology that was

considered for approaching the targeted subjects. In total,

50 participants answered the survey and helped validate the

corpus as ilusstrated in table 3.

The survey questionnaire included two different sections,

in which the first section consisted of 10 different questions

about 10 various Qatari traditional expressions. The second

section consisted of two questions and these questions were

about grouping 26 Qatari traditional expressions into

several groups using a crowdsourcing approach to annotate

the data. The 36 expressions were mentioned in multiple

sources as traditional expressions and currently, most of

these words are rarely used in colloquial communication.

The survey questionnaire was conducted using the Arabic

language as the targeted subjects are Qataris. Furthermore,

as Buchanan & Hvizdak (2009) revealed that the survey

questionnaire is one of the commonly used research tools

in the social sciences researches.

3.4 Corpus Download

The corpus is made freely available for research purposes

as per the Creative Commons license using the URL in the

footnote.8

3.5 Corpus Illustration

In this section, we illustrate a sample of data collected from
the survey questionnaire. In table 1 and table 2, we provide
sample entries from the first and the second section of the

survey questionnaire. In Table 4 of Appendix 1, we listed a
sample of the Corpus Entries for the various corpus themes.

While, the second section of the survey questionnaire is
about loaned expressions, in which the participant has to
select the correct origin from which the expression was
borrowed.

 Expression Meaning

 Darbeel Telescope دربيل 1

 Teejory Locker تجوري 2

 Dakhtar Doctor دختر 3

 Deresha Window دريشة 4

 Qertas Paper قرطاس 5

 Tasah Container طاسه 6

 Dayram lipstick ديرم 7

 Daftar Notebook دفتر 8

 Bethyan Eggplant بيذيان 9

 Baranda Ground floor balcony برندة 10

Table 1: The outcomes of the survey questionnaire’s
second section

Arabic sentence English translation Percentage of answers

اللي عطاكم في جفير يعطينا في قرطله"
 ..ما معنى كلمة)قرطله(؟
Lly atakum fi jafeer ya’atyna fi
qartalh" ..ma ma’naa kalimat
(qartalh)?

Who gives you in jafeer (a container made of
Palm fronds with two handles) gives us in
qartalh (a container made of Palm fronds
with two handles, which is smaller than the
jafeer)

39.3% chose the right
definition.
25% chose I don’t know
The rest chose one of the three
wrong answers.

هالصبي جمبازي" ..ما معنى كلمة
)جمبازي(؟
" Hal essbuyi jumbazy" .. ma ma’naa
kalimat (jumbazy)?

This boy is jumbazy (fraud) 83.9% chose the right
definition.
1 participant chose I don’t
know

تعـد قلعة الزبارة من القلاع التاريخية "
)الزبارة(؟الشهيرة" ..ما معنى كلمة

"tua’add qala’at alzibarah min
alqyila’a alttarikhiyah alshaira" .. ma
ma’naa kalimat (alzibarah)?

Alzibarah (The high place of the desert land)
Fortress is one of the famous historical
castles

35.7% chose the right
definition.
30.5% chose I don’t know

اشزين بسايل بنتج"..ما معنى كلمة "
)بسايل(؟
"eshzeen besaiyl bintich".. ma ma’naa
kalimat (besaiyl)?

How beautiful is your daughter's besaiyl
(hair)

87.5% chose the right
definition.
3 participants (5.4%) chose I
don’t know.

Table 2: The outcomes of the survey questionnaire’s first section

8https://data.world/saraalmulla/qatari-heritage-expressions

27

No. of participants Age Ave. Age Correct answers

6 18-22 20 16

9 23-26 24.5 59

8 27-30 28.5 40

8 31-34 32.5 42

1 35-38 36.5 7

18 39 and above 39 129

Table 3: The survey questionnaire participants Age groups

4. Conclusion

We created a corpus of Qatari expressions and idioms and
we made it available on the Data World repository. The
corpus consists of 1000 Qatari traditional expressions
grouped into different themes and every word is linked to a
theme and the user can go directly and filter the corpus
based on the preferred theme in order to display all the
related expressions listed with their detailed information.
Also, the themes have hyper links to the glossary of
themes’ descriptions.

Soon, we plan to release the audio files and the
transcription files as well.

We would like to mention that the small size of the
participants in the interviews is due to the fact that several
potential participants declined the interviews as they were
uncomfortable with this method. This has resulted in
having a limited sample; i.e. only 8 participants were
involved in the study. Furthermore, the process of audio
transcription was time-consuming. We believe that the data
collected in this initial pilot experiement is still small and a
larger dataset with more interviews would be needed to
have a more representative corpus.

This research has several future directions, thus, in the
future, more expressions will be added using different
methodologies to increase the corpus coverage. Likewise,
audio recordings will be released to help address the lack
dialectal Arabic speech data.

5. References

Al-Fahad, G. (2013). The Encyclopedia of Words Gone
with Days . Kuwait.

Al-Badawi, K. (2013). Turkish words exotic to the Arabic

language. Retrieved from Civilized dialogue:
http://www.m.ahewar.org/s.asp?aid=360711&r=0&cid=
0&u=&i=6452&q=

Al-Kuwari, R. (2014). The dictionary of Pearl diving and

marine life terms in the Gulf. Doha: Katara Cultural
Village.

Al-Malki, A. (2015). Camels in Qatar. Doha: Dar for Qatari

books (Qatari books' house).

Al-Malki, K. (2005). Brief explanation of the Qatari

parables. Doha: Al Majlis Al watani lethaqafa walfounon

walturath.

AlMuhannadi, M. (2006). A guide to the idioms of Qatari

Arabic with reference to English idioms. Doha: Dar Al
kutub AlQataria.

Al-Attiyah, H. (2013, 5 27). Reviving the Local Dialect in

Qatar: An Issue of Linguistic Concern or Identity
Politics? Retrieved from Arab Center for Research and
PolicyStudies:
https://www.dohainstitute.org/en/ResearchAndStudies/
Pages/Reviving_the_Local_Dialect_in_Qatar_An_Issue
_of_Linguistic_Concern_or_Identity_Politics.aspx

AlNaama, N. (2012). Torath Al'ajdad. Retrieved from

AlArab.Newspaper:
https://www.alarab.qa/story/209946/%D8%AA%D8%B
1%D8%A7%D8%AB-%D8%A7%D9%84%D8%A3%
D8%AC%D8%AF%D8%A7%D8%AF

Atanasova Pepa, Alberto Barron-Cedeno, Tamer Elsayed,

Reem Suwaileh, Wajdi Zaghouani, Spas Kyuchukov,
Giovanni Da San Martino, Preslav Nakov (2018).
Overview of the CLEF-2018 CheckThat! Lab on
automatic identification and verification of political
claims. Task 1: Check-worthiness. CLEF 2018 Working
Notes. Working Notes of CLEF 2018 - Conference and
Labs of the Evaluation Forum

Babbie, E. (2010). The practice of social research.

Belmont: Wadsworth, Cengage Learning.

Barrón-Cedeño Alberto, Tamer Elsayed, Reem Suwaileh,

Lluís Màrquez, Pepa Atanasova, Wajdi Zaghouani, Spas
Kyuchukov, Giovanni Da San Martino and Preslav
Nakov (2018). Overview of the CLEF-2018 CheckThat!
Lab on automatic identification and verification of
political claims. Task 2: Factuality. CLEF 2018 Working
Notes. Working Notes of CLEF 2018 - Conference and
Labs of the Evaluation Forum

Bouamor, H., Habash, N., Salameh, M.,

Zaghouani,W.,Rambow, O., Abdulrahim, D., Obeid, O.,
Khalifa, S., Eryani, F., Erdmann, A., et al. (2018). The
MADAR arabic dialect corpus and lexicon. In
Proceedings of the Eleventh International Conference on
Language Resources and Evaluation (LREC 2018).

Bouamor, H., Zaghouani, W., Diab, M., Obeid, O., Oflazer,

28

K., Ghoneim, M., and Hawwari, A. (2015). A pilot study
on arabic multi-genre corpus diacritization. In
Proceedings of the Second Workshop on Arabic Natural

Language Processing, pages 80–88.

Bouamor Houda, Nizar Habash, Mohammad Salameh,

Wajdi Zaghouani, Owen Rambow, Dana Abdulrahim,
Ossama Obeid, Salam Khalifa, Fadhl Eryani, Alexander
Erdmann, Kemal Oflazer(2018). The MADAR Arabic
Dialect Corpus and Lexicon. In Proceedings of The
International Conference on Language Resources and
Evaluation, Miyazaki, Japan .

Braber , N., & Davies, D. (2016). Using and creating oral

history in dialect research. Oral History, 44(1), 98-107.
Carmen Berlinches Ramos, . "Idioms in Syrian Arabic:
A First Approach towards a Lexico-Semantic and
Grammatical Analysis." Zeitschrift für Arabische
Linguistik 70 (2019): 17-43.

Buchanan , E., & Hvizdak, E. (2009). Online Survey Tools:

Ethical and Methodological Concerns of Human
Research Ethics Committees. Journal of Empirical
Research on Human Research Ethics: An International
Journal, 4(2), 37-48.

Burnard, L. (2004). Developing Linguistic Corpora: a

Guide to Good Practice -Metadata for corpus work.
Retrieved from ahds: Literature, Languages, and
Linguistics:
https://ota.ox.ac.uk/documents/creating/dlc/chapter3.ht
m

Diab Mona , Aous Mansouri, Martha Palmer, Olga Babko-

Malaya, Wajdi Zaghouani, Ann Bies, Mohammed
Maamouri. 2008) A Pilot Arabic Propbank. In
Proceedings of the Sixth International Conference on
Language Resources and Evaluation (LREC'08)

Habash (2010). Arabic Natural Language Processing.

Morgan & Claypool Publishers.

Habash, N., Khalifa, S., Eryani, F., Rambow, O.,

Abdulrahim, D., Erdmann, A., Faraj, R., Zaghouani, W.,
Bouamor, H., Zalmout, N., Hassan, S., Shargi, F. A.,
Alkhereyf, S., Abdulkareem, B., Eskander, R., Salameh,
M., and Saddiki, H. (2018). Unified Guidelines and
Resources for Arabic Dialect Orthography. In
Proceedings of the International Conference on
Language Resources and Evaluation (LREC 2018),
Miyazaki, Japan

Khalifa Salam, Nizar Habash, Dana Abdulrahim, Sara

Hassan (2016) A Large Scale Corpus of Gulf Arabic. In
Proceedings of the Tenth International Conference on
Language Resources and Evaluation (LREC'16)

Laoudi, Jamal, Claire Bonial, Lucia Donatelli, Stephen

Tratz, and Clare Voss. "Towards a Computational
Lexicon for Moroccan Darija: Words, Idioms, and
Constructions." In Proceedings of the Joint Workshop on
Linguistic Annotation, Multiword Expressions and
Constructions (LAW-MWE-CxG-2018), pp. 74-85.
2018.

Liaquat, S. Q. (2016). Freedom of Expression in Pakistan:
A myth or a reality. (R. f. http://0-
www.jstor.org.library.qnl.qa/stable/resrep02846.4,
Trans.) Sustainable Development Policy Institute.

Maamouri, M., Bies, A., Kulick, S., Zaghouani, W., Graff,

D., and Ciul, M. (2010). From speech to trees: Applying
treebank annotation to Arabic broadcast news. In
Proceedings of the Nine International Conference on
Language Resources and Evaluation (LREC 2010).

Pasha, A., Al-Badrashiny, M., Kholy, A. E., Eskander, R.,

Diab, M., Habash, N., Pooleery, M., Rambow, O., and
Roth, R. (2014). MADAMIRA: A Fast, Comprehensive
Tool for Morphological Analysis and Disambiguation of
Arabic. In In Proceedings of LREC, Reykjavik, Iceland

Palmer Martha , Olga Babko-Malaya, Ann Bies, Mona

Diab, Mohamed Maamouri, Aous Mansouri, Wajdi
Zaghouani. (2008) A Pilot Arabic Propbank. In
Proceedings of the Sixth International Conference on
Language Resources and Evaluation (LREC'08)

Rangel, F., Rosso, P., Charfi, A., and Zaghouani, W.

(2019a). Detecting deceptive tweets in arabic for
cybersecurity. In 2019 IEEE International Conference on
Intelligence and Security Informatics (ISI), pages 86–91.
IEEE.

Rangel, F., Rosso, P., Charfi, A., Zaghouani, W., Ghanem,

B., and Snchez-Junquera, J. (2019b). Overview of the
Track on Author Profiling and Deception Detection in
Arabic. In Working Notes of the Forum for Information
Retrieval Evaluation (FIRE’19). CEUR Workshop
Proceedings. In: CEUR-WS. org, Kolkata, India

Rosso, P., Rangel, F., Far´ıas, I. H., Cagnina, L., Zaghouani,

W., and Charfi, A. (2018). A survey on author profiling,
deception, and irony detection for the Arabic language.
Language and Linguistics Compass, 12(4):e12275

Rubin, B. (1991). Pan-Arab Nationalism: The Ideological

Dream as Compelling Force. Journal of Contemporary
History, 26(3/4), 535-551.

Zaghouani, W. (2014). Critical Survey of the Freely

Available Arabic Corpora. In Proceedings of the Nine
International Conference on Language Resources and
Evaluation (LREC’14), OSACT Workshop, Reykjavik,
Iceland, May. European Language Resources
Association (ELRA).

Zaghouani Wajdi , Abdelati Hawwari, Mona Diab (2012).

A pilot Propbank annotation for quranic Arabic. In
Proceedings of the NAACL-HLT 2012 Workshop on
Computational Linguistics for Literature.

Zaghouani, W., Mohit, B., Habash, N., Obeid, O., Tomeh,.,

Rozovskaya, A., Farra, N., Alkuhlani, S., and Oflazer, K.
(2014). Large scale arabic error annotation: Guidelines

Zaghouani, W. and Charfi, A. (2018). Arap-tweet: A large

multi-dialect twitter corpus for gender, age and language
variety identification. arXiv preprint arXiv:1808.07674.

29

Appendix 1

No. Theme Description

1. Adjective This theme includes adjectives that describe a person, object, or situation using traditional
expressions, such as annoying (Sindara)

2. Animal This theme includes animals’ traditional names, the majority of these names still exist, such as
camels’ different names (Mathaya)

3. Body Parts This theme includes the human’s body parts’ colloquial Qatari traditional names, such as
mouth (Halj)

4. Building This theme includes expressions that describe Qatar’s old building, construction,
infrastructure, or any construction related items, such as street (Rastah).

5. Transportation This theme includes colloquial Qatari expressions that are related to automobiles, boats and
the related spare parts and accessories, such as Tire (Tiyer)

6. Clothes This theme includes the names of the Qatari traditional clothes for both men and women, such
as the black Abaya of women.

7. Device This theme includes expressions describing electronic devices that were used in the past, such
as telescope (Darbeel)

8. Education This theme includes expressions related to education, school’s building, and stationary in old
Qatar, such as notebook (Daftar)

9. Family This theme includes expressions that describe different kinships in the Qatari family since the
old days, such as mother (Youmah)

10. Food This theme includes the Qatari traditional food items, that mostly exist until now, such as the
crispy crepe bread (Regag)

11. Gold This theme includes the different names of various Qatari traditional styles of gold. as different
styles of necklaces have different names, such as (Meaznat) which is a choker that is a close-
fitting necklace worn around the neck

12. Hairstyle This theme includes the different names of the various old Qatari hairstyles for men and
women, such as braid (Achfaa)

13. House
equipment

This theme includes any object that can be found at the old Qatari houses, such as furniture
(Afish)

14. Kitchenware This theme includes the expressions related to the old Qatari kitchen items such as stirring
spoon (Millas)

15. Marine life This theme includes the various expressions related to the sea creatures, sea activities, and tools
used in performing the different activities in the sea, such as king fish (Chanad)

16. Medical This theme includes the expressions related to diseases, medical treatments, and medical
equipment that used in the past, such as: Hospital (Aspitar)

17. Nature This theme includes the names of natural phenomena, such as storm(Daloob)

18. Noun This theme includes expressions that refer to old names of objects, such as: part of something
(Hessa)

19. Occasions This theme includes the names of various traditional Qatari occasions, such as: mid Ramadan’s
celebration (Garangaoo)

20. Occupation This theme includes the names of the various old occupations that mostly doesn’t exist
anymore, such as water supplier (AlKendry)

21. Oil and Gas This theme includes the expressions that are related to Oil and Gas tasks and tools such as Rig
(Rik)

22. Old currency This theme includes the old Qatari currencies, such as Rupees (Rubyah)

30

Table 4. Description of themes in the corpus of Qatari traditional expressions

Table 5. A Sample of the Corpus Entries of various themes

23. Personal items This theme includes names of personal beauty items and accessories that were used or worn in
the past by the Qataris, such as glasses (Kashma)

24. Plant This theme includes the old names of the plants in Qatar

25. Question This theme includes the expressions the are related to questions using the colloquial Qatari
traditional words such as How? (Eshloan?)

26. Shop This theme includes the old names of the diverse shops in Qatar, such as Laundry (Dobee)

27. Traditional
game

This theme includes the names of traditional games in Qatar, such as hide and seek (kheshasha)

28. Verb This theme includes the expressions that are related to verbs known in the past, such as wait
(Thayad)

Category Word

English

Meaning

Standard

Arabic

Translation

Word

origin

Inflection

(forms) Synonym

Example (sentence)

from reliable source

Animals متوه

Matoh Parrot غاءبب متوه أشتري أبي بتوه - -

 يربوع

yarbou

Rodent

ءالصحرا في يعيش اليربوع يرابيع - جربوع

Household كرفاية

kerfayah Bed سرير -

 كرفايتي،

كرفايتي وين كرفايتهم،

 سبير

spare Spare

البديل/ القطعة

السبيرضاع مفتاحي ابي - - English الاحتياطية

Kitchen/

Food

 علي ولم

Aliwalam Potato بطاطس English -

 حطي في الاكل علي ولم

Personal

items

 كشمة

Kashma Glasses النظارة - -

 بشتري كشمة

Professions كهربجي

Kahrabchi Electrician الكهربجي قاعد يصلح - - - الكهربائي

Appearance بسايل

Besayl Hair حلات البنت ببسايلها - - - شعر

Adjective

 سندارة

Sindara annoying ولدج سندرني - سندرني - المزعج

31

Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, pages 32–39
with a Shared Task on Offensive Language Detection.

Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020
c© European Language Resources Association (ELRA), licensed under CC-BY-NC

From Arabic Sentiment Analysis to Sarcasm Detection:
The ArSarcasm Dataset

Ibrahim Abu-Farha1 and Walid Magdy1,2
1 School of Informatics, The University of Edinburgh

Edinburgh, United Kingdom
2 The Alan Turing Institute
London, United Kingdom

i.abufarha@ed.ac.uk, wmagdy@inf.ed.ac.uk

Abstract
Sarcasm is one of the main challenges for sentiment analysis systems. Its complexity comes from the expression of opinion using
implicit indirect phrasing. In this paper, we present ArSarcasm, an Arabic sarcasm detection dataset, which was created through the
reannotation of available Arabic sentiment analysis datasets. The dataset contains 10,547 tweets, 16% of which are sarcastic. In addition
to sarcasm the data was annotated for sentiment and dialects. Our analysis shows the highly subjective nature of these tasks, which
is demonstrated by the shift in sentiment labels based on annotators’ biases. Experiments show the degradation of state-of-the-art
sentiment analysers when faced with sarcastic content. Finally, we train a deep learning model for sarcasm detection using BiLSTM.
The model achieves an F1-score of 0.46, which shows the challenging nature of the task, and should act as a basic baseline for future
research on our dataset.

Keywords: Arabic, sarcasm detection, sentiment analysis

1 Introduction

Work on subjective language analysis, has been prominent
in the literature during the last two decades. A major theme
that dominated the area is the work on sentiment analy-
sis (SA). According to (Liu, 2012), SA is a process where
we extract and analyse the emotional polarity in a given
piece of text. Large amount of work focused on classify-
ing the text into its sentiment class, which varies based on
the granularity. SA is one of the research areas within the
larger natural language processing (NLP) field. The interest
in SA research was embarked by the advent of user-driven
platforms such as social media websites. Research on SA
started with the early work of (Pang et al., 2002), where
they analysed the sentiment in movie reviews. Since then,
the work has developed and spanned different topics and
fields such as social media analysis, computational social
science and others. Most of the work is focused on English,
whereas Arabic did not receive much attention until after
2010. The work on Arabic SA was kicked off by (Abdul-
Mageed et al., 2011), but it still lacks behind the progress
in English. This can be attributed to the many challenges
of Arabic language; including the large variety in dialects
(Habash, 2010; Darwish et al., 2014) and the complex mor-
phology of the language (Abdul-Mageed et al., 2011).
As the work on SA systems developed, researchers started
analysing the intricacies of such systems in order under-
stand their performance and where they fail. There are
many challenges when doing SA, such as negation han-
dling, domain dependence, lack of world knowledge and
sarcasm (Hussein, 2018). Sarcasm can be defined as a
form of verbal irony that is intended to express contempt or
ridicule (Joshi et al., 2017). Sarcasm is correlated with ex-
pressing the opinion in an indirect way, where the intended
meaning is different from the literal one (Wilson, 2006).
Additionally, sarcasm is highly context-dependent, as it al-

ways takes part between parties where shared knowledge
exist. Usually, a speaker will not use sarcasm unless he/she
thinks that it will be understood as so (Joshi et al., 2017).
Sarcasm detection is a crucial task for SA. The reason for
this is that a sarcastic utterance usually carries a negative
implicit sentiment, while it is expressed using positive ex-
pressions. This contradiction between the surface senti-
ment and the intended one creates a complex challenge for
SA systems (Bouazizi and Ohtsuki, 2016).
There has been lots of work on English sarcasm detection,
those include datasets such as the works of (Abercrombie
and Hovy, 2016; Barbieri et al., 2014a; Barbieri et al.,
2014b; Filatova, 2012; Ghosh et al., 2015; Joshi et al.,
2016) and detection systems such as (Rajadesingan et al.,
2015; Joshi et al., 2015; Amir et al., 2016).
Work on Arabic sarcasm is yet to follow. Up to our knowl-
edge, work on Arabic sarcasm is limited to the work of
(Karoui et al., 2017), a shared task on irony detection
(Ghanem et al., 2019) along with the participants’ sub-
missions and a dialectal sarcasm dataset by (Abbes et al.,
2020). Currently, there is no publicly available dataset for
Arabic sarcasm detection. The data in (Karoui et al., 2017)
is not publicly available and most of the tweets provided in
(Ghanem et al., 2019) were deleted.
In this paper, we present ArSarcasm dataset, a new Arabic
sarcasm detection dataset. The dataset was created using
previously available Arabic SA datasets and adds sarcasm
and dialect labels to them. The dataset contains 10,547
tweets, 1,682 (16%) of which are sarcastic. In addition, we
analyse annotators’ subjectivity regarding sentiment anno-
tation, hoping to promote finding better procedures for col-
lecting and annotating new datasets. The analysis shows
that annotators’ biases could be reflected on the annotation.
Moreover, we provide an analysis of the performance of SA
systems on sarcastic content. Finally, our BiLSTM based
model , which serves as a baseline for this dataset, achieves

32

an F1-score of 0.46 on the sarcastic class, which indicates
that sarcasm detection is a challenging task.
ArSarcasm is publicly available for research purposes, and
it can be downloaded for free1.

2 Background
2.1 Sarcasm and Irony Detection
The literature has a large amount of work on sarcasm and
irony detection, which vary from collecting datasets to
building detection systems. However, researchers and lin-
guists cannot yet agree on a specific definition of what is
considered to be sarcasm. According to (Grice et al., 1975)
sarcasm is a form of figurative language where the literal
meaning of words is not intended, and the opposite inter-
pretation of the utterance is the intended one. Gibbs Jr et al.
(1994) define sarcasm as a bitter and caustic from of irony.
According to Merriam Webster’s dictionary 2, sarcasm is “a
sharp and often satirical or ironic utterance designed to cut
or give pain”, while irony is defined as “ the use of words
to express something other than and especially the opposite
of the literal meaning”. These definitions are quite close to
each other, yet each of them gives a different definition of
sarcasm. While most of the literature assumes that sarcasm
is a form of irony, Justo et al. (2014) argues that it is not
necessarily ironic. Thus, sarcasm is always confused with
other forms of figurative language such as metaphor, irony,
humour and satire.
One of the early works on English sarcasm/irony detection
is the work of (Davidov et al., 2010), where the authors cre-
ated a dataset from Twitter using specific hashtags such as
#sarcasm and #not, which indicate sarcasm. This way of
data collection is called distant supervision, where data is
collected based on some specific content that it bears. Dis-
tant supervision is the most common approach to collect
sarcasm data from Twitter, where the hashtag #sarcasm and
others are used. Some other works that utilised distant su-
pervision to create Twitter datasets include (Barbieri et al.,
2014a; Bamman and Smith, 2015; Bouazizi and Ohtsuki,
2016; Ptáček et al., 2014). Davidov et al. (2010) mention
that the use of the #sarcasm hashtag is possible but not reli-
able, and they used it as a search anchor. In addition, such
hashtags can be useful in the cases of subtle sarcasm which
might not be easily understood. Khodak et al. (2018) pro-
posed a dataset collected from Reddit. They used a similar
distant supervision approach, but they relied on “/s” marker
which indicates sarcasm.
The other way to create a dataset is through manual la-
belling. This is done by collecting a large amount of data
and asking annotators to manually label it. Works that re-
lied on this approach include (Riloff et al., 2013; Van Hee
et al., 2018). According to (Oprea and Magdy, 2019a),
this approach of creating datasets captures only the sarcasm
that the annotators could perceive and misses the intended
sarcasm. Intended sarcasm is when the text is considered
to be sarcastic by its author. In their work, they experi-
mented with the benefits of the context in detecting per-
ceived and intended sarcasm. In another work (Oprea and

1ArSarcasm is available at:
https://github.com/iabufarha/ArSarcasm

2https://www.merriam-webster.com

Magdy, 2019b), the authors propose a new dataset that cap-
tures intended sarcasm. They collected their data using an
online survey, where they asked the participants to provide
sarcastic and non-sarcastic tweets. They also asked them to
provide an explanation for the sarcastic text and how would
they convey the same idea in a direct way.
The work on Arabic sarcasm is scarce and limited to few
attempts. It is also worth mentioning that researchers on
Arabic inherited the aforementioned confusion about sar-
casm definition. The earliest work on Arabic sarcasm/irony
is (Karoui et al., 2017), where the authors created a corpus
of Arabic tweets, which they collected using a set of polit-
ical keywords. They filtered sarcastic content using distant
supervision, where they used the Arabic equivalent of #sar-
casm such as #T§r�F, #r�s�, #�kh� and #º�zhtF�.
The result was a set of 5,479 tweets distributed as follows:
1,733 ironic tweets and 3,746 non-ironic. However, this
corpus is not publicly available. Ghanem et al. (2019) or-
ganised a shared task competition for Arabic irony detec-
tion. They collected their data using distant supervision
and used similar Arabic hashtags. In addition, they man-
ually annotated a subset of tweets, which were sampled
from ironic and non-ironic sets. The dataset provided in
the shared task contained 5,030 tweets with almost 50% of
them being ironic. It is worth mentioning that at the time of
writing this paper around 1,300 tweets were still available.
Finally, Abbes et al. (2020) proposed a dialectal Arabic
irony corpus, which was also collected from Twitter.

2.2 Arabic Sentiment Analysis
In contrast to the recent attention coming to irony and sar-
casm detection, Arabic SA has been under the researchers’
radar for a while. There is a reasonable amount of Arabic
SA resources that include corpora, lexicons and datasets.
Early work on Arabic such as (Abdul-Mageed et al., 2011;
Abbasi et al., 2008), focused on modern standard Arabic
(MSA). Later, attention started moving to dialects such as
the work of (Mourad and Darwish, 2013), where the au-
thors introduced an expandable Arabic sentiment lexicon
along with a corpus of tweets. El-Beltagy (2016) intro-
duced a lexicon, which contains around 6000 sentiment
terms that are taken from the Egyptian dialect and MSA.
The Arabic Sentiment Tweets Dataset (ASTD) (Nabil et
al., 2015) contains 10,006 tweets mainly in the Egyptian
dialect. It is distributed over 4 classes: positive (799), neg-
ative (1,684), neutral (832) or objective (6,691). The tweets
were collected over the period between 2013 and 2015,
based on the most trending topics at that time.
Elmadany et al. (2018) introduced ArSAS dataset, which
is annotated for Arabic speech-act and sentiment analysis.
The dataset consists of around 21K tweets, that cover multi-
ple topics. The data was manually annotated using Crowd-
Flower3 crowd-sourcing platform. The annotation scheme
for the sentiment analysis task was 4-way sentiment classi-
fication, as each of the tweets is labelled with one of the fol-
lowing: positive (4,543), negative (7,840), neutral (7,279),
or mixed (1,302). Badaro et al. (2014) introduced Ar-
SenL, an Arabic sentiment lexicon. The lexicon was built

3Currently known as Figure-Eight

33

using different resources such as Arabic WordNet and En-
glish sentiment WordNet. In SemEval 2016, Arabic was in-
cluded in the sentiment analysis task for multiple languages
(Kiritchenko et al., 2016), where they introduced a small
dataset of 1,366 tweets. In 2017, Arabic was also a part of
SemEval with a larger dataset of 9,455 Arabic tweets anno-
tated with 3 labels: positive, negative or neutral (Rosenthal
et al., 2017). Other datasets and lexicons were proposed in
the works of (Ibrahim et al., 2015; Refaee and Rieser, 2014;
Aly and Atiya, 2013; Mahyoub et al., 2014).

3 Proposed Dataset
In this work, we present ArSarcasm, a new dataset for Ara-
bic sarcasm detection. The dataset consists of a combina-
tion of Arabic SA datasets, where we reannotated them for
sarcasm. In addition to that, we also provide labelling for
the dialect and sentiment.

3.1 Resources
In this work, we relied on a set of well-known Arabic SA
datasets. The reason for this choice is that sarcasm is highly
subjective and always mentioned as one of the main rea-
sons that degrades sentiment analysers’ performance. The
datasets we are using are SemEval’s 2017 (Rosenthal et
al., 2017) and ASTD (Nabil et al., 2015) datasets. ASTD
dataset consists of 10,006 tweets labelled as shown in Table
1. The dataset contains tweets that date back to the period
between 2013 and 2015. The tweets are mostly in Egyptian
dialect and they were annotated using Amazon’s Mechani-
cal Turk. In our work, since we are aiming to annotate for
sarcasm, we decided to eliminate the objective class and we
took our sample from the other subjective classes.

Class Count
Positive 799
Negative 1,684
Neutral 832
Objective 6,691
Total 10,006

Table 1: ASTD statistics.

The other dataset we are using is the one provided in Se-
mEval’s 2017 task for Arabic SA (Rosenthal et al., 2017).
This dataset consists of 10,126 tweets distributed over dif-
ferent sets as shown in Table 2. The data was annotated
using CrowdFlower4 crowd-sourcing platform. The new
dataset contains 10,543 tweets, most of which were taken
from SemEval’s dataset.

Set Positive Negative Neutral Total
Training 743 1,142 1,470 3,355
Validation 222 128 321 671
Testing 1,514 2,222 2,364 6,100
Total 2,479 3,492 4,155 10,126

Table 2: SemEval 2017 Task 4-A dataset statistics.

4Currently Figure-Eight.

3.2 Annotation
For the annotation process, we used Figure-Eight5 crowd-
sourcing platform. Our main objective was to annotate the
data for sarcasm detection, but due to the challenges im-
posed by dialectal variations, we decided to add the anno-
tation for dialects. We also include a new annotation for
sentiment labels in order to have a glimpse of the variabil-
ity and subjectivity between different annotators. Thus, the
annotators were asked to provide three labels for each tweet
as the following:

• Sarcasm: sarcastic or non-sarcastic.

• Sentiment: positive, negative or neutral.

• Dialect: Egyptian, Gulf, Levantine, Maghrebi or
Modern Standard Arabic (MSA).

To keep the sentiment annotation process consistent, we
used the same guidelines that were used to annotate Se-
mEval’s dataset. Regarding sarcasm, we define it as an ut-
terance that is used to express ridicule, where the intended
meaning is different from the apparent one.
Only annotators who have Arabic language in their profiles
and come from an Arab country were allowed to partici-
pate. Each tweet was annotated by at least three different
annotators. The quality of annotation was monitored using
a set of 100 hidden test questions that appear randomly dur-
ing the task, each of those question has the correct label for
sentiment, sarcasm and dialect. If the performance of an
annotator in these test questions dropped below 80%, this
annotator is eliminated and all the labels he provided are
also ignored. Agreement among annotators was 80.7% for
sentiment, 89.3% for sarcasm and 86.7% for dialects.

4 Statistics and Analysis
4.1 Dataset Statistics
The new dataset contains 10,547 tweets, 8,075 of them
were taken from SemEval’s dataset while the rest (2,472
tweets) were taken from ASTD. Each of the tweets has
three labels for sarcasm, sentiment and dialect. Table 3
shows the statistics of the new dataset, where we can see
that 16% of the data is sarcastic (1,682 tweets). The new
annotation shows that most of the data is either in MSA or
the Egyptian dialect, while there are few examples of the
Maghrebi dialect. Figure 1 shows the ratio of sarcasm in
the tweets belonging to each dialect. Maghrebi dialect has
the largest percentage, but this is an outlier due to the small
number of Maghrebi tweets (only 32 tweets). Thus, sar-
casm is more prominent in the Egyptian dialect with 34%
of the Egyptian tweets being sarcastic . Also, from the ta-
ble, it is noticeable that the Egyptian dialect comprises most
of the sarcastic tweets (799 tweets, 47.5% of the sarcastic
tweets). Table 4 provides examples of sarcastic tweets from
different dialects.

4.2 Sentiment in Sarcasm
Figure 2 shows the sentiment distribution over the sarcas-
tic tweets. It is clear that most of the sarcastic tweets

5https://www.figure-eight.com/

34

Dialect Non-Sarcastic Sarcastic Negative Neutral Positive Total
Egyptian 1,584 799 1,179 733 471 2,383
Gulf 397 122 200 218 101 519
Levantine 433 118 239 178 134 551
Maghrebi 20 12 18 10 4 32
MSA 6,431 631 1,893 4,201 968 7,062
Total 8,865 1,682 3,529 5,340 1,678 10,547

Table 3: Dataset statistics for sarcasm and sentiment over the dialects.

Maghreb,
Sarcastic

38%

Gulf, Sarcastic
24%

Levant, Sarcastic
21%

Egypt, Sarcastic
34%

MSA, Sarcastic
9%

Figure 1: Ratio of sarcasm over the dialects.

have negative sentiment, and this agrees with the definition
we adopted, which implies that sarcasm includes making
ridicule of someone or something. However, there are some
neutral and positive sarcastic tweets, which could be due to
the highly subjective nature of sarcasm. In addition, this
could be attributed to the fact that some other metaphoric
or figurative expressions might fall under the sarcasm defi-
nition. An example of that is understatement, where a per-
son describes a good thing using negative terms such as
“This was an extremely hard exam”. This phenomenon is
demonstrated in example 2 in Table 4, where the speaker
is bragging about his success in being a presenter, and he
mentions that this had happened because his mother wished
him to be embarrassed and looked at as a weird person.
Table 4 provides examples of sarcastic tweets from differ-
ent dialects along with their sentiment. Those examples
show some aspects of the sarcasm nature, such as referenc-
ing real world items or figures. The examples show how
challenging sarcasm can be, as some of them are expressed
using positive expressions, yet having negative sentiment
and vice versa. This, in turn, makes it extremely chal-
lenging for an SA system to analyse such examples, which
urges the need for sarcasm detection systems. They also
show that sarcasm relies heavily on world knowledge and
context, thus incorporating such information is necessary to
correctly identify sarcasm.

4.3 Annotation Subjectivity
We also studied the difference between the original and new
sentiment labels. Figure 3 shows how the new labels are
different from the original ones, labels above the charts are
the original ones. It is clear that there is an extreme change

Negative, 1480,
88%

Neutral, 150, 9%

Positive, 52, 3%

Figure 2: Sentiment distribution over the sarcastic tweets.

ID Tweet Sentiment Dialect

1

Tm�r� ��w� T�d� � dqt�� n�
�l� .�ny� �r� � Y�� �d� T·yF
��w� Tm�rt�� �Am� (I was thinking
that Google translate is bad, till I tried

Bing. Google is Mr. Translation)

Negative MSA

2

ry�} A��¤ Ayl� � ¨�� � �R�¤
,wql� �yl� �Ärf§ An�C �¤C ¨lt�A�¤
�§@� ¨n`lV An�C �A� (It is clear that my
mother was mad at me and wished that I
get embarrassed and looked at by people,

Now I am a TV presenter)

Positive Egyptian

3

¨n�zn§ Crq§ d�� £wl��� �AyfyO�A�
£C�r��� ¢�C l}¤ Am� Anb� Yl�
¯ �¤r� rkf� �wq� ¨�� rfO�� ��

�rkJ (When it is summer, no one
suggests going to Lebanon. Now, when it
is below zero, my mother considers going

there. No, thanks)

Negative Levantine

4

�E¯ A� r�s�A� �yn�¥m�� xAn��
�l� w� r�w� ©CA¡ � �hl�Rw�

¨q¶A�¤ (We should have explained for
those who believe in magic that Harry

Potter is not a documentary)

Negative Gulf

Table 4: Examples of some sarcastic tweets from different
dialects.

in the labels. This is empirical proof of the highly sub-
jective nature of sentiment analysis annotation. We can see
that in the case of the positive class, more the 50% of the la-
bels has been changed, Table 5 provides examples of these
cases. From the table, it is noticeable that these cases can
be attributed to different reasons. For example, in the sec-
ond tweet, the original annotator failed to perceive the sar-
casm intended by the author. This can be due to either a
misunderstanding of the intentions, or a mismatch between
the author’s intention and the annotator’s preference. The
other reason that might have caused the labels to change

35

Negative
67%

Neutral
31%

Positive
2%

NEGATIVE

Negative
18%

Neutral
73%

Positive
9%

NEUTRALNegative
4%

Neutral
47%

Positive
49%

POSITIVE

Figure 3: The change in sentiment labels between the original and new annotation. The labels above the charts are the
original labels.

is the different perspectives that a text can been looked at
from. For example, some annotators might annotate news
as neutral, considering the view of the news agency, while
others might reflect their own preference. The same thing
occurs if the text is about two conflicting parties, where the
annotators are likely to take one side. In addition to that,
the available Arabic SA datasets are highly political and
they contain different dividing topics. Having all of these
factors together would result in the high presence of the an-
notator’s biases and personal views.
Moreover, in the case of most sentiment and sarcasm
datasets, they were annotated using crowd-sourcing plat-
forms. These platforms provide multiple annotations for
each data point, but they do not ensure having the same
annotators to annotate all the data. This would provide
inconsistent labels for the subjective text, where different
conflicting biases are reflected on the assigned label. Thus,
having multiple people annotating a dataset would prob-
ably give conflicting labels for different related instances
within the data. These phenomena impose challenges for
sentiment analysis systems, since the boundaries between
the labels are not clear.
Based on the previous statistics and examples, we can see
that the current annotation schemes and procedures are not
robust enough against bias, and they do not ensure the con-
sistency among different annotators. In addition, the cur-
rent approach of considering sarcasm as binary text classi-
fication problem is not precise. Sarcasm is highly related
to the context, cultural background, world knowledge and
personal traits of its author. We believe that more sophisti-
cated data collection and annotation approaches should be
used to have a proper computational representation of sar-
casm.

5 Effect of Sarcasm on Sentiment Analysis
To better understand how sarcasm can be disruptive for SA
systems, we conducted an experiment on the newly anno-
tated data. This was done through comparing the perfor-
mance of an available SA system on both sarcastic and
non-sarcastic tweets. In this experiment, we used Maza-
jak (Abu Farha and Magdy, 2019), state-of-the-art Arabic
sentiment analyser. In order to have an informative com-
parison, we separated the dataset into two sets, sarcastic

ID Tweet Original label New label

1
��Ah� ��ws�AF¤ ��� H�An� ��w�
d§d� (Google is competing Apple and

Samsung with a new phone)
Positive Neutral

2
An�C .. 10 E¤dn§¤ �yl� �¤rb�
�lllll�whl�§ (Congratulations on
Windows 10, God keeeeep it for you)

Positive Negative

3 rby� �ts� ¢yn�� �yl�K� H�� (Shame,
they are playing a Justin Bieber song) Neutral Negative

4
�¤
r�� ¨� ��rS� ¨l� r�� �tyF

.�dn� A§ (Sir, we will respond to you
soon)

Neutral Positive

5
Tyqyq� TlkK� ..��m�� Yl� ��� T`mF
7 wf§� ¨� (Apple’s reputation is on the

line ... A real problem in iPhone 7)
Negative Neutral

6
r� �lW§¤ �wl� w�wq§
ÐA� HqV

(deceitful weather, they say it will snow
and it is warm)

Negative Positive

Table 5: Examples of some tweet that have its labels
changed.

(1,682) and non-sarcastic (8,865). The performance was
compared using the original and new sentiment labels. Ta-
ble 6 shows the achieved macro F1-score. It is clear that
there is a gap between the performance on sarcastic and
non-sarcastic. Mazajak achieved F1-scores of 0.43 (new
labels) and 0.44 (original labels) on sarcastic tweets, and
F1-scores of 0.64 (new labels) and 0.61 (original labels) on
the non-sarcastic ones.
Although Mazajak was trained on samples from the same
dataset, the results on the sarcastic tweets are much lower
than those on the non-sarcastic ones. The low perfor-
mance on the sarcastic tweets indicates that SA systems
rely mostly on the surface sentiment expressed by the
words. This, in turn, means that sarcasm, which is an in-
direct implicit expression tool, is a major challenge for SA
systems.

Set F-score (new) F-score (original)
Sarcastic 0.43 0.44
Non-Sarcastic 0.64 0.61

Table 6: Mazajak’s performance on sarcastic and non-
sarcastic tweets. The references are the original and the
new sentiment labels.

36

6 Sarcasm Detection Baseline System
In this section, we conduct an experiment to set a base-
line system for the new dataset. We tested a deep learn-
ing model, which consists of a bidirectional long short-
term memory (BiLSTM) followed by a fully connected
layer. We used the hyper-paremeters shown in Table 7. For
text representation, we utilised the embeddings provided by
(Abu Farha and Magdy, 2019).

#LSTM cells 128
Recurrent dropout 0.2
Dropout 0.2
#Hidden units 64
Activation ReLU
Optimiser Adam
Learning rate 0.0001
Batch size 512

Table 7: Hyper-parameters used for BiLSTM model.

The data was divided using an 80/20 split to create train-
ing and testing sets. Table 8 shows the results achieved
by the model on the sarcastic class. As shown, the system
detected sarcasm with precision 62%, but quite low recall
of only 38%, which demonstrates that it is not straightfor-
ward to spot sarcasm. The overall F1-score is 0.46, which
empirically proves that sarcasm detection is a challenging
task that requires additional investigation. An example of
that is the use of contextual information alongside the text
itself, which proved to be effective in English sarcasm de-
tection (Oprea and Magdy, 2019a).

Metric Result
Precision 0.62
Recall 0.38
F1-score 0.46

Table 8: Baseline results on the sarcastic class.

From the previous experiment, we conclude that sarcasm
is a challenging task, and it relies heavily on the context,
world knowledge and cultural background. Thus, having
better performance or good detection systems relies heavily
on how these aspects are incorporated into the training and
preparation of these systems (Oprea and Magdy, 2019b).

7 Conclusion and Future Work
Sarcasm is an important aspect of any language. It includes
expressing ideas, opinions and emotions in an indirect im-
plicit way. This nature of implicitness makes sarcasm prob-
lematic for SA systems which mostly rely on the surface
meaning/features.
In this work, we presented ArSarcasm, a new Arabic sar-
casm dataset. The dataset was created through the re-
annotation of available Arabic sentiment datasets. The
new dataset contains sarcasm, sentiment and dialect labels.
Analysis shows that sarcasm is highly prominent in senti-
ment datasets with 16% of them being sarcastic. We also
show the high subjective nature of such datasets, which was
demonstrated by the change in sentiment labels in the new

annotation. The experiments show the gap between SA
systems’ performance on non-sarcastic tweets compared to
sarcastic tweets, which urges the need to study such phe-
nomena. Finally, our initial experiments on sarcasm detec-
tion show that it is a challenging task.
We believe that this dataset is a starting point in the di-
rection of full study of sarcasm and figurative language in
Arabic. However, due to the highly subjective nature of sar-
casm, its reliance on world knowledge, cultural background
and the perspectives of the communication parties, we be-
lieve that the data collection procedure should incorporate
more signals about these information. In the future, we
hope to prepare a new dataset that incorporates more textual
information. We also hope to study and analyse the differ-
ences and similarities among sarcastic expressions used by
Arabic speakers in different countries.

Acknowledgements
This work was supported by the D&S Programme
of The Alan Turing Institute under the EPSRC grant
EP/N510129/1.

8 References
Abbasi, A., Chen, H., and Salem, A. (2008). Sentiment

analysis in multiple languages: Feature selection for
opinion classification in web forums. ACM Transactions
on Information Systems (TOIS), 26(3):1–34.

Abbes, I., Zaghouani, W., and El-Hardlo, O. (2020). Daict:
A dialectal arabic irony corpus extracted from twitter.
LREC 2020.

Abdul-Mageed, M., Diab, M. T., and Korayem, M. (2011).
Subjectivity and sentiment analysis of modern standard
arabic. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Human
Language Technologies: Short Papers - Volume 2, HLT
’11, pages 587–591, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Abercrombie, G. and Hovy, D. (2016). Putting sarcasm
detection into context: The effects of class imbalance and
manual labelling on supervised machine classification of
twitter conversations. In Proceedings of the ACL 2016
Student Research Workshop, pages 107–113.

Abu Farha, I. and Magdy, W. (2019). Mazajak: An online
Arabic sentiment analyser. In Proceedings of the Fourth
Arabic Natural Language Processing Workshop, pages
192–198, Florence, Italy, August. Association for Com-
putational Linguistics.

Aly, M. and Atiya, A. (2013). Labr: A large scale arabic
book reviews dataset. In Proceedings of the 51st Annual
Meeting of the Association for Computational Linguis-
tics (Volume 2: Short Papers), pages 494–498.

Amir, S., Wallace, B. C., Lyu, H., Carvalho, P., and Silva,
M. J. (2016). Modelling context with user embeddings
for sarcasm detection in social media. In Proceedings of
The 20th SIGNLL Conference on Computational Natural
Language Learning, pages 167–177, Berlin, Germany,
August. Association for Computational Linguistics.

Badaro, G., Baly, R., Hajj, H., Habash, N., and El-Hajj,
W. (2014). A large scale arabic sentiment lexicon for

37

arabic opinion mining. In Proceedings of the EMNLP
2014 workshop on arabic natural language processing
(ANLP), pages 165–173.

Bamman, D. and Smith, N. A. (2015). Contextualized sar-
casm detection on twitter. In Ninth International AAAI
Conference on Web and Social Media.

Barbieri, F., Ronzano, F., and Saggion, H. (2014a). Italian
irony detection in twitter: a first approach. In The First
Italian Conference on Computational Linguistics CLiC-
it, page 28.

Barbieri, F., Saggion, H., and Ronzano, F. (2014b). Mod-
elling sarcasm in twitter, a novel approach. In Proceed-
ings of the 5th Workshop on Computational Approaches
to Subjectivity, Sentiment and Social Media Analysis,
pages 50–58.

Bouazizi, M. and Ohtsuki, T. O. (2016). A pattern-based
approach for sarcasm detection on twitter. IEEE Access,
4:5477–5488.

Darwish, K., Magdy, W., et al. (2014). Arabic informa-
tion retrieval. Foundations and Trends R© in Information
Retrieval, 7(4):239–342.

Davidov, D., Tsur, O., and Rappoport, A. (2010). Semi-
supervised recognition of sarcastic sentences in twitter
and amazon. In Proceedings of the fourteenth conference
on computational natural language learning, pages 107–
116. Association for Computational Linguistics.

El-Beltagy, S. R. (2016). Nileulex: A phrase and word
level sentiment lexicon for egyptian and modern standard
arabic. In LREC.

Elmadany, A. A., Mubarak, H., and Magdy, W. (2018).
Arsas: An arabic speech-act and sentiment corpus of
tweets. In OSACT 3: The 3rd Workshop on Open-Source
Arabic Corpora and Processing Tools, page 20.

Filatova, E. (2012). Irony and sarcasm: Corpus generation
and analysis using crowdsourcing. In Lrec, pages 392–
398. Citeseer.

Ghanem, B., Karoui, J., Benamara, F., Moriceau, V., and
Rosso, P. (2019). Idat at fire2019: Overview of the track
on irony detection in arabic tweets. In Proceedings of the
11th Forum for Information Retrieval Evaluation, pages
10–13.

Ghosh, D., Guo, W., and Muresan, S. (2015). Sarcastic or
not: Word embeddings to predict the literal or sarcastic
meaning of words. In proceedings of the 2015 confer-
ence on empirical methods in natural language process-
ing, pages 1003–1012.

Gibbs Jr, R. W., Gibbs, R. W., and Gibbs, J. (1994). The
poetics of mind: Figurative thought, language, and un-
derstanding. Cambridge University Press.

Grice, H. P., Cole, P., and Morgan, J. L. (1975). Syntax
and semantics.

Habash, N. Y. (2010). Introduction to arabic natural lan-
guage processing. Synthesis Lectures on Human Lan-
guage Technologies, 3(1):1–187.

Hussein, D. M. E.-D. M. (2018). A survey on sentiment
analysis challenges. Journal of King Saud University -
Engineering Sciences, 30(4):330 – 338.

Ibrahim, H. S., Abdou, S. M., and Gheith, M. (2015).
Mika: A tagged corpus for modern standard arabic and

colloquial sentiment analysis. In 2015 IEEE 2nd Inter-
national Conference on Recent Trends in Information
Systems (ReTIS), pages 353–358. IEEE.

Joshi, A., Sharma, V., and Bhattacharyya, P. (2015). Har-
nessing context incongruity for sarcasm detection. In
Proceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 757–762.

Joshi, A., Tripathi, V., Bhattacharyya, P., and Carman, M.
(2016). Harnessing sequence labeling for sarcasm detec-
tion in dialogue from tv series ‘friends’. In Proceedings
of The 20th SIGNLL Conference on Computational Nat-
ural Language Learning, pages 146–155.

Joshi, A., Bhattacharyya, P., and Carman, M. J. (2017).
Automatic sarcasm detection: A survey. ACM Comput-
ing Surveys (CSUR), 50(5):73.

Justo, R., Corcoran, T., Lukin, S. M., Walker, M., and
Torres, M. I. (2014). Extracting relevant knowledge for
the detection of sarcasm and nastiness in the social web.
Knowledge-Based Systems, 69:124–133.

Karoui, J., Zitoune, F. B., and Moriceau, V. (2017).
Soukhria: Towards an irony detection system for arabic
in social media. Procedia Computer Science, 117:161–
168.

Khodak, M., Saunshi, N., and Vodrahalli, K. (2018). A
large self-annotated corpus for sarcasm. In Proceedings
of the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018), Miyazaki,
Japan, May. European Language Resources Association
(ELRA).

Kiritchenko, S., Mohammad, S., and Salameh, M. (2016).
Semeval-2016 task 7: Determining sentiment inten-
sity of english and arabic phrases. In Proceedings of
the 10th international workshop on semantic evaluation
(SEMEVAL-2016), pages 42–51.

Liu, B. (2012). Sentiment Analysis and Opinion Mining.
Synthesis Lectures on Human Language Technologies,
5(1):1–167.

Mahyoub, F. H., Siddiqui, M. A., and Dahab, M. Y.
(2014). Building an arabic sentiment lexicon using semi-
supervised learning. Journal of King Saud University -
Computer and Information Sciences, 26(4):417 – 424.
Special Issue on Arabic NLP.

Mourad, A. and Darwish, K. (2013). Subjectivity and sen-
timent analysis of modern standard arabic and arabic mi-
croblogs. In Proceedings of the 4th workshop on compu-
tational approaches to subjectivity, sentiment and social
media analysis, pages 55–64.

Nabil, M., Aly, M., and Atiya, A. (2015). Astd: Arabic
sentiment tweets dataset. In Proceedings of the 2015
Conference on Empirical Methods in Natural Language
Processing, pages 2515–2519.

Oprea, S. and Magdy, W. (2019a). Exploring author con-
text for detecting intended vs perceived sarcasm. In Pro-
ceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 2854–2859, Flo-
rence, Italy, July. Association for Computational Lin-
guistics.

38

Oprea, S. and Magdy, W. (2019b). isarcasm: A dataset of
intended sarcasm. arXiv preprint arXiv:1911.03123.

Pang, B., Lee, L., and Vaithyanathan, S. (2002). Thumbs
up?: sentiment classification using machine learning
techniques. In Proceedings of the ACL-02 conference
on Empirical methods in natural language processing-
Volume 10, pages 79–86. Association for Computational
Linguistics.

Ptáček, T., Habernal, I., and Hong, J. (2014). Sarcasm
detection on czech and english twitter. In Proceedings
of COLING 2014, the 25th International Conference
on Computational Linguistics: Technical Papers, pages
213–223.

Rajadesingan, A., Zafarani, R., and Liu, H. (2015). Sar-
casm detection on twitter: A behavioral modeling ap-
proach. In Proceedings of the Eighth ACM International
Conference on Web Search and Data Mining, pages 97–
106. ACM.

Refaee, E. and Rieser, V. (2014). An arabic twitter corpus
for subjectivity and sentiment analysis. In LREC, pages
2268–2273.

Riloff, E., Qadir, A., Surve, P., De Silva, L., Gilbert, N., and
Huang, R. (2013). Sarcasm as contrast between a posi-
tive sentiment and negative situation. In Proceedings of
the 2013 Conference on Empirical Methods in Natural
Language Processing, pages 704–714.

Rosenthal, S., Farra, N., and Nakov, P. (2017). SemEval-
2017 task 4: Sentiment analysis in Twitter. In Proceed-
ings of the 11th International Workshop on Semantic
Evaluation, SemEval ’17, Vancouver, Canada, August.
Association for Computational Linguistics.

Van Hee, C., Lefever, E., and Hoste, V. (2018). Semeval-
2018 task 3: Irony detection in english tweets. In Pro-
ceedings of The 12th International Workshop on Seman-
tic Evaluation, pages 39–50.

Wilson, D. (2006). The pragmatics of verbal irony: Echo
or pretence? Lingua, 116(10):1722.

39

Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, pages 40–47
with a Shared Task on Offensive Language Detection.

Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020
c© European Language Resources Association (ELRA), licensed under CC-BY-NC

Understanding and Detecting Dangerous Speech in Social Media

Ali Alshehri1†, El Moatez Billah Nagoudi2† , Muhammad Abdul-Mageed2

1 SUNY at Buffalo
2 Natural Langauge Processing Lab, The University of British Columbia

alimoham@buffalo.edu, {moatez.nagoudi,muhammad.mageeed}@ubc.ca

Abstract
Social media communication has become a significant part of daily activity in modern societies. For this reason, ensuring safety in
social media platforms is a necessity. Use of dangerous language such as physical threats in online environments is a somewhat rare, yet
remains highly important. Although several works have been performed on the related issue of detecting offensive and hateful language,
dangerous speech has not previously been treated in any significant way. Motivated by these observations, we report our efforts to build
a labeled dataset for dangerous speech. We also exploit our dataset to develop highly effective models to detect dangerous content. Our
best model performs at 59.60% macro F1, significantly outperforming a competitive baseline.

1. Introduction
The proliferation of social media makes it necessary to
ensure online safety. Unfortunately, offensive, hateful, ag-
gressive, etc., language continues to be used online and put
the well-being of millions of people at stake. In some cases,
it has been reported that online incidents have caused not
only mental and psychological trouble to some users but
have indeed forced some to deactivate their accounts or, in
extreme cases, even commit suicides (Hinduja and Patchin,
2010). Previous work has focused on detecting various
types of negative online behavior, but not necessarily
dangerous speech. In this work, our goal is to bridge this
gap by investigating dangerous content. More specifically,
we focus on direct threats in Arabic Twitter. A threat can
be defined as “a statement of an intention to inflict pain,
injury, damage, or other hostile action on someone in ret-
ribution for something done or not done.”1 This definition
highlights two main aspects: (1) the speaker’s intention of
committing an act, which (2) he/she believes to be unfavor-
able to the addressee (Fraser, 1998). We especially direct
our primary attention to threats of physical harm. We build
a new dataset for training machine learning classifiers to
detect dangerous speech. Clearly, resulting models can be
beneficial in protecting online users and communities alike.

The fact that social media users can create fake accounts
on online platforms makes it possible for such users to
employ hostile and dangerous language without worrying
about facing effective social nor legal consequences. This
continues to put the responsibility on platforms such as
Facebook and Twitter to maintain safe environments for
their users. These networks have related guidelines and
invest in fighting negative and dangerous content. Twitter,
for example, prohibits any form of violence including
threats of physical harm and promotion of terrorism. 2

However, due to the vast volume of communication on
these platforms, it is not easy to detect harmful content
manually. Our work aims at developing automated models

† Both authors contributed equally.
1https://en.oxforddictionaries.com/

definition/threat
2https://help.twitter.com/en/

rules-and-policies/twitter-rules

to help alleviate this problem in the context of dangerous
speech.

Our focus on Arabic is motivated by the wide use of so-
cial media in the Arab world (Lenze, 2017). Relatively re-
cent estimates indicate that there are over 11M monthly
active users as of March 2017, posting over 27M tweets
each day (Salem, 2017). An Arabic country such as Saudi
Arabia has the highest Twitter penetration level world-
wide, with 37% (Iqbal, 2019). The Arabic language also
presents interesting challenges primarily due to the dialec-
tical variations cutting across all its linguistic levels: pho-
netic, phonological, morphological, semantic and syntac-
tic (Farghaly and Shaalan, 2009). Our work caters for
dialectal variations in that we collect data using multi-
dialectal seeds (Section 3.3.). Overall, we make the fol-
lowing contributions:

1) We manually curate a multi-dialectal dictionary of
physical harm threats that can be used to collect data
for training dangerous language models.

2) We use our lexicon to collect a large dataset of threat-
ening speech from Arabic Twitter, and manually an-
notate a subset of the data for dangerous speech. Our
datasets are freely available online.5

3) We investigate and characterize threatening speech in
Arabic Twitter.

4) We train effective models for detecting dangerous
speech in Arabic.

The remainder of the paper is organized as follows: In
Section 2., we review related literature. Building danger-
ous lexica used to collect our datasets is discussed in Sec-
tion 3.3.. We describe our annotation in Section 4.1.. We
present our models in Section 5., and conclude in Sec-
tion 6..

2. Related work
Detection of offensive language in natural languages has
recently attracted the interest of multiple researchers.
However, the space of abusive language is vast and has
its own nuances. Waseem et al. (2017) classify abusive

40

language along two dimensions: directness (the level to
which it is directed to a specific person or organization or
not) and explicitness (the degree to which it is explicit). Jay
and Janschewitz (2008) categorize offensive language
to three categories: Vulgar, Pornographic, and Hateful.
The Hateful category includes offensive language such as
threats as well as language pertaining to class, race, or
religion, among others. In the literature, these concepts
are sometimes confused or even ignored altogether. In the
following, we explore some of the relevant work on each
of these themes.

Offensive Language. The terms offensive language and
abusive language are commonly used interchangeably.
They are cover terms that usually include all types of
undesirable language such as hateful, racist, obscene, and
dangerous speech. We review some work looking at these
types of language here, with no specific focus on any of its
forms. GermEval 2018 is a shared task on the Identification
of Offensive Language in German proposed by Wiegand
et al. (2018). Their dataset consists of 8, 500 annotated
tweets with two labels, “offensive” and “non-offensive”.
Another relevant shared task is the OffensEval (Zampieri
et al., 2019), which focuses on identifying and categorizing
offensive language in social media. Very recently, an
Arabic offensive language shared task is included in
the 4th Workshop on Open-Source Arabic Corpora and
Processing Tools (OSACT4). 3

Hate Speech. Hate speech is a type of language that is bi-
ased, hostile, and malicious targeting a person or a group of
people because of some of their actual or perceived innate
characteristics (Gitari et al., 2015). This type of harmful
language received the most attention in the literature. Bur-
nap and Williams (2014) investigate the manifestation
and diffusion of hate speech and antagonistic content in
Twitter in relation to situations that could be classified as
‘trigger’ events for hate crimes. Their dataset consists of
450K tweets collected during a two weeks window in the
immediate aftermath of Drummer Lee Rigby’s murder in
Woolwich, UK. In Waseem (2016), issues of annotation
reliability are discussed. Authors examine whether the
expertise level of annotators (e.g expert or amateur) and/or
the type of information provided to the annotators, can
improve the classification of hate speech. For this purpose,
they extend the dataset of (Waseem and Hovy, 2016)
with a set of about 7K tweets annotated by two types of
CrowdFlower users: expert and amateur. They find that
hate speech detection models trained on expert annotations
outperform those trained on amateur annotations. This
suggests that hate speech can be implicit and thus harder
to detect by humans and machines alike. Another work
by (Davidson et al., 2017) builds a hate speech lexicon
based on a list of words and phrases provided by Hate-
base.org. Using Twitter API, they crawled a set of 85M
tweets containing terms from the lexicon. Most recent
works on detecting hate on Twitter are done as part of a

3http://edinburghnlp.inf.ed.ac.uk/
workshops/OSACT4/

SemEval2019 competition, HatEval (Òscar Garibo, 2019).
This shared task addresses the problem of multilingual
detection of hate speech against immigrants and women in
Twitter.

Obscene Language. Obscene speech includes vulgar and
pornographic speech. A few research papers have looked
at this kind of speech in social media (Singh et al., 2016;
Mubarak et al., 2017; Alshehri et al., 2018). Mubarak
et al. (2017) present an automated method to create and
expand a list of obscene words, for the purpose of detecting
obscene language. Abozinadah (2015) build a dataset of
over 1M tweets comprising the most recent 50 tweets of
255 users who has participated in swearing hashtags as
well as the most recent 50 tweets of users in their network.
As feature input to their classifiers, the authors extracted
basic statistical measures from each tweet and reported
96% accuracy of adult content detection. Alshehri et al.
(2018) build a dataset of adult content in Arabic twitter
and their distributors. The work identifies geographical
distribution of targets of adult content and develops models
for detecting spreaders of such content.Alshehri et al.
(2018) report 79% accuracy on detecting adult content.

Racism and Sexism. Kwok and Wang (2013) create
a balanced dataset comprising 24, 582 of ‘racist’ and
‘non-racist’ tweets. Waseem and Hovy (2016) collect a
set of 136K hate tweets based on a list of common terms
and slurs pertaining ethnic minorities, gender, sexuality,
and religion. Afterwards, a random set of 16K tweets
are selected and manually annotated with three labels:
‘racist’, ‘sexist’, or “neither”. Gambäck and Sikdar (2017)
introduce a deep-learning-based Twitter hate speech text
classification model. Using data from Waseem and Hovy
(2016) with about 6.5K tweets, the model classifies tweets
into four categories: ‘sexist’, ‘racist’, ‘both sexist and
racist’, and ‘neither’. Clarke and Grieve (2017), using
the same list, explore differences among racist and sexist
tweets along three dimensions: interactiveness, antago-
nism, and attitude and find an overall significant difference
between them.

Dangerous Language. Little work has been dedicated
to detection and classification of dangerous language and
threats. They are usually part of work on abusive and hate
speech. This is to say that dangerous language has only
been indirectly investigated within the NLP community.
However, there is some research that is not necessarily
computational in nature. For example, Gales (2011)
investigates the correlation between interpersonal stance
and the realization of threats by analyzing a corpus of 470
authentic threats. Ultimately, the goal of Gale’s work is
to help predict violence before it occurs. Hardaker and
McGlashan (2016), on the other hand, investigates the
language surrounding threats of rape on Twitter. In their
corpus, the authors find that women were the prime target
of rape threats. In the rest of this paper, we explore the
space and language of threats in Arabic Twitter. We now
describe our lexicon and datasets.

41

Verb Dialect English Verb Dialect English Verb Dialect English

XAK.

@ G,M,R exterminate 	�P G,M contuse Qm.

	̄
all blow up

É�K

@ E,L kill Q¢� * E,G mark �� �� 	̄ G,L split

øX

@ * E,G give qÊ� all skin ©�® 	̄* E,G,L,R burst

ÐY«

@ all execute ��Ê� E,G,R boil ½ 	̄* E,G,L disentangle

ú 	æ 	̄ @ G,M,R exterminate l .�
�� M slash É�J�̄ all kill

½Êë

@ G,M,R destroy H. Qå�� ** E,G,L,R drink hQ�̄ E sound

ÈA�J 	«@ G,L,M,R assassinate �� �� E,G,L,R rip off Õæ��̄ all divide
I. ��J 	«@ all rape èñ �� E,G,L,R distort 	��̄ G,R smash
©Ê�J�̄ @ * G,L,R pluck ÐQå� G cut off Õæ��̄ G,M smash

��¢�. E,L,M assault �� 	®� G,L slap úæ	��̄ E,G,L,M eliminate
hQk. all wound qÊ� G,L skin ©¢�̄ all cut

P 	Qk. G cut off H. Qå 	� all hit ©Ê�̄ E,G,L,R pluck

YÊg. all whip q£ E,G shoot Qå�» all break
��Qk all burn 	áª£ all stab qÖÏ G hit

Ñ¢k E,L,M,R smash Q�
£ E,G,L,R make fly Am× ** E,G,L,R erase
¼X E,G,L demolish H.

	Y« E,G,M,R torture ��m× M destroy
½ëX G run over H. 	Q« E torture Qm� 	' E,G,M,R slaughter
l�'. 	X all slaughter Q�®« E,G kill 	�	� E,G,M,R blast

Ñk. P E,G,M,R stone ½�J 	̄ E,G,L,M destroy Õæ��ë G,L,R smash

Table 1: Our list of dangerous verbs. All= all dialects. E= Egyptian. G= Gulf. L= Levantine. M= MSA. R= Maghrebi.
* = metaphorical. ** = used idiomatically.

3. Dangerous Lexica and Dataset

3.1. Dangerous Language
We define dangerous language as a statement of an inten-
tion to inflict physical pain, injury, or damage on someone
in retribution for something done or not. This definition ex-
cludes threats that do not reflect physical harm on the side
of the receiver end of the threat. The definition also ex-
cludes tongue in cheek whose real intention is to tease. An
example of this later category is a threat made in the con-
text of sports where it is common among fans to tease one
another using metaphorical, string language (see Example
6 in Section 3.3.).

3.2. Dangerous Lexica
We came up with a list of 57 verbs in their basic form that
can be used literally or metaphorically to indicate physical
harm (see table 1). This list is by no means exhaustive,
although we did our best to expand it as much as possible.
As such, the list covers the frequent verbs used in the
threatening domain in Arabic. 4 These verbs are used in
one or more of the following varieties: Egyptian, Gulf,
Levantine, Maghrebi, and MSA (see table 2 for more
details). Most of these verbs (n=50 out of 57) literally
indicate physical harm. Examples are 	áª£ (‘to stap’)

4The concept of frequency here is based on native speaker
knowledge of the language. The list was developed by the 3
authors, all of whom are native speakers of Arabic with multi-
dialectal fluency.

and qÊ� (‘to de-skin’). The rest are used (sometimes

metaphorically) to indicate threatening, such as ©Ê�J�̄ @ (‘to

pluck’) and Q¢� (‘to mark’) usually with a body part

such as ék. ð (‘face’) or �

@P (‘head’). Finally, some of

the verbs are used idiomatically, such as ÐX 	áÓ H. Qå�� (‘to

drink someone’s blood’) and 	�PB@ ��ð úÎ« 	áÓ Am× (‘to
erase/eliminate from the face of the earth’). Multiword
expressions in our seed list can be found in Table 3.

Dialect # of verbs
MSA 30
Gulf 50
Egyptian 39
Maghrebi 34
Levantine 34
All (unique) 57

Table 2: Distribution of threat verbs across Arabic dialects.

To be able to collect data, we used our manually curated list
to construct threat phrases indicating physical harm such as
½Ê�J�̄ @ (‘I kill you’) and èQå�ºK
 (‘He breaks him/it’). That is,
each phrase consists of a physical harm verb, a singular or
plural first or third person subject, and a plural or singular
second or third person object. This gives us the following
pattern:

1st/3rd (SG / PL) + threat verb + 2nd/3rd (SG / PL)

42

Some of the phrases only differ on the basis of spelling due
to dialectical variations. For example, the body part ék. ð
(‘face’) can be spelled as ÕºîD
k. ð or Õºëñk. ð in the plural
form depending on the dialect. Another example is the verb
É�J�̄ (‘kill’), which can also be spelled as É�K@ in Egyptian and
some other Arabic dialects. Manual search of some of the
seed tokens in twitter suggests that patterns involving 3rd
person subject are almost always not threats. The following
are two illustrating examples of this non-threatening use:

1) Qå��J. Ë @ 	�ªK. �ékQ 	̄ É�J�®K
 é 	K A
	̄ Éj. ��
 ÕË @ 	X @ ú
æ�J
Ó

‘If he doesn’t score, Messi kills happiness in some people’

2) ú
ÍA 	« �	m��� øñ� . . . Q£A	mÌ'@ Qå�ºK
 AÓ
‘Only a dear friend can break one’s heart’

Thus, we decided to limit our list of phrases to ‘direct’ dan-
gerous threats, which are phrases involving a singular or
plural first person subject and singular or plural second per-
son object as follows:

1st (SG/PL) + threat verb + 2nd (SG/PL)

Examples of these direct threats include ½J.��J 	ª 	K (‘We rape
you’) and Õº�̄Qk@ (‘I burn you’). Less dangerous threats

such as ÕºkQk. @ (“We hurt you (all)”) and ½ 	̄ X@ (‘I push
you’) are also not considered. Our motivation for not in-
cluding these latter phrases even though they involve direct
threats is that they indicate less danger and (more crucially)
are more likely to be used metaphorically in Arabic. This
resulted in a set of 286 direct and dangerous phrases, which
constitute our list of ‘dangerous’ seeds. We make the list of
286 direct threats phrases available to the research commu-
nity. 5

3.3. Dataset
We use the constructed ‘dangerous’ seed list to search Twit-
ter using the REST API for two weeks resulting in a dataset
of 2.8M tweets involving ‘direct’ threats as shown in Ta-
ble 4. We then extract user ids from all users who con-
tributed the REST API data (n = 399K users) and crawled
their timelines (n = 705M tweets). We then acquire
107.5M tweets from the timelines, each of which carry one
or more items from our ‘dangerous’ seed list. Combining
these two datasets (the REST API dataset and dataset based
on the timelines) results in a dataset consisting of 110.3M
tweets as shown in Table 4. In this work, we focus on ex-
ploiting the REST API dataset exclusively, leaving the rest
of the data to future research.

4. Data Annotation

4.1. Annotation
We first randomly sample 1K tweets from our REST API
dataset.5 Two of the authors annotated each tweet for being
a threat (‘dangerous’) or not (‘safe’). This sample anno-
tation resulted in a Kappa (κ) score of 0.57, which is fair

5https://github.com/UBC-NLP/ara_
dangspeech.

according to Landis and Koch’s scale (Landis and Koch,
1977). The two annotators then held several discussion ses-
sions to improve their mutual understanding of the problem
and define some instructions as to how to label the data.
We also added another random sample of 4K tweets (for
a total size of 5K) to the annotation pool. After extensive
revisions of the disagreement cases by the two annotators,
the κ score for the whole dataset (5K) was found to be
at 0.90. The annotated dataset has a total of 1, 375 tweets
in the ‘dangerous’ class and 3, 636 in the ‘non-dangerous’
class. Our overall agreed-upon instructions for annotations
include the following:

• Textual threats combined with pleasant emojis such as

and are not dangerous, as opposed to threat

combined with less pleasant emojis such as .
Thus, tweet 3 below should be coded as ‘safe’ while
tweet 4 should be tagged as ‘dangerous’.

3) @user ½Ê�J�̄ AK. A 	K

@ Èñ�®K
 ��¢	JÖÏ @

‘It goes with logic that I kill you ’

4) @user @user @user ½	Jª£@ B ��. ú
×@Y�̄

‘Move forward [in front of me] or else I stab you ’

• Mitigated threats with question marks or epistemic
modals are dangerous unless they are combined with
positive language or emojis such as Example 5 below.
Note that the word Touha in Example 5 is an infor-
mal, friendly form for Arabic names such as FatHi or
MamdouH.

5) @user ékñ�K AK
 ½Ê�J�̄ @ Qº 	®K. A 	K @
‘I am thinking of killing you, Touha ’

• Threats related to sports are not dangerous. That is be-
cause it is common to use verbs like Qm� 	' (“slaughter”)
and I. ��J 	«@ (“rape”) among fans of rival teams to de-
scribe wins and losses, as in the following example.

6) @user Õ»PñêÔg. 	á�
K. ð Õº 	�P@ úÎ« ÕºJ.��J 	ª 	K é�KCg
‘It’s actually better that we ‘rape’ you in your stadium,
among your fans’

• Ambiguous threats such as threats consisting of one
word (as in Example 7 below) should be coded as
‘dangerous’:

7) @ñºÊ�J�̄ @
‘I kill you’

Below, we show examples of tweets that were annotated as
‘dangerous’:

8) @user @user
H. C¾ÊË ½J
ÓP@ ð ½�̄Qk@ ø
 Xð
‘I wish to burn you and throw you to dogs’

43

Seed English Seed English
½ÓX 	áÓ H. Qå�� @ I drink from your blood 	�PB@ ��ð úÎ« 	áÓ ½J
m×@ I erase you from the face of the earth

½ÓX H. Qå�� @ I drink your blood 	�PB@ ��ð úÎ« 	áÓ ÕºJ
m×@ I erase you all from the face of the earth

ÕºÓX 	áÓ H. Qå�� @ I drink your blood all ½ÓX 	áÓ H. Qå�� 	� We drink from your blood
½êk. ð èñ ��@ I disfigure your face ½ÓX H. Qå�� 	� We drink your blood
½�@P Q�
£@ I cut your head ÕºÓX 	áÓ H. Qå�� 	� We drink your blood all
Õº�ðP Q�
£@ I cut your head all ½�@P Q�
¢	� I cut your head

½�@P Qm.
	̄ @ I blow up your head Õº�ðP Q�
¢	� I cut your head all

½êk. ð ©�® 	̄ @ I burst your face ½�@P Qj. 	® 	K We blow up your head

Õºëñk. ð ©�® 	̄ @ I hit your face all ½êk. ð ©�® 	® 	K We hit your face

½êk. ð ½ 	̄ @ I disentangle your face ½J
Ê« ú
æ
	��® 	K We finish you

½J
Ê« ú
æ
	��̄ @ I finish you ÕºJ
Ê« ú
æ

	��® 	K We finish you all

ÕºJ
Ê« ú
æ
	��̄ @ I finish you all 	�PB@ ��ð úÎ« 	áÓ ½J
jÖ 	ß I erase you from the face of the earth

½êk. ð Qå�» @ I break your face 	�PB@ ��ð úÎ« 	áÓ ÕºJ
jÖ 	ß We erase you all from the face of the earth

Table 3: Multiword expressions in our seed list.

Dataset # of tweets
REST API 2.8M
Timelines 107.5M

ALL 110.3M

Table 4: Breakdown of our ‘dangerous’ dataset.

Safe Dangerous Total
Safe 3, 570 52 3, 622
Dangerous 70 1319 1, 389
Total 3, 640 1, 371 5, 011

Table 5: Annotator Agreement of 5011-tweet sample.

9) @user ½K. Qå 	�@ Ðñ�̄ @ 	á�mÌ ø
 X �é�®K
Q¢Ë@ H. ���
 	JÒÊ¾�KAÓ
ÈA�̄ �èñ�	� ©K. P@ ÈA�̄

‘Don’t talk to me in this way, or else I hit you! Talking of
(marrying) four women!’

10) @user @user
	¬ñ� Õæ

	¢ªË@ ��QªË@ H. Pð H. QmÌ'@ @YJ. �K
	¬ñ�

é	KðA 	g AK
 H. QªË@ QK
 	Q 	� 	g AK
 	á�
J
J
�� 	J 	m×AK
 Õ �æ 	K @ ��Qk Õº�̄Qm� 	'
‘The war will begin. By God, we will burn you down, you
fags, you pigs, you traitors’

11) @user Ð 	PB @ 	XAë �PYË@ 	áÓ @ñ�KY 	®�J�@AÓ PAÔg Õç'
 @X PAÒmÌ'@
�HA 	KñJ
kBð Qå���. @ñ�J 	K @ ÈAêm.Ì'@ ø
 	P Õ» A 	®�̄ úÎ« ÕºK. Qå	� 	�

‘A donkey will always be a donkey. You didn’t learn the
lesson. We have to hit you on the back of you heads like
kids. Are you humans or animals?’

12) @user ½Ê�J�̄ @ ��. ñÓ ½gQå�� @ ú
k. @ð Õº�J�
K. ú
»ðQ» ú

	æJ
¢«

‘Give me your address so I can come to you, and not only
kill you but also dissect you’

Measure Value
Avg. # timeline tweets 2, 313
Avg. # dangerous tweets / user 3.97
St. dev. 3.64
25th percentile 1
50th percentile 4
75th percentile 6
Minimum 1
Maximum 23

Table 6: Descriptive statistics of the timeline data of 1, 370
users who contributed tweets classified as ‘dangerous’ in
our annotated dataset.

Seed English Emoji

½m�'.
	X @ I slaughter you

½Ê�J�̄ @ I kill you

½J.��J 	«@ I rape you

½K. Qå 	�@ I hit you

½K.
	Y«@ I torture you

½K
X@ I hit/give you

¼YÊg. @ I lash you

½	Jª£@ I stab you

½gQk. @ I hurt you

½�̄Qk@ I burn you

Table 7: Top 10 most frequent ‘dangerous’ seeds and emo-
jis in our REST API dataset.

4.2. Data Analysis
The fact that ‘dangerous’ tweets are not frequent in the
dataset suggests that this phenomenon of dangerous speech
is relatively rare in the Twitter domain. To further inves-
tigate the commonality of such a phenomenon, we extract

44

Models Datasets Precision Recall Acc F1

Baseline – 50.00 29.33 58.66 36.97

BERT Dangerous 58.42 60.10 74.27 58.98
BERT Dangerous + Offensive 53.80 53.44 66.11 53.52

BERT-Emotion Dangerous 60.06 59.24 77.97 59.60
BERT-Emotion Dangerous + Offensive 54.50 53.99 66.84 54.11

Table 8: Results from our models on TEST.

the timelines of the authors of tweets in the dangerous class
in the annotated dataset. Table 6 shows some descriptive
statistics of the occurrence of dangerous seeds in their time-
lines. We can see from Table 6 that timelines contain on av-
erage 2, 313 tweets for each user, and there are on average
3.97 tweets in each timeline containing a dangerous seed
token. This represents∼ 0.17% of the tweets for each user.
The average number of dangerous tweets is higher (n = 6)
for users in the 75th percentile as opposed to n = 1 in the
25th percentile.
To further understand dangerous language, we also analyze
all the 5, 011 tweets from our annotated dataset. We
identify a number of patterns in the data, cutting across
both the ‘dangerous’ and ‘safe’ classes. We explain each
of these patterns next.

Conditional threats: One common threatening pattern
involves conditional statements where the consequent in-
volves a physical threat by the speaker toward the ad-
dressee, and the antecedent is a conditional phrase involv-
ing deterrence of an action that can possibly be carried out
by the addressee or someone else. The following are two
examples:

13) @user úæ�� 	áK
ñ��� @ 	X @ ½m�'.
	X @

‘I slaughter you if you (F) do anything’

14) @user
�
CÖÏ @ ÐAÓ@

�
@ AgQ�.Ó

�
A 	Jª£ ½	Jª£@ 	¬ñ� É�®�J 	K @ @ 	X @

‘If he transfers, I will stab you hardly in front of the crowds’

It is clear from Examples 13 and 14 that the threats are
directed to a twitter user mentioned in the tweet. So
these tweets are potentially part of ongoing conversations
between the person who posted the tweet and the user
mentioned in the body of the tweet. As Table 9 shows,
∼ 71.2% of tweets in our annotated dataset (across
the ‘dangerous’ and ‘safe’ classes) contain mentions of
other Twitter users. This percentage is higher within the
dangerous class (%= 78).

Threats accompanied with commands: Another com-
mon pattern involves a command accompanying the threat
as in Example 15 below. These kinds of threats are more
common in the dangerous than the safe class.

15) @user ½êk. ð ©�® 	̄ @ B ù
 ªÊ�® 	K @ Èñ�̄ @
‘I say get out before I hit your face’

Threats accompanied with questions: Another less com-
mon pattern is threats in the form of questions. This kind of

Phenomena Freq. Percentage
(non-
dangerous)

Percentage
(dangerous
class)

Mentions 3673 72.8% 78%
Questions 100 2.8% 5%
Emoji 2, 010 45.5% 36%
Conditional 742 15.8% 11.4%
Body parts 378 6.6% 11.3%
Hahaha 355 9.9% 1.1%

Table 9: The frequency of some textual phenomena in our
Annotated data.

threats occurs in about 5% of our dangerous data as com-
pared to 2.8% in the safe class. Unlike the examples above,
the reason behind most of the ‘question’ threats is not par-
ticularly clear as they tend to be short, sometimes of one
word. Interpretation of these threats requires more context,
beyond the level of the tweet itself. Examples 16-18 illus-
trate this category.

16) ?Q�. mÌ'@ ÕË @ 	áÓ ½Ê�J�̄ @ 	áºÜØ
‘can i kill you by the pen’

17) @user ? ½J.��J 	«@ © 	® 	JK

‘Does it work if I rape you?’

18) @user ? ½m�'.
	X @

‘I slaughter you?’

Threat accompanied by modality: Some threats carry de-
ontic modality where modals such as ‘would’, ‘probably’,
‘may’ are employed. Epistemic modality are also found in
some data points. Similar to the question types above, these
tweets (Examples 19-21 below) are less threatening than
Examples 13-18 above.

19) @user ½J.��J 	«@ ú

	æÊªk.

‘May I rape you?!’ (deontic modality)

20) @user ½m�'.
	X @ ø
 Xð

‘I would like to kill you’ (deontic modality)

21) @user ½�JJ. m�� ©Ó ½Ê�J�̄ @ hP ú
Î¾ ��
‘I am probably going to kill you with your friends’ (epistemic
modality)

Metaphorical threats: Many of the tweets involve
metaphorical use of the phrases in our annotated data. The
target domain of the majority of these metaphorical uses is
either sports or relationships. Words such as ‘kill’, ‘rape’,

45

and ‘slaughter’ are used to indicate ‘wining’ in sport or
‘burn’ to mean ‘pain’ or ‘longing’ in romantic relation-
ships. Examples 23-24 illustrate these cases:

20) h@P èQºK. éK
ð@Q��� ��	�AÖÏ @ ú

	G @ñ 	kB Èñ�̄ I. k@

@ñª�JÒ�J�@AÖ 	ß @ð Qj. 	�Ë@ð Q« 	YÊË ú
«@X C 	̄ ÕºJ.��J 	ª 	K
‘I would like to tell my Manchester (football club) fans that
we will rape them tomorrow’

21) AÓ@Q 	« ½J 	®£@ð A�® ��« ½�̄Qk@ �
‘I will burn you with love and put off (the fire on you) with
affection’

Emojis: Another interesting phenomenon (see Table 9)
is the frequent use of emojis, which are found in about
40% of the annotated dataset. This is not surprising as it
helps participants mitigate (and hence better disambiguate
the nature of) their threats. Table 7 shows the top most
frequent emojis used in our REST API data. It is evident
that most of the used emojis do not indicate friendliness,
but rather have a threatening nature. This is also true of
using expressive interjections such as hahaha, which is
more common in the non-dangerous than the dangerous
class. Additionally, as mentioned above, some expressions
involve use of ‘body parts’ such as eyes, head, face, nose,
etc.. These are found to occur significantly higher in the
‘dangerous’ class.

Conversational context: Finally, Table 7 also shows the
top 10 most frequent seeds in our REST API dataset. All
of these seeds involve a first singular person subject and a
singular second person object, which indicate that many of
these tweets containing dangerous seeds are part of one-to-
one conversations on Twitter.

5. Deep Learning Models

Dangerous speech data. We use our 5, 011 annotated
tweet dataset for training deep learning models on dan-
gerous speech. The dataset comprises 3, 570 ‘safe’ tweets
and 1, 389 ‘dangerous’ tweets. We first remove all the
seeds in our lexicon since these were used in collecting the
data. We then keep only tweets with at least two words,
obtaining 4, 445 tweets with 3, 225 ‘safe’ labels and 1, 220
‘dangerous’ tweet (see Table 10). We split this dataset into
80% training, 10% development, and 10% test.

Offensive speech data. In one of our settings, we also
use the offensive dataset released via the Offensive Shared
Task 2020.6 This offensive content dataset consists of 8000
tweets (1, 590 ‘offensive’ and 6, 410 ‘non-offensive’). We
use the offensive class data to augment our train split.
Hence, we evaluate only on our test split where tweets are
restricted to our dangerous gold tweets in the annotated
dataset. We run this experiment as a way to test the utility
of exploiting offensive tweets for enhancing dangerous
language representation based on the assumption that dan-
gerous speech is a subset of offensive language. However,

6http://edinburghnlp.inf.ed.ac.uk/
workshops/OSACT4/

as we see in Table 8, this measure did not result in any
improvements on top of our dangerous models. In fact, it
leads to model deterioration.

Train Dev Test
#Safe 2, 727 244 254
#Dangerous 852 189 179
Total 3, 579 433 433

Table 10: Distribution of dangerous and safe classes in our
annotated dataset after normalization by removing seeds
and one-word tweets.

Models. For the purpose of training deep learning models
for detecting dangerous speech, we exploit the Bidirec-
tional Encoder Representations from Transformers (BERT)
(Devlin et al., 2018) model. For all our models, we use the
BERT-Base Multilingual Cased (Multi-Cased) model.7 It is
trained on Wikipedia for 104 languages (including Arabic)
with 12 layers, 12 attention heads, 768 hidden units each
and 110M parameters. Additionally, we further fine-tune
an off-the-shelf trained BERT Emotion (BERT-EMO) from
AraNet (Abdul-Mageed et al., 2019) on our dangerous
speech task. BERT-EMO is trained with Google’s BERT-
Base Multilingual Cased model on 8 emotion classes
exploiting Arabic Twitter data. We train all BERT models
for 20 epochs with a batch size of 32, maximum sequence
size of 50 tokens and learning rate up to 2e−5. We identify
best results on the development set, and report final results
on the blind test set. As our baseline, we use the majority
class in our training split. Note that since our dataset is
not balanced, the majority class baseline is competitive
(63.97% macro F1 score). Also, importantly, due to the
imbalance in class distribution, the macro F1 score (the
harmonic mean of precision and recall) is our metric of
choice as it is more balanced than accuracy.

Results & Discussion. As Table 8 shows, the results
demonstrate that all the models outperform the baseline
and succeed in detecting the dangerous speech with F1

scores between 53.42% and 59.60%. We also observe
that training on the offensive dataset did not improve the
results. On the contrary, augmenting training data with the
offensive task tweets cause deterioration to 53.52% F1 for
BERT and 54.11% F1 for BERT-Emotion.

The best model for detecting dangerous tweets is BERT-
Emotion when fine-tuned on our gold dangerous dataset.
It obtains an accuracy level of 77.97% and F1 score of
59.60%. We note that both accuracy and F1 are signifi-
cantly higher then the the baseline. As mentioned earlier,
since our dataset is highly imbalanced, F1, rather than ac-
curacy, should be used as the metric of choice for evalua-
tion. As such, our models are significantly better than our
baseline.

7https://github.com/google-research/bert/
blob/master/multilingual.md.

46

6. Conclusion

We have described our efforts to collect and manually label
a dangerous speech dataset from a range of Arabic varieties.
Our work shows that dangerous speech is rare online, thus
making it difficult to find data for training machine learning
classifiers. However, we were able to collect and annotate a
sizeable dataset. To accelerate research, we will make our
data available upon request. Another contribution we made
is developing a number of models exploiting our data. Our
best models are effective, and can be deployed for detect-
ing the rare, yet highly serious, phenomenon of dangerous
speech. For future work, we plan to further explore contexts
of use of dangerous language in social media. We also plan
to explore other deep learning methods on the task.

7. Bibliographical References
Abdul-Mageed, M., Zhang, C., Hashemi, A., and Nagoudi,

E. M. B. (2019). Aranet: A deep learning toolkit for
arabic social media. arXiv preprint arXiv:1912.13072.

Abozinadah, A., M. A. a. J. J. (2015). Detection of abu-
sive accounts with arabic tweets. International Journal
of Knowledge Engineering, Vol. 1, No. 2.

Alshehri, A., Nagoudi, A., Hassan, A., and Abdul-Mageed,
M. (2018). Think before your click: Data and models
for adult content in arabic twitter. The 2nd Text Analyt-
ics for Cybersecurity and Online Safety (TA-COS-2018),
LREC.

Burnap, P. and Williams, M. L. (2014). Hate speech, ma-
chine classification and statistical modelling of informa-
tion flows on twitter: Interpretation and communication
for policy decision making.

Clarke, I. and Grieve, J. (2017). Dimensions of abusive
language on twitter. Association for Computational Lin-
guistics.

Davidson, T., Warmsley, D., Macy, M., and Weber,
I. (2017). Automated hate speech detection and
the problem of offensive language. arXiv preprint
arXiv:1703.04009.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2018). Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint
arXiv:1810.04805.

Farghaly, A. and Shaalan, K. (2009). Arabic natural
language processing: Challenges and solutions. ACM
Transactions on Asian Language Information Process-
ing (TALIP), 8(4):1–22.

Fraser, B. (1998). Threatening revisited. Forensic linguis-
tics, 5(2).

Gales, T. (2011). Identifying interpersonal stance in threat-
ening discourse: An appraisal analysis. Discourse Stud-
ies, 13(1):27–46.

Gambäck, B. and Sikdar, U. K. (2017). Using convolu-
tional neural networks to classify hate-speech. In Pro-
ceedings of the First Workshop on Abusive Language On-
line, pages 85–90.

Gitari, N. D., Zuping, Z., Damien, H., and Long, J. (2015).
A lexicon-based approach for hate speech detection. In-

ternational Journal of Multimedia and Ubiquitous Engi-
neering, 10(4):215–230.

Hardaker, C. and McGlashan, M. (2016). ’real men don’t
hate women’: Twitter rape threats and group identity.
Journal of Pragmatics, 91:80 – 93.

Hinduja, S. and Patchin, J. W. (2010). Bullying, cy-
berbullying, and suicide. Archives of suicide research,
14(3):206–221.

Iqbal, M. (2019). Twitter revenue and usage statistics in
2019. November.

Jay, T. and Janschewitz, K. (2008). The pragmatics of
swearing. Journal of Politeness Research. Language,
Behaviour, Culture, 4(2):267–288.

Kwok, I. and Wang, Y. (2013). Locate the hate: Detecting
tweets against blacks. In AAAI.

Landis, J. R. and Koch, G. G. (1977). The measurement
of observer agreement for categorical data. Biometrics,
33(1):159–174.

Lenze, N. (2017). Social media in the arab world: Com-
munication and public opinion in the gulf states. Euro-
pean Journal of Communication, 32(1):77–79.

Mubarak, H., Darwish, K., and Magdy, W. (2017). Abu-
sive language detection on arabic social media. In Pro-
ceedings of the First Workshop on Abusive Language On-
line, pages 52–56.

Òscar Garibo, i. O. (2019). Multilingual detection of
hate speech against immigrants and women in twitter at
semeval-2019 task 5: Frequency analysis interpolation
for hate in speech detection. In Proceedings of the 13th
International Workshop on Semantic Evaluation, pages
460–463.

Salem, F. (2017). The arab social media report 2017: So-
cial media and the internet of things: Towards data-
driven policymaking in the arab world. Vol. 7.

Singh, M., Bansal, D., and Sofat, S. (2016). Behav-
ioral analysis and classification of spammers distributing
pornographic content in social media. Social Network
Analysis and Mining, 6(1):41, Jun.

Waseem, Z. and Hovy, D. (2016). Hateful symbols or hate-
ful people? predictive features for hate speech detec-
tion on twitter. In Proceedings of the NAACL student
research workshop, pages 88–93.

Waseem, Z., Davidson, T., Warmsley, D., and Weber, I.
(2017). Understanding abuse: A typology of abusive
language detection subtasks. CoRR, abs/1705.09899.

Waseem, Z. (2016). Are you a racist or am i seeing things?
annotator influence on hate speech detection on twitter.
In Proceedings of the first workshop on NLP and compu-
tational social science, pages 138–142.

Wiegand, M., Siegel, M., and Ruppenhofer, J. (2018).
Overview of the germeval 2018 shared task on the iden-
tification of offensive language.

Zampieri, M., Malmasi, S., Nakov, P., Rosenthal, S., Farra,
N., and Kumar, R. (2019). Semeval-2019 task 6: Identi-
fying and categorizing offensive language in social me-
dia (offenseval). arXiv preprint arXiv:1903.08983.

47

Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, pages 48–52
with a Shared Task on Offensive Language Detection.

Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020
c© European Language Resources Association (ELRA), licensed under CC-BY-NC

Overview of OSACT4 Arabic Offensive Language Detection Shared Task

Hamdy Mubarak1, Kareem Darwish1, Walid Magdy2, Tamer Elsayed3, Hend Al-Khalifa4
1 Qatar Computing Research Institute, HKBU, Doha, Qatar

2 School of Informatics, University of Edinburgh, Edinburgh, UK
3 Qatar University, Doha, Qatar

4 Information Technology Department, KSU, Riyadh, KSA
{humbarak, kdarwish}@hbku.edu.qa, wmagdy@inf.ed.ac.uk, telsayed@qu.edu.qa, hendk@ksu.edu.sa

Abstract
This paper provides an overview of the offensive language detection shared task at the 4th workshop on Open-Source Arabic Corpora
and Processing Tools (OSACT4). There were two subtasks, namely: Subtask A, involving the detection of offensive language, which
contains unacceptable or vulgar content in addition to any kind of explicit or implicit insults or attacks against individuals or groups; and
Subtask B, involving the detection of hate speech, which contains insults or threats targeting a group based on their nationality, ethnicity,
race, gender, political or sport affiliation, religious belief, or other common characteristics. In total, 40 teams signed up to participate in
Subtask A, and 14 of them submitted test runs. For Subtask B, 33 teams signed up to participate and 13 of them submitted runs. We
present and analyze all submissions in this paper.

Keywords: OSACT, Arabic Offensive Language, Arabic Hate Speech, Shared Task, CodaLab

1. Introduction

Offensive speech (vulgar or targeted offense), as an expres-
sion of heightened polarization or discord in society, has
been on the rise. This is due in part to the large adoption of
social media platforms that allow for greater polarization.
The OSACT4 shared task provides a platform to bring
researchers from around the world to tackle the detection
of offensive and hate speech in the realm of Arabic social
media. The shared task has two subtasks. Subtask A
involves detecting offensive language, which contains
explicit or implicit insults or attacks against individuals or
groups and includes vulgar and inappropriate language.
Subtask B is concerned with detecting hate speech, which
contains insults or threats targeting specific groups based
on their nationality, ethnicity, race, gender, political or
sport affiliation, religious belief, or other common charac-
teristics. The goal of the shared task is to aid research on
the identification of offensive content and hate speech in
Arabic language Twitter posts. The shared task attracted
a large number of participants. In all, 40 and 33 teams
signed up to Subtasks A and B respectively. From them,
13 teams submitted test runs to both subtasks, and only
one team submitted runs to Subtask A. Of those teams,
11 submitted system description papers (Abdellatif and
Elgammal, 2020; Abu Farha and Magdy, 2020; Abuzayed
and Elsayed, 2020; Alharbi and Lee, 2020; Djandji et al.,
2020; Elmadany et al., 2020; Haddad et al., 2020; Saeed et
al., 2020; Hassan et al., 2020; Husain, 2020; Keleg et al.,
2020).

The highest achieved F1 scores for Subtasks A and B
were 90.5 (Accuracy = 93.9, Precision = 90.2, and Recall
= 90.9) (Hassan et al., 2020) and 95.2 (Accuracy = 95.9,
Precision = 95.2, and Recall = 95.9) (Husain, 2020)
respectively.

2. Dataset
Subtasks A and B used the SemEval 2020 Task 12 Arabic
offensive language dataset (OffensEval2020, Subtask A),
which contains 10,000 tweets that were manually annotated
for offensiveness (labels: OFF or NOT OFF). The subtasks
used the same OffensEval2020 training (70% of all tweets),
dev (10%), and test (20%) splits.
The tweets were extracted from a set of 660k Arabic tweets
containing the vocative particle AK
 (“yA” – O) from April
15 to May 6, 2019. Based on different random samples
of tweets, offensive tweets represented less than 2% of
of tweets. However, when considering tweets having one
vocative particle, the ratio increased to 5%. This par-
ticle is mainly used for directing speech to a person or
a group. Moreover, when considering the tweets with
two vocative articles, the probability of finding offensive
tweets increased to 20%. An example offensive statement
is �é� 	k ùÒ��� è 	Yë 	�

CË 	àAJ.k. AK

	¬Q�®Ó AK
 (“yA mqrf yA
jbAn h*h tsmY Ksp” – You disgusting coward. This is
called wickedness)1. Annotation was performed by a native
speaker of Arabic with good understanding of several Ara-
bic dialects. Random samples of 100 tweets (50 offensive
and 50 non-offensive) were judged by additional three an-
notators, and the inter-annotator agreement between them
was 0.92 (using Fleiss’s Kappa coefficient), which validates
the quality of data annotation and indicates that judging
the offensiveness of tweets is not difficult in many cases.
Offensive tweets containing insults or threats targeting a
group based on their nationality, ethnicity, race, gender,
political or sport affiliation, religious belief, or other com-
mon characteristics, were annotated as Hate Speech (labels:
HS or NOT HS). An example tweet containing hate speech
is: 	á�
ÓQm.× AK
 ðYJ. Ë AK
 ÕºªÊ�®K
 é<Ë @ (“Allh yqlEkm yAlbdw yA
mjrmyn” – May Allah remove you O Bedouin. You are

1We provide Arabic examples, their Buckwalter translitera-
tion, and English translation.

48

criminals). The distribution of the labels in the dataset is
shown in Table 1.

Label Train Dev Test Total ∼%
NOT OFF 5,590 821 1,598 8,009 80%
OFF 1,410 179 402 1,991 20%
NOT HS 6,639 956 1,899 9,494 95%
HS 361 44 101 506 5%

Table 1: Distribution of labels for Subtasks A and B

Subtask A was concerned with detecting offensive lan-
guage in general, while Subtask B was concerned with
detecting hate speech. Both subtasks used the same
train/dev/test splits. For all tweets, some light preprocess-
ing was performed, where user mentions were replaced
with @USER, URLs were replaced with URL, and empty
lines were replaced with <LF>. The data of Subtask B is
more imbalanced than Subtask A data as only 5% of the
tweets are labeled as hate speech, while 20% of the tweets
are labeled as offensive.

3. Task Settings and Evaluation

Given the strong imbalance between the number of in-
stances in the different classes across Subtasks A and B,
we used the macro-averaged F1-score (F) as the official
evaluation measure for both subtasks. Macro-averaging
gives equal importance to all classes regardless of their size.
Other secondary evaluation measures that we used where
Precision (P) and Recall (R) on the positive class (offen-
sive or hate speech tweets) as well as the overall Accuracy
(A).
Subtasks were hosted on CodaLab platform at the follow-
ing competition links:
Subtask A: https://competitions.codalab.
org/competitions/22825
Subtask B: https://competitions.codalab.
org/competitions/22826

Participants were allowed to submit up to 10 test runs, and
they were asked to specify two submissions as their official
runs, which would be scored and put on the leaderboard. If
official runs are not specified, the latest submissions from
each team were considered as official. We gave teams the
freedom to describe the differences between their systems
in their papers. The idea behind this is to allow teams to
examine the effectiveness of different setups on the test set.
Macro-average F1 (F) of the first submission is the official
score for Subtasks A and B.

We received 43 submissions for Subtask A including 3
failed ones (e.g. incorrect format). For Subtask B, we re-
ceived 41 submissions including 11 failed ones. Competi-
tions were open from Jan. 21, 2020 until Feb. 19, 2020,
and the test sets were available starting on Feb. 13, 2020.
Table 2 lists the names of participating teams and their af-
filiations.

4. Methods and Results
Most teams performed some data preprocessing, which
typically involved character normalization, removal of
punctuation, diacritics, repeated letters, and non-Arabic
tokens. One team performed extensive preprocessing
including normalizing emoticons (translate their English
description to Arabic), dialectal to MSA conversion, word
category identification (ex. dog, monkey, etc. are mapped
to ANIMAL), removal of dialectal stopwords, and hashtag
segmentation (Husain, 2020) leading to the best results
in Subtask B. As for learning methods, the teams used
traditional Machine Learning (ML) techniques, such as
SVM and logistic regression, and Deep Neutral Network-
ing (DNN) approaches, such as Convolutional Neural
Networks (CNN), Recurrent Neural Networks (RNN)
including LSTM, biLSTM, and GRUs with and without
attention, and fine tuning of contextual embeddings such
as BERT and AraBERT.

The highest ranking submissions used an ensemble of
different learning methods that combined both traditional
ML and DNN approaches. Most teams used similar setups
for both subtasks, and two teams chose to use multitask
learning (Abu Farha and Magdy, 2020; Djandji et al.,
2020).

Table 3 briefly lists the preprocessing and learning methods
used by different teams. Tables 4 and 5 list the results of all
the teams for Subtasks A and B ranked by F1-measure (F).
Per the rules of the shared task, we judged up to two runs
for every team (first submission and second submission).
As shown in Tables 4 and 5, first submission from all teams
always beat their second submission (column F), meaning
that best performing systems on the dev set also performed
best on the test set as well.

5. Conclusion
This paper presented an overview of the OSACT4 shared
task on offensive language and hate speech detection in
the Arabic Twitter sphere. The most successful systems
in the shared task performed Arabic specific preprocessing,
with the winning system for hate speech detection perform-
ing extensive preprocessing, and an ensemble of different
machine learning approaches, with the winning system for
offensive language detection using an ensemble of SVM
trained on character-level n-grams and pretrained embed-
dings (Mazajak) as well as different DNN setups that use
FastText, CNN+RNN, and contextual embeddings (multi-
lingual BERT).

6. References
Abdellatif, M. and Elgammal, A. (2020). Sentiment analy-

sis of imbalanced arabic data using ulmfit. OSACT, 4.
Abu Farha, I. and Magdy, W. (2020). Multitask learning

for arabic offensive language and hate-speech detection.
OSACT, 4.

Abuzayed, A. and Elsayed, T. (2020). Quick and simple
approach for detecting hate speech in arabic tweets. OS-
ACT, 4.

49

Team Affiliation Subtasks
Abeer (Abuzayed and Elsayed, 2020) Islamic University of Gaza, Palestine 1,2
aialharbi (Alharbi and Lee, 2020) University of Birmingham, UK 1,2
alisafaya Koç University, Turkey 1,2
alt (Hassan et al., 2020) Qatar Computing Research Institute, Qatar 1,2
AMR-KELEG (Keleg et al., 2020) Faculty of Engineering, Ain Shams University, Egypt 1,2
Bushr (Haddad et al., 2020) Damascus University, Syria 1,2
elmadany (Elmadany et al., 2020) University of British Columbia, NLP Lab, Canada 1,2
fatemah (Husain, 2020) Kuwait University, Dep. of Information Science, Kuwait 1,2
hassaansaeed (Saeed et al., 2020) University of Antwerpen, Belgium 1,2
iaf7 (Abu Farha and Magdy, 2020) University of Edinburgh, UK 1,2
mabdellatif (Abdellatif and Elgammal, 2020) Rutgers University, US 1,2
Marc Djandji (Djandji et al., 2020) American University of Beirut. Lebanon 1,2
premjithb Center for Comp. Engineering and Networking, India 1,2
SAJA Jordan University of Science and Technology, Jordan 1

Table 2: List of participating teams in Subtasks A and B

Alharbi, A. and Lee, M. (2020). Combining character and
word embeddings for the detection of offensive language
in arabic. OSACT, 4.

Djandji, M., Baly, F., antoun, w., and Hajj, H. (2020).
Multi-task learning using arabert for offensive language
detection. OSACT, 4.

Elmadany, A., Zhang, C., Abdul-Mageed, M., and
Hashemi, A. (2020). Leveraging affective bidirectional
transformers for offensive language detection. OSACT,
4.

Haddad, B., Orabe, Z., Al-Abood, A., and Ghneim,
N. (2020). Arabic offensive language detection with
attention-based deep neural networks. OSACT, 4.

Hassan, S., Samih, Y., Mubarak, H., Abdelali, A., Rashed,
A., and Absar Chowdhury, S. (2020). Alt submission for
osact shared task on offensive language detection. OS-
ACT, 4.

Husain, F. (2020). Osact4 shared task on offensive lan-
guage detection: Intensive preprocessing based ap-
proach. OSACT, 4.

Keleg, A., El-Beltagy, S. R., and Khalil, M. (2020).
Asu opto at osact4 - offensive language detection for ara-
bic text. OSACT, 4.

Saeed, H. H., Calders, T., and Kamiran, F. (2020). Ocast4
shared tasks: Ensembled stacked classification for offen-
sive and hate speech in arabic tweets. OSACT, 4.

50

Team Preprocessing Methods
(Abdellatif and
Elgammal, 2020)

simple tokenization, replace words below
certain threshold with a special token

DNN: ULMFiT – a fine tuned language model
based on a 3 layer RNN (LSTM)

(Abu Farha and
Magdy, 2020)

character normalization and diacritic,
kashida, repeated letter, and non-Arabic
character removal

Multitask CNN+BiLSTM with pertained embed-
ding (Mazajak)

(Abuzayed and
Elsayed, 2020)

character normalization and diacritic,
kashida, repeated letter, and non-Arabic
character removal

SVM, Random Forest, XGBoost, Extra Trees, De-
cision Trees, Gradient Boosting, and LR; DNN:
CNN, RNN, CNN+RNN and two different word
representations (tf-idf and pre-trained word embed-
dings (AraVec)

(Alharbi and Lee,
2020)

character normalization and diacritic,
kashida, repeated letter, and non-Arabic
character removal. Also split AK
 (“yA”)

LR and XGBoost; DNN: RNN using Mazajak, Ar-
avec, and subword FastText embeddings

(Djandji et al.,
2020)

removal of non-Arabic characters, seg-
mentation of words using Farasa seg-
menter, and splitting of hashtags

fine tuning of contextual embeddings (AraBERT)

(Elmadany et al.,
2020)

numbers, usernames, hashtags, and hy-
perlinks replacement with NUM, USER,
HASH, and URL respectively; character
normalization; and diacritic removal

fine tuned multilingual BERT-based affective mod-
els

(Haddad et al.,
2020)

removed non-Arabic words, diacritization,
punctuation, emoticons, stopwords, and re-
peated characters

convolutional neural network (CNN) and bidirec-
tional recurrent neural network with GRU units (Bi-
GRU) models with and without attention

(Saeed et al.,
2020)

letter normalization, repeated letter re-
moval, and word splitting

DNN: CNN and RNN using contextual embeddings
(multilingual BERT) and non-contextual embed-
dings (Aravec, FastText, word2vec) with an ensem-
ble classifier that combines all outputs using SVM,
RF, NB, etc.

(Hassan et al.,
2020)

diacritic, kashida, repeated letter, and non-
Arabic character removal

ensemble of SVM (character n-grams) and pre-
trained embeddings (Mazajak) and DNN: Fast-
Text (subword), CNN+RNN, and contextual em-
beddings (multilingual BERT)

(Husain, 2020) Intensive preprocessing: normalizing
emoticons, dialectal to MSA conversion,
word category identification (ex. animals),
letter normalization, stopword removal,
and hashtag segmentation

SVM (character n-grams)

(Keleg et al.,
2020)

word segmentation LR; DNN: CNN (with Aravec), RNN, and contex-
tual embeddings (multilingual BERT and AraBert)

Table 3: Different methods used by different teams. LR: Logistic Regression; SVM: Support Vector Machines; NB: Naive
Bayes; DNN: Deep Neural Network; CNN: Convolutional Neural Network; RNN: Recurrent Neural Network

51

Team First Submission Second Submission
F A P R F A P R

(Hassan et al., 2020) 90.5 93.9 90.2 90.8 89.4 93.4 90.5 88.3
(Djandji et al., 2020) 90.0 93.7 90.7 89.4 88.5 93.1 91.9 85.9
(Husain, 2020) 89.8 90.2 89.9 90.2 88.6 89.1 88.6 89.1
(Keleg et al., 2020) 89.6 93.5 90.5 88.7 85.6 90.9 86.2 85.0
(Abu Farha and Magdy, 2020) 87.8 92.4 88.8 86.8 87.8 92.3 88.5 87.1
(Saeed et al., 2020) 87.4 92.4 90.3 85.1 87.8 92.8 91.5 85.1
(Alharbi and Lee, 2020) 86.8 92.1 89.6 84.7 85.7 91.2 87.7 84.1
(Haddad et al., 2020) 85.9 91.5 88.6 83.8 84.6 90.0 84.1 85.2
alisafaya 84.2 90.8 88.4 81.4 81.9 89.5 86.1 79.1
(Abuzayed and Elsayed, 2020) 83.3 89.7 84.7 82.1 82.6 89.9 86.8 79.8
(Elmadany et al., 2020) 82.9 89.4 84.1 81.8 79.3 87.8 82.5 77.1
(Abdellatif and Elgammal, 2020) 77.4 86.2 78.9 76.2 77.4 86.2 78.9 76.2
SAJA 76.2 86.4 80.5 73.6
premjithb 72.6 81.8 71.9 73.3 72.6 81.8 71.9 73.3

Table 4: Subtask A results

Team First Submission Second Submission
F A P R F A P R

(Husain, 2020) 95.2 95.9 95.2 95.9 94.4 95.4 94.3 95.4
(Djandji et al., 2020) 82.3 96.7 82.8 81.8 80.7 96.5 82.6 78.9
(Keleg et al., 2020) 80.7 96.5 82.1 79.4
(Hassan et al., 2020) 80.6 96.6 83.8 78.1 75.5 96.4 86.4 70.0
(Saeed et al., 2020) 79.9 96.5 83.4 77.1 77.7 96.6 86.9 72.4
(Abu Farha and Magdy, 2020) 76.1 96.0 80.2 73.0 74.3 95.8 79.1 71.1
(Haddad et al., 2020) 75.0 95.3 75.5 74.6 74.8 95.2 74.7 74.9
(Alharbi and Lee, 2020) 74.2 96.3 86.4 68.5 48.7 95.0 47.5 50.0
(Elmadany et al., 2020) 70.5 95.2 75.2 67.5 67.7 95.6 80.3 63.0
alisafaya 70.4 95.8 81.6 65.4 69.9 94.9 72.7 67.8
(Abuzayed and Elsayed, 2020) 69.4 95.1 74.0 66.5 64.9 94.8 71.6 61.6
premjithb 63.2 92.3 62.2 64.5
(Abdellatif and Elgammal, 2020) 58.5 95.1 75.0 55.7 58.5 95.1 75.0 55.7

Table 5: Subtask B results

52

Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, pages 53–60
with a Shared Task on Offensive Language Detection.

Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020
c© European Language Resources Association (ELRA), licensed under CC-BY-NC

OSACT4 Shared Task on Offensive Language Detection: Intensive
Preprocessing-Based Approach

Fatemah Husain

Kuwait University, Department of Information Science, State of Kuwait
f.husain@ku.edu.kw

Abstract
The preprocessing phase is one of the key phases within the text classification pipeline. This study aims at investigating the impact of
the preprocessing phase on text classification, specifically on offensive language and hate speech classification for Arabic text. The
Arabic language used in social media is informal and written using Arabic dialects, which makes the text classification task very complex.
Preprocessing helps in dimensionality reduction and removing useless content. We apply intensive preprocessing techniques to the
dataset before processing it further and feeding it into the classification model. An intensive preprocessing-based approach demonstrates
its significant impact on offensive language detection and hate speech detection shared tasks of the fourth workshop on Open-Source
Arabic Corpora and Corpora Processing Tools (OSACT). Our team wins the third place (3rd) in the Sub-Task A Offensive Language
Detection division and wins the first place (1st) in the Sub-Task B Hate Speech Detection division, with an F1 score of 89% and 95%,
respectively, by providing the state-of-the-art performance in terms of F1, accuracy, recall, and precision for Arabic hate speech
detection.

Keywords: offensive language, hate speech, text classification

1. Introduction
Online offensive language detection is one of the most
challenging text classification tasks to accomplish due to
the ambiguity and informality of the language used in
social media platforms. So far, online offensive language
detection has been applied to various languages, such as
English (Kwok and Wang, 2013; Davidson et al., 2017;
Nobata et al., 2016; Pitsilis, Ramampiaro, Langseth, 2018),
German (Kent, 2018; Wiedemann et al., 2018), Urdu
(Mustafa et al., 2017), Turkish (Özel et al., 2017), Hindi
(Bohra et al., 2018; Kapoor et al., 2018), Danish
(Derczynski, 2019), and Arabic (Abozinadah, Mbaziira,
and Jones, 2015; Mubarak, Darwish, and Magdy, 2017;
Alakrot, Murray, and Nikolov, 2018; Mohaouchane,
Mourhir, and Nikolov, 2019). Regardless of the text
language, a standard text classification pipeline consists of
preprocessing, feature extraction, feature selection, and
classification model. The preprocessing phase is the one
that is the most distinguishable phase among the others
based on the text language. Each language contains unique
structures and rules, which need to be addressed using
unique methods. We develop an intensive preprocessing-
based classification model for Arabic offensive language
detection. Among the participants of the fourth workshop
on Open-Source Arabic Corpora and Corpora Processing
Tools (OSACT) throughout the shared tasks, our team wins
third place in Sub-Task A Offensive Language Detection
division and wins first place in Sub-Task B Hate Speech
Detection division.

Text that contains some form of abusive behavior,
exhibiting actions with the intention of harming others, is
known as offensive language. This abusive behavior could
lead to disturbances, disrespect, harm, insults, and anger,
thus affecting the harmony of conversations. Wiedemann
et al. (2018) describe offensive language as “threats and
discrimination against people, swear words or blunt
insults” (p.1). Hate speech, aggressive content,
cyberbullying, and toxic comments are all different forms
of offensive content (Schmidt & Wiegand, 2017). Figure 1
shows an example of an offensive tweet.

	

Figure 1: Example for an offensive tweet.
	

Hate speech is one of the most common forms of offensive
language. A text that is targeted towards a group of people-
with the intent to cause harm, violence, or social chaos is
known as hate speech (Derczynski, 2019). Davidson et al.
(2017) define hate speech as “a language that is used to
express hatred towards a targeted group or is intended to be
derogatory, to humiliate, or to insult the members of the
group” (p.1). Figure 2 illustrates an example of a hate
speech tweet.

Figure 2: Example for a hate speech tweet.

Developing classification models, which can automatically
detect offensive language and hate speech, is a very
challenging task due to the following factors: a) the

53

informality of the language used in posts from social media
shows posts are usually written using symbols, short forms,
and slang that are difficult to semantically process and
understand by algorithms; b) the variation and the diversity
of the Arabic language dialects and forms; and c) the small
sample size of offensive samples; for example, in the
dataset used in this study, only 5% of the tweets are labeled
as hate speech and 19% of the tweets are labeled as
offensive. We apply multiple preprocessing techniques to
address the challenges of Arabic offensive language
detection. The preprocessing techniques
include conversion of emoticons and emoji, conversion of
hashtags, normalizing different forms of Arabic letters,
normalizing Arabic dialects to Modern Standard Arabic
(MSA), normalizing words by categorization, and basic
cleaning processes. These intensive preprocessing
techniques report valuable influence on the system
performance. We train a Support Vector Machine (SVM)-
based classifier using character-based count vectorizer (2-
5 characters). Results report an F1 score of 89.82% for the
offensive language detection model and 95.16% for the
hate speech detection model.

In the rest of this paper, we organize the content as follows:
Section 2 discusses related work of Arabic offensive
language detection on social media, Section 3 introduces
data description, details of preprocessing, and the
methodology of our models, and experimental results are
discussed in Section 4. We also present the conclusion of
our work at the end of the paper.

2. Related Work
There are multiple studies investigating offensive Arabic
tweets to identify abusive Twitter accounts (Abozinadah,
Mbaziira, & Jones, 2015; Abozinadah & Jones, 2017;
Abozinadah, 2017). Abozinadah, Mbaziira, and Jones
(2015) construct an initial dataset starting with 500 Twitter
accounts based on a set of Arabic swear words. Then, they
check the most recent 50 tweets, profile pictures, and
hashtags for each of these 500 Twitter accounts in order to
reach a dataset of 350,000 Twitter accounts and 1,300,000
tweets with balanced classes; half were labelled abusive
while the other half were labelled as non-abusive. Next,
they use three types of features, including profile-based
features, tweet-based features, and social graph features to
train three classifiers: Naive Bayes (NB), SVM, and
Decision Tree (J48). The results show that the NB-based
classifier outperforms the other classifiers when used with
100 features and 10 tweets for each account with an
accuracy score of 85% (Abozinadah, Mbaziira, & Jones,
2015; Abozinadah, 2017).

Another approach for detecting offensive language was
adopted by Mubarak, Darwish, and Magdy (2017) for the
purpose of detecting vulgar and pornographic obscene
speech in Arabic social media by applying a simple
obscene phrases list-based approach. They use a Twitter
dataset consisting of 175 million tweets to extract a list of
seed words for obscene phrases through manual
assessment. Then, they utilize the list to construct 3 sub-
lists of obscene words, phrases, and hashtags using
multiple measurements, such as the Log Odds Ratio (LOR)
for unigrams and bigrams. Intrinsic and extrinsic

evaluations were used to evaluate these lists. The intrinsic
evaluation consists of manual coding for a list of 100 words
that are randomly selected from each list to be marked as
either obscene or not. The extrinsic evaluation consists of
recall, precision, and F1 measures using a dataset that they
developed for the purpose of this evaluation. They then
select 10 Egyptian Twitter users from the top controversial
users. After that, they extract 100 tweets with at least 10
replies for each user. The final dataset has 100 original
tweets and 1,000 replies tweets. Each tweet along with its
replies were submitted to CrowdFlower to become coded
by three annotators from Egypt using three classes:
obscene, offensive, and clean; the inter-annotator
agreement is 84%. As a result, they develop a linear match
model for each labeled tweet; for example, if a match with
a phrase from the list occurs, then, it will then predict a
label of obscenity to that tweet. The results among all lists
show a highest F1 score of 60%, which demonstrate that a
list-based approach is very limited and not a good choice
for an obscene detection system.

Arabic language has also been studied also by Alakrot,
Murray, and Nikolov (2018a, 2018b) for automatic
detection of offensive language. They construct a dataset
from YouTube comments based on selecting channels that
have controversial videos about celebrities. Their final
dataset includes 167,549 comments posted by 84,354 users,
and 87,388 replies posted by 24,039 users from 150
YouTube videos (Alakrot, Murray, & Nikolov, 2018a).
Two labels were used for the classes: positive to label
offensive comments and negative to label ones that are not
offensive (Alakrot, Murray, & Nikolov, 2018a). They train
an SVM-based classifier using two features: character n-
gram (n= 1-5) and word-level features. The results show
the best performance when using the SVM-based classifier
with 10-fold cross validation and word-level features with
90.05% of an accuracy score (Alakrot, Murray, & Nikolov,
2018b).

Mohaouchane, Mourhir, and Nikolov (2019) explore
multiple deep learning models to classify offensive Arabic
language for YouTube comments using the same dataset
developed by Alakrot, Murray, and Nikolov (2018a). They
create 300-dimension word embedding using AraVec,
which is an Arabic word embedding tool, trained on
Twitter dataset and skip-gram model. Four deep learning
models were evaluated for classifying offensive comments,
including Convolutional Neural Network (CNN),
Bidirectional Long Short-Term Memory (Bi-LSTM), Bi-
LSTM with an attention mechanism, and a combined
model of CNN and LSTM. The results demonstrate an
overall better performance for CNN with a highest
accuracy score of 87.84%, a precision score of 86.10%, and
an F1 score of 84.05%, while the combined CNN-LSTM
model shows a better recall score of 83.46%
(Mohaouchane, Mourhir, & Nikolov, 2019).

To our knowledge, the only Arabic hate speech detection
studies are the studies of Albadi, Kurdi, and Mishra (2018,
2019) and the study of Chowdhury et al. (2019), which
investigate religious hate speech in Arabic language for
Twitter data, both using the same dataset. Albadi, Kurdi,
and Mishra (2018) develop a logistic regression-based
model and an SVM-based model using a character n-gram

54

feature (n= 1 to 4), and a Gated Recurrent Unit (GRU)
based on the Recurrent Neural Network (RNN) with the
Twitter Continuous Bag-of-Word (CBOW) 300-dimension
embedding model provided by AraVec, batches of size 32,
and Adam as the optimizer. Their findings have indicated
that for some religious minorities in the Middle East —
Jews, Atheists, and Shia— almost half of the tweets that
were mentioning these minorities were referring to them
within a hate speech content (Albadi, Kurdi, & Mishra,
2018). Furthermore, results report best performance when
using the GRU-based model with an F1 score of 77%
(Albadi, Kurdi, & Mishra, 2018). Albadi, Kurdi, and
Mishra (2019) enhance the same GRU-based model with
additional temporal, users, and content features in another
study, then report the state-of-the-art performance in terms
of a recall score of 84%. Chowdhury et al (2019) extend
previous studies done by Albadi, Kurdi, and Mishra (2018,
2019) to investigate the effects of community interactions
and social representations in detecting religious hate speech
in the Arabic Twitter sphere. They use multiple features,
including word embedding, node embedding, sentence
representation, and character n-gram features (n = 1 - 4).
Several classification models were explored using multiple
combinations of features, such as GRU, logistic regression,
SVM, LSTM, Bi-LSTM, CNN and Bi-GRU in addition to
combining multiple models, using self-attention
mechanisms, and using Node2Vec criteria. Therefore,
results have shown a high accuracy score of 81% that was
obtained by the model containing a combination of Bi-
GRU, CNN, and NODE2VEC. While displaying the best
F1 score, recall and precision were recorded by the model
that combined LSTM, CNN and NODE2VEC: 89%, 78%,
and 86% respectively.

Previous studies focus on features extraction and
classification model, while we focus more on text
preprocessing. The preprocessing steps we follow in this
study are not identical to any of the preprocessing steps of
the previous studies.

3. Dataset and Methodology
3.1 Dataset Description
The shared task of the fourth workshop on Open-Source
Arabic Corpora and Corpora Processing Tools (OSACT) in
Language Resources and Evaluation Conference (LREC)
2020 provides Twitter dataset for offensive language
detection in Arabic language. The main goal of this shared
task is to identify and categorize Arabic offensive language
in Twitter. The organizers collect tweets through Twitter
API and annotate them hierarchically regarding offensive
language and offense type. The task is divided into two sub-
tasks: a) detecting if a post is offensive or not offensive;
and b) identifying offensive content type of an offensive
post as hate speech or not hate speech.

The provider of the dataset performs some preprocessing to
ensure the privacy of users. Twitter user mentions were
substituted by “@USER”, URLs had simply been
substituted by “URL”, and empty lines were replaced by
“<LF>”.

The shared task issues the dataset in three different parts,
training dataset, development dataset and testing dataset.
The summary of datasets distribution is presented in Table

1. Training dataset and development dataset are provided
with their actual labeled, while the testing dataset consists
of 2,000 unlabeled tweets for competition evaluation
purposes. The training dataset consists of 6,839 tweets with
1,371 offensive tweets and 350 hate speech tweets. The
development dataset consists of 1,000 tweets with 179
offensive tweets and 44 hate speech tweets.

Labels Training Development Testing
Not Offensive

Offensive
5,590
1,410

821
179

*
*

Not Hate Speech 6,639 956 *
Hate Speech 361 44 *
Total Tweets 7,000 1,000 2,000

Table 1: Datasets distribution (* not available)

We explore multiple characteristics of the dataset including
most frequent emoji, emoticons, and words. The most
frequent emoticons and emoji are very similar in both
classes. Table 2 and Table 3 show the top 5 most frequent
emoji and emoticons for both not offensive and offensive
classes, respectively. Most frequent words are also very
similar in both classes. Figure 3 and Figure 4 show the most
frequent words for both not offensive class and offensive
class, respectively.

Emoji % Emoticon %
😂 18% :< 44%
❤ 12% :) 23%
💙 5% :(16%
💛 5% ;D 6%
♥ 4% :D 6%

Table 2: The top 5 most frequent emoji and emoticons for
not offensive tweets

Emoji % Emoticon %
😂 38.87% ;D 40%
🤣 8.52% :< 33.33%
❤ 3.83% :(13.33%
😭 3.74% :) 6.67%
💙 2.43% d: 6.67%

Table 3: The top 5 most frequent emoji and emoticons for
offensive tweets

Figure 3: Most frequent 5 words in not offensive tweets

0% 5% 10% 15% 20%

یا

الله

رب

اللھم

انا

55

Figure 4: Most frequent 5 words in offensive tweets

3.2 Preprocessing

3.2.1 Emoji and Emoticon Conversion
Emoji and emoticons are often used to convey feelings and
attitude, which is very valuable to the task of offensive
detection. Knowing some contextual information about the
author of the post can provide insight into the textual
content of the post. Moreover, a previous study converts an
emoji to a textual label, and uses it to provide sentimental
features to train a classifier for aggression detection, thus
reporting better performance than the other model that does
not consider emoji conversion (Orasan, 2018). Thus, we
consider converting emoji and emoticons to an Arabic
textual label that describe the content of them. To have a
more robust system that can scale and cover more emoji
and emoticons, we then extract the entire set of emoji
defined by Unicode.org (Unicode Organization, n.d.).
Beautifulsoup4 4.8.2, a Python package for parsing HTML
and XML documents, was used to scrape the emoji list
available at the Unicode Organization website. We extract
the Unicode and name of each emoji using Beutifulsoup4.
The emoji list contains 1,374 emoji. The Unicode
Organization website provides textual descriptions for each
emoji written in English. We extract these textual
descriptions, then, we use Translate 1.0.7 python package
to translate them into Arabic language. Thus, during
preprocessing of the data, each emoji is converted to its
Arabic description. For example, 😜 is replaced by “ وجھ
 In addition, we manually construct an . ”یغمز مع لسان
emoticons list that includes a total of 140 emoticons with
their textual descriptions in Arabic language. For example,
“:-X” is replaced by " معقود اللسان ". Next, we analyze the
description phrase as a regular textual phrase in tweets so
that it could maintain its semantic meaning after removing
the original emoji and emoticon.

3.2.2 Arabic Dialects Normalization
The Arabic dialects have various forms, based on
geography and social class (Habash, 2010). Arabic dialects
are the Arabic languages that have often been used in user-
generated contents such as Twitter. Habash (2010)
categorizes the Arabic dialects into seven dialects: Gulf,
Egyptian, Iraqi, North African, Yemenite, Levantine, and
Maltese Arabic, which is not always considered one of the
Arabic dialects. It is very crucial to consider the variations
among different dialects when detecting offensive

language, as some words that have exactly the same
pronunciation and spelling might have different meanings.
For example, the word “عافیة - Afiah” means health in Gulf,
Egyptian, Iraqi, and Levantine dialects ; however, it also
means fire in Moroccan Arabic. We try to solve the
variation in dialects by a dimensionality reduction
approach. We reduce the dimensionality of the data by
normalizing the variation of dialects for a set of nouns to
be converted from dialectal Arabic to MSA. For example,
the variations of the word boy, "زلمة" ,"رجل", and "زول" are
converted to "ولد". The set of nouns is manually constructed
based on manual insepction for a sample of the dataset and
based on our own experience as native Arabic speakers.

3.2.3 Words Categorization
Normalizing and reducing the dimensionality can improve
the performance of the model. From our manual inspection
for a sample of tweets from the dataset, we notice that it is
very common to mention name of animals among the hate
speech tweets. Thus, we manually create a list of the most
common animal names used in different Arabic dialects,
such as “كلب - dog”, “خنزیر - pig”, “حیة - snake”. The list
considers the variation in dialects in animal names, such as
the word cat in MSA is “Qetta/ قطة ”, while in Egyptian it is
“Otta/ أطة”, in Levantine it is “Bisse/بسة”, in Gulf it is
“Qatwa/قطوة”, in Moroccan it is “Qetta/ قطة ”, in Iraqi it is
“Bazzuna/بزونة”, and in Yamani it is “demah/دمة”. In
addition to the variation in dialects, the list includes
variations of the same animal names, such as the female
name, male name, plural name. Thus, for the word cat, we
include singular female name “Qetta/ قطة ”, singular male
name “Qett/ قط ”, two female name “Qettatan/ تانقط ”, two
male name “Qettan/ انقط ”, and plural name “Qettat/ طقط ”.
The list contains a total of 335 lexicons. All animal names
that are listed and occurred in the dataset were converted to
the word animal in Arabic “حیوان”. Accordingly, all animal
names that are included in tweets are reduced to only one
word.

3.2.4 Letters Normalization
Arabic letters can be written in various format depending
on the location of the letter within the word. We normalize
Alif (إ،آ،أ to ا), Alif Maqsura (ئ،ي to ى), and Ta Marbouta
 Letters that were repeated more than two times .(ه to ة)
within a word were reduced to two times only.

3.2.5 Hashtag Segmentation
Hashtags are commonly used in Twitter to highlight
important phrases within the tweet. Thus, it is very
important to consider hashtags during the preprocessing
phase to convert hashtags into a meaningful format. We
remove the “#” symbol and replace “_” by a space. For
example, the hashtag “#الھلال_التعاون” is converted to “الھلال

لتعاونا ”, which is easier for the system to understand and
process.

3.2.6 Miscellaneous
Tweets were filtered to remove numbers, kashida, HTML
tags, more than one space, three or more repetitions of any
character, and some symbols or terms (e.g., ” _”, '"', "\"",
"'s", "...", "!", "?", "I", "@USER", "USER", "URL", ".", ";",
":", "/", "\\", ", ", "#", "@", "$", "&", ")", "(", "\"). We
borrow the list of Arabic stopwords defined by Alrefaie

0% 5% 10% 15% 20%

یا

الله

انت

اللي

ابن

56

(2016), which contains 750 stopwords. Furthermore, we
remove diacritics that were used in tweets containing text
from the holy Qur’an or poetry.

3.2.7 Upsampling
As can be noticed from Table 1, the classes are highly
imbalanced, with only 5% hate speech tweets and 19%
offensive tweets. we try to solve the problem with the
imbalanced distribution of classes by using up-sampling.
The original training dataset has 7,000 tweets with a first
label hierarchy of 1,410 offensive tweets and 5,590 not
offensive tweets. After up-sampling, the number of tweets
for each class, offensive tweets and not offensive tweets,
becomes 5,590. The second label hierarchy is sharply
imbalanced, the original training dataset consists of 361
hate speech tweets and 6639 not hate speech tweet. After
up-sampling, the number of tweets for each class, hate
speech tweets and not hate speech tweets, becomes 6,639.
We use resample function from Python scikit-learn library
to implement upsampling. Table 4 illustrates example of
tweets before preprocessing and after preprocessing.

Tweet Before Cleaning Tweet After Cleaning
یا عمرررررررري یا بو شعر ثایر
😭😭😭😭 💛💛💛💛

وجھ البكاء ٮا عمررى ٮا بو شعر ثاٮر
وجھ البكاء بصوت بصوت عال

وجھ وجھ البكاء بصوت عال عال
قلب قلب اصفر البكاء بصوت عال

قلب اصفر قلب اصفر اصفر
@USER: بطلو انانیھ یا شعب یا
انصرافي ویلا على صفوف عیشكم

نزینكموب

بطلو انانٮھ ٮا شعب ٮا انصرافى وٮلا
وبنزینكمصفوف عٮشكم

RT @USER: ما كان ممكن تبدأ
بیھ بدل ما تخسر تبدیل یا حمار یابن

 الحمار یا غبییییي

ممكن تبدا بٮھ بدل تخسر تبدٮل ٮا حٮوان
 ٮابن حٮوان ٮا غبٮى

Table 4: Examples of tweets before preprocessing and
after preprocessing

3.3 Feature Extraction
We use two features in training the models, which consists
of character-based count vectorizer and TF-IDF vectorizer,
both with 2 to 5 characters. Previous studies highlight the
importance of using character-based features over word-
based features for offensive language detection because it
is a language independent feature that can work with
misspelling errors or obfuscating offensive words, which
are commonly practiced on social media posts (Bohra et al.,
2018; Nobata et al., 2016). Both features are implemented
using Python scikit-learn library.

3.4 Methodology

3.4.1 Preliminary Models
We explore the effect of each preprocessing technique on
the performance of the model before applying them to the
final models. Previous studies on offensive language
detection report high performance when using an SVM-
based classifier (Abozinadah and Jones, 2017; Schmidt and
Wiegand, 2017; Albadi, Kurdi, and Mishra, 2018). The
SVM classifier focuses on maximizing the margin, the
distance of the closest points to the hyperplane that separate
between instances of classes using a linear function
(Goodfellow, Bengio, and Courville, 2016). Thus, we

decide to be in-line with the findings from earlier studies
and use the linear SVM-based classifier in this step trained
using the first label hierarchy of the dataset; offensive or
not offensive, for the purpose of this exploration task. We
did not use the testing dataset during this step. The training
dataset used to train the models and the development
dataset used to evaluate the models. During this
preliminary modeling phase, two main goals were targeted.
The first goal is to identify if count vectorizer outperforms
TF-IDF vectorizer or not. To accomplish this goal, we
trained two SVM-based models using the raw dataset
without performing any preprocessing technique, one
model applies the count vectorizer and the other one applies
the TF-IDF vectorizer. Results are shown in Table 5. The
TF-IDF vectorizer is 2% better than the count vectorizer in
precision score. However, having a comprehensive
measurement that consider multiple factors in evaluating
the model is very important. The dataset is highly
imbalanced, so we consider F1 score in evaluating the
performance rather than accuracy. The accuracy score is
often gives misleading results in similar situation with
imbalanced dataset. F1 score is the harmonic mean for
recall and precision. The count vectorizer outperforms the
TF-IDF vectorizer by 2% in F1 score. This finding is
consistent with Wiedeman et al. (2018) finding, which
reports the unsuitability of TF-IDF vectorizer over twitter
datasets because tweets are very short, making it not an
optimal source for IDF estimations. Thus, we consider
adopting the count vectorizer as the feature for the rest of
the models.

Feature Precision Recall F1 Accuracy
Count

Vectorizer
85% 76% 79% 89%

TF-IDF
Vectorizer

87% 74% 77% 88%

Table 5: Performance results for preliminary models
based on features

The second goal of this preliminary modeling phase is to
evaluate each preprocessing technique separately and
measure their effects on the performance. Table 6 presents
the results from the preliminary preprocessing exploration
models. Only two preprocessing techniques were merged;
hashtags segmentation and miscellaneous cleaning
processes due to their relatedness and similarity in term of
platform specific attributes. Preliminary results illustrate
the contribution of each preprocessing technique to the
performance of the model; however, we also expect to have
different results when used on larger dataset and when used
for hate speech detection. The results report the highest
contribution in term of F1 score to letters normalization,
followed by dialect normalization and word categorization,
then, emoji and emoticon conversion, miscellaneous
cleaning and hashtag segmentation, and finally,
upsampling. The results demonstrate some issues with the
upsampling technique, it reduces F1 score from 79%, as it
shown in Table 5, to 71%. Consequently, we decide to
apply all the preprocessing techniques except upsampling
for the main models.

57

Preprocessing Precision Recall F1 Accuracy
Emoji and
Emoticon

83% 78% 80% 89%

Dialects
Normalization

85% 80% 82% 90%

Word
Categorization

84% 80% 82% 90%

Letters
Normalization

85% 81% 83% 90%

Miscellaneous
and Hashtags
Segmentation

82% 76% 79% 89%

Upsampling 69% 75% 71% 80%

Table 6: Preliminary performance evaluation results from
each preprocessing technique on offensive detection

3.4.2 Baseline Models
The baseline models include two linear SVM-based
models, both trained on dataset without any sort of
preprocessing technique and using a count vectorizer with
2 to 5 characters. The first baseline model classifies tweets
to either Offensive (OFF) or Not Offensive (NOT_OFF),
while the second one classifies tweets to either Hate Speech
(HS) or Not Hate Speech (NOT_HS). To assess our goal in
investigating the effect of preprocessing on offensive
detection and hate speech detection, we use the same
feature and classifier for baseline models and main models.
All Models are implemented using Python scikit-learn
library.

3.4.3 Sub-Task A Model : Offensive
Language Detection

The main model for offensive language detection, which
classifies tweets to either offensive (OFF) or not offensive
(NOT_OFF), is a Linear SVM-based classifier. The model
is trained on full preprocessed tweets that have been
preprocessed using all techniques mentioned earlier;
conversion of emoticons and emoji, conversion of
hashtags, normalizing different forms of Arabic letters,
normalizing Arabic dialects to MSA, normalizing words by
categorization, and other miscellaneous cleaning processes.
As we mentioned earlier, the feature used in training the
model is the character-based count vectorizer with 2 to 5
characters. The model is implemented using Python scikit-
learn library.

3.4.4 Sub-Task B Model : Hate Speech
Detection

The same exact model of Sub-Task A is used for Sub-Task
B, including the same preprocessing and feature extraction
techniques. However, the model classifies tweets to either
hate speech (HS) or not hate speech (NOT_HS).

4. Experiment Results
Table 7 shows the results of performance evaluation for the
baseline model and the main model for offensive language
detection task, and Table 8 shows the results for hate
speech detection task. The baseline models were evaluated

using the development dataset while the main models were
evaluated using the testing dataset through the shared task
competition evaluators. The dataset is highly imbalanced,
thus, the accuracy score might not be very informative to
evaluate the performance. The F1 score increased from
79% for the baseline model before preprocessing to 89%
after preprocessing for Sub-Task A for offensive detection,
which was ranked the 3rd place. For Sub-Task B for hate
speech detection, F1 score increased sharply from 67% to
95%, which was ranked the 1st place.

The most noticeable point from the tables is that in Sub-
Task B results are better than in Sub-Task A, given the fact
that the class distribution is more skewed than that of Sub-
Task A and the number of training instance is much smaller
than Sub-Task A. This interesting point demonstrates how
data preprocessing adds value to the performance, even for
hate speech class that is very rare.

Model Precision Recall F1 Accuracy

Baseline
Model 85% 76% 79% 89%

Main Model 89% 90% 89% 90%

Table 7: Performance evaluation of offensive language
detection task

Model Precision Recall F1 Accuracy

Baseline
Model 74% 63% 67% 96%

Main Model 95% 95% 95% 95%

Table 8: Performance evaluation of hate speech detection
task

5. Conclusion
The preprocessing phase is one of the key phases within the
text classification pipeline, including offensive language
and hate speech classification. The ambiguity and
informality of social media language increase the
complexity of achieving high classification performance,
particularly for Arabic text that has multiple dialects. Our
study shows the competitive results obtained for offensive
language detection and hate speech detection by using
intensive preprocessing techniques to filter and clean the
dataset before feeding it into the rest of the phases for the
text classification pipeline. Moreover, results report the
significant impacts of preprocessing on a very challenging
task, such as the hate speech classification, with very small
sample size of 5% from the overall dataset.

In the future, we hope to enhance the available studies of
offensive language detection and hate speech detection by
investigating our preprocessing techniques using some
deep learning models. Another future direction is to use
more advanced features in training the model, such as word
embedding.

58

6. Bibliographical References

Abozinadah, E. , Mbaziira, A., and Jones, J. (2015).

Detection of Abusive Accounts with Arabic Tweets.
International Journal of Knowledge Engineering,
Vol. 1, No. 2. DOI: 10.7763/IJKE.2015.V1.19

Abozinadah, E. (2017). Detecting Abusive Arabic
Language Twitter Accounts Using a
Multidimensional Analysis Model.

Abozinadah, E., and Jones, J. (2017). A Statistical Learning
Approach to Detect Abusive Twitter Accounts.
Proceedings of the International Conference on
Compute and Data Analysis, 130280, 6–13.
https://doi.org/10.1145/3093241.3093281

Alakrot, A., Murray, L., and Nikolov, N. S. (2018a).
Dataset Construction for the Detection of Anti-
Social Behaviour in Online Communication in
Arabic. Procedia Computer Science, 142, 174–181.
https://doi.org/https://doi.org/10.1016/j.procs.2018.
10.473

Alakrot, A., Murray, L., and Nikolov, N. S. (2018b).
Towards Accurate Detection of Offensive Language
in Online Communication in Arabic. Procedia
Computer Science, 142, 315–320.
https://doi.org/https://doi.org/10.1016/j.procs.2018.
10.491

Albadi, N., Kurdi, M., and Mishra, S. (2018). Are they Our
Brothers? Analysis and Detection of Religious Hate
Speech in the Arabic Twittersphere. 2018
IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining
(ASONAM), 69–76.
https://doi.org/10.1109/ASONAM.2018.8508247

Albadi, N., Kurdi, M., and Mishra, S. (2019). Investigating
the effect of combining GRU neural networks with
handcrafted features for religious hatred detection on
Arabic Twitter space. Soc. Netw. Anal. Min., vol. 9,
no. 1, p. 41.

Alrefaie, M. (2016). Arabic-stop-words [Github
Repository]. Retrieved on January 24, 2020 from
https://github.com/mohataher/arabic-stop-words

Bohra, A., Vijay, D., Singh, V., Akhtar, S. S., &
Shrivastava, M. (2018). A Dataset of Hindi-English
Code-Mixed Social Media Text for Hate Speech
Detection. https://doi.org/10.18653/v1/W18-1105

Chowdhury, A., Didolkar, A., Sawhney, R., and Shah, R.
(2019). ARHNet - Leveraging Community
Interaction for Detection of Religious Hate Speech
in Arabic. In Proceedings of the 57th Annual
Meeting of the Association for Computational
Linguistics: Student Research Workshop.
Association for Computational Linguistics,
Florence, Italy, 273–280.
https://doi.org/10.18653/v1/P19-2038

Davidson, T., Warmsley, D., Macy, M., and Weber, I.
(2017). Automated Hate Speech Detection and the
Problem of Offensive Language. AAAI Publications,
Eleventh International AAAI Conference on Web and
Social Media About offensive content. arXiv.org.

Retrieved from
http://search.proquest.com/docview/2074118430/

Derczynski, L. (2019). Offensive Language and Hate
Speech Detection for Danish. arXiv.org. Retrieved
from
http://search.proquest.com/docview/2273023012/

Goodfellow, I., Bengio, B., Courville, A. (2016). Deep
Learning. MIT press. Retrieved from
http://www.deeplearningbook.org/contents/ml.html

Habash, N. (2010). Introduction to Arabic natural language
processing (Vol. 3, pp. 1–185).

Kapoor, R., Kumar, Y., Rajput, K., Shah, R., Kumaraguru,
P., & Zimmermann, R. (2018). Mind Your
Language: Abuse and Offense Detection for Code-
Switched Languages. arXiv.org. Retrieved from
http://search.proquest.com/docview/2111970667/

Kent, S. (2018). German Hate Speech Detection on
Twitter. Proceedings of GermEval 2018, 14th
Conference on Natural Language Processing
(KONVENS 2018) Vienna, Austria – September 21.

Kwok, I., and Wang, Y. (2013). Locate the Hate: Detecting
Tweets Against Blacks. Proceedings of the Twenty-
Seventh AAAI Conference on Artificial Intelligence,
pp.1621-1622

Mohaouchane, H., Mourhir, A., and Nikolov, N. S. (2019).
Detecting Offensive Language on Arabic Social
Media using Deep Learning, (December).
https://doi.org/10.1109/SNAMS.2019.8931839

Mubarak, H., Darwish, K., and Magdy, W. (2017). Abusive
Language Detection on Arabic Social Media.
Proceedings of the First Workshop on Abusive
Language Online. Association for Computational
Linguistics (ACL), 2017. pp. 52–56.

Mustafa, R., Nawaz, M., Ferzund, J., Lali, M., Shahzad, B.,
and ournier-Viger, P. (2017). Early Detection of
Controversial Urdu Speeches from Social Media.
Data Science and Pattern Recognition, Ubiquitous
International, Volume1, Number2. ISSN 2520-4165.

Nobata, C., Tetreault, J., Thomas, A., Mehdad, Y., and
Chang, Y. (2016). Abusive language detection in
online user content. In Proceedings of the 25th
international conference on world wide web, pp.
145–153. International World Wide Web
Conferences Steering Committee, 2016

Orasan, C. (2018). Aggressive language identification
using word embeddings and sentiment features.
Proceedings of the First Workshop on Trolling,
Aggression and Cyberbullying. Association for
Computational Linguistics,
http://hdl.handle.net/2436/621749

Ozel, S., Sarac, E., Akdemir, S., and Aksu, H. (2017).
Detection of cyberbullying on social media messages
in Turkish. 2017 International Conference on
Computer Science and Engineering (UBMK), 366–
370. https://doi.org/10.1109/UBMK.2017.8093411

Pitsilis, G., Ramampiaro, H., and Langseth, H. (2018).
Effective hate-speech detection in Twitter data using

59

recurrent neural networks. Applied Intelligence,
48(12), pp. 4730–4742.
https://doi.org/10.1007/s10489-018-1242-y

Wiedemann, G., Ruppert, E., Jindal, R., and Biemann, C.
(2018). Transfer Learning from LDA to BiLSTM-
CNN for Offensive Language Detection in Twitter.

60

Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, pages 61–65
with a Shared Task on Offensive Language Detection.

Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020
c© European Language Resources Association (ELRA), licensed under CC-BY-NC

ALT Submission for OSACT Shared Task on Offensive Language Detection

Sabit Hassan1, Younes Samih1, Hamdy Mubarak1, Ahmed Abdelali1
Ammar Rashed2, Shammur Chowdhury1

1Qatar Computing Research Institute, 2 Özyeğin University
{sahassan2, ysamih, hmubarak, aabdelali}@hbku.edu.qa

ammar.rasid@ozu.edu.tr, shchowdhury@hbku.edu.qa

Abstract
In this paper, we describe our efforts at OSACT Shared Task on Offensive Language Detection. The shared task consists of two subtasks:
offensive language detection (Subtask A) and hate speech detection (Subtask B). For offensive language detection, a system combination
of Support Vector Machines (SVMs) and Deep Neural Networks (DNNs) achieved the best results on development set, which ranked
1st in the official results for Subtask A with F1-score of 90.51% on the test set. For hate speech detection, DNNs were less effective and
a system combination of multiple SVMs with different parameters achieved the best results on development set, which ranked 4th in
official results for Subtask B with F1-macro score of 80.63% on the test set.

Keywords: Offensive Language Detection, Hate Speech Detection, Arabic Shared Task

1. Introduction

Detecting offensive language or hate speech on social me-
dia has gained a lot of interest recently. Use of offensive
language and hate speech on social media can be an indi-
cation of hate crimes, toxic environment or level of antago-
nism against individuals or particular groups. Detecting of-
fensive language and hate speech can also help in filtering
out inappropriate content for users. Although there is a lot
of research on detecting offensive language and hate speech
(Agrawal and Awekar, 2018; Djuric et al., 2015; David-
son et al., 2017), work on Arabic offensive language detec-
tion is still in its early stages with very few notable works
(Mubarak and Darwish, 2019; Mubarak et al., 2017; Albadi
et al., 2018; Alakrot et al., 2018). Mubarak and Darwish
(2019) report that only 1-2% of the tweets are offensive.
The highly skewed distribution of data makes it extremely
difficult to build useful datasets and effective systems. OS-
ACT4 shared task (Mubarak et al., 2020) presents the prob-
lem of detecting offensive language and hate speech in Ara-
bic tweets to the community. The shared task consists of
2 subtasks: offensive language detection (subtask A), and
hate speech detection (subtask B).
This paper describes the systems submitted for OSACT4
shared task on Offensive Language Detection by the team
ALT. First, we experimented with classical machine learn-
ing classifiers such as Support Vector Machines (SVMs)
that are trained on character and word-level features. Then,
we experimented with Deep Neural Networks (DNNs) and
Bidirectional Encoder Representations from Transformers
(BERT). SVMs were seen to outperform the DNNs and
BERT. Since we expect the different kinds of classifier to
make different kinds of errors, we take the most promis-
ing and diverse individual classifiers and perform voting to
decide the final output. Majority voting on SVMs, DNNs
and BERT yielded better results than individual systems for
subtask A on the development set. The best results on de-
velopment set for subtask B were obtained by combining
the output of different SVMs and considering an instance
to be hate speech if any of the classifiers voted it to be hate

speech.
In section 2, we describe the dataset and the tasks, in section
3, we describe our approach and compare results for sub-
task A, in section 4, we describe our approach and compare
results for subtask B and in section 5, we provide conclu-
sion of our work.

2. Dataset and Task Description
In this section, we describe the dataset provided to the par-
ticipants and the two subtasks.

2.1. Dataset
The dataset for OSACT Shared task consists of 10,000 Ara-
bic tweets that are tagged for offensiveness and hate speech.
The 10,000 tweets are split into training, development and
testing sets as shown in Table 1.

Train Dev Test
7,000 1,000 2,000

Table 1: Training, development and testing data split

The organizers note that the data is highly skewed. Only
19% of the tweets are tagged as offensive and 5% of the
tweets are tagged as hate speech. Table 2 shows examples
from the training set. If a tweet has offensive language (in-
sults or threats) targeting a group of people based on their
origin (nationality, race, or ethnicity), their ideology (reli-
gion, political affiliation, etc.), gender or any other common
characteristics, this is considered as hate speech, so all hate
speech tweets are offensive according to this definition.

2.2. Task Description
The participants were required to produce labels indicat-
ing if a tweet is offensive (subtask A) or hate speech (sub-
task B). Each tweet took one of these labels for subtask
A: ”OFF” (offensive) or ”NOT OFF” (not offensive), and
”HS” (Hate Speech) or ”NOT HS” (not Hate Speech) for
subtask B. The full train and development data were made

61

Tweet Offensive? Hate Speech?
éJ. J
m.�'
 Õº	JÓ Yg@ð 	áÓ 	P AK
 èðY 	̄ �I	m�'. AK
 èðY 	̄ NO NO

. . . ½ 	JÓ Õ�®�J 	�K
 A 	JK. P !! 	á�� 	K AK
 ��A 	̄
�
@ AK
 	á�
 	�QªÖÏ @ qJ
 �� AK
 YES NO

�éÒÊ 	¢Ë@ ÐA¾mÌ'@ ÈAª 	K YJ
J.« 	áÓ YJ.« �I	K

@ �Q 	®Ë @ ÉJ
Ô« AK
 �é 	JK
AîD�Ë@ I. Ê¿ AK
 l�̄ð AK
. . YES YES

Table 2: Examples from the dataset

available to the participants at the beginning of the shared
task. At a later stage, only the tweets from test split were
made available to the participants via Codalab. The test
labels remained unseen by the participants throughout the
shared task. The participants were evaluated on the test
labels produced by their systems in a blind test phase on
Codalab — without access to the participants’ own scores
or other participants’ scores. As the labels in each subtask
are not balanced, the macro-averaged F1 scores were used
for official ranking.

3. Subtask A: Offensive Language Detection
In this section, we discuss our approach in Subtask A. First,
we describe the preprocessing step. Then, we describe the
different models we experimented on and compare results
of different models. Lastly, we perform an error analysis to
understand the limitations of our models and the dataset.

3.1. Preprocessing Tweets
Preprocessing the tweets is an important step as the data
from social media can be quite noisy as they contain a lot
of emojis, text in mixed languages, excessive use of punc-
tuation etc. It is important to note that some of our models
(described in the next subsection) use pretrained word em-
beddings as feature. In order to reduce noise and be able
to find more words in the embeddings, we perform the fol-
lowing steps for preprocessing the tweets.
Step 1: Remove all words that contain non-Arabic charac-
ters.
Step 2: Remove all diacritics.
Step 3: Remove all punctuation.
Step 4: Replace repeated characters with only one.

In our initial experiments, we noticed that the settings listed
above produces the best results. Therefore, we keep the
same preprocessing settings for all experiments.

3.2. System Descriptions
We experimented on a myriad of classifiers including clas-
sical machine learning classifiers such as Support Vec-
tor Machines (SVMs), Logistic Regression (LR), Multi-
nomial Naive Bayes (MNB), and deep learning classifiers
such as Feed-forward Neural Network (FFNN), Convolu-
tional Neural Network (CNN), Bidirectional Long Short
Term Memory (BiLSTM), and Bidirectional Encoder Rep-
resentations from Transformers (BERT). LR and MNB per-
formed quite poorly, and therefore, excluded from the dis-
cussion that follows. The results on development set for rest
of the classifiers are discussed next and are summarized in
table 3. Note that the values for precision, recall and F1 are
macro averaged and F1-macro is the official metric.

3.2.1. SVMs
As the features for SVMs, we transform the tweets into bag-
of-n-grams vector weighted with logarithmic term frequen-
cies (tf) multiplied with inverse document frequencies (idf).
We created both character and word n-grams this way. We
experimented with different ranges of character and word
n-grams. We also experimented on using Mazajak embed-
dings (Abu Farha and Magdy, 2019) as features to SVM.
Mazajak embeddings were trained on Twitter data, which
matches the domain of data in our task. Therefore, we ex-
pect it to be more useful compared to other embeddings that
are trained on different domain of data (BERT-Multilingual,
for example). From table 3, we can see that the best re-
sults were obtained when character [1, 5] gram and word
[1−3] gram features were combined with pretrained Maza-
jak word embeddings.

3.2.2. FastText
FastText is an efficient deep-learning based system for
learning embeddings and performing text classification
(Joulin et al., 2016). Since the task of offensive language
detection is a text classification problem, we experimented
with FastText, but as we can see from Table 3, FastText was
outperformed by other systems.

3.2.3. FFNN
For the FFNN architecture, we use four hidden layers with
a different number of units (1000, 500, 500, 100) and a
sigmoid activation function in each layer, followed by an
softmax output layer. To train the network, we use a batch
size of 256, with maximum epochs of 50 and early stopping
using a 10% of the training set with similar distribution of
the labels. The models are then optimized using rmsprop
optimization function. The parameter were initialized with
small random numbers, sampled from a uniform distribu-
tion. Since other systems outperform FFNN, we have not
tuned the architecture for different parameters such as num-
ber of hidden units or the learning rates, among others.

3.2.4. CNN-BiLSTM
We use two sets of features for this model. First, we
have pretrained word embedding (Mazajak embeddings)
features for each word. Second, we use CNN as character-
level feature extractor. First layer of the network is used
to project the input string to character embeddings, which
is then passed through a convolutional layer and max-over-
time pooling is applied to obtain fixed length representation
of words. Character-level representations have been shown
to capture morphology of words (Kim et al., 2015). If we
were to use only word level features obtained from pre-
trained word embeddings, we would lose out information
when a word does not appear in the vocabulary of the pre-

62

No. Model Features Acc. Prec. Recall F1
1 SVM Word [1-3] Gram 80.1 71.6 82.4 73.7
2 Char [1-5] Gram 91.5 78.9 90.8 83.3
3 Mazajak SG-250 92.2 85.5 90.2 87.6
4 Mazajak SG-100 + char[1-5] + word[1-3] 93 88.3 87.7 88
5 Mazajak SG-250 + char[1-5] + word[1-3] 94.3 89.8 91 90.4
6 FastText 89.5 85.5 75.7 79.4
7 FFNN Char [1-8] + Word [1-4] 91.9 87.1 84 85.1
8 CNN Mazajak SG-250 92.1 86.7 86.2 86.5
9 CNN-BiLSTM Mazajak SG-100 92.9 87.6 88.1 87.8
10 M-BERT 90.1 83 83.7 83.3
11 Ensemble(4+5+7+8) 94.3 89.9 91.1 90.5

Table 3: Comparison of different systems submitted to subtask A

Tweet True Majority Reason
Label Label

#GameofThronesú

�æ 	K @ �éJ.kB@ �I 	�K. AK
 ��
Q�
 	JK
X AK
 QÔg@ ¡ 	k ù
 Öß
Ag� OFF NOT Out of

context
¼ñ	JJ. Ë @ ú

	̄ 	àðYJ. Ë @ �HAK. A�k ��C 	« # OFF NOT Out of

. Q¢�Ë@ Q 	k@ é¢�® 	K éJ
 	̄ AK
 ½J
 	̄ AK
 é�A�P ÉmÌ'@ vocab

A�KX �ð 	P Q�
�J» ù�®K. ¼ �Yg Y	J« 	�̄ð ú
k. Qk. 	áK. @ AK
 	à@Q�.g. AK
 NOT OFF Ambiguity

©Ê¢J
Ë PAî 	DË É¿ iÊ 	®J
K. ú
ÎK
 Q�
�® 	®Ë @ 	á£@ñÖÏ @ �éJ. J
k. úÎ« �IJ

�
º �� ñ�̄Qå��� ú
æ

�� ú

	̄ É¢�.

Table 4: Error analysis of subtask A

trained embedding. The character-level features obtained
this way will provide us with information in such cases.
The character level representation of words are then merged
with the word embedding features and passed to the BiL-
STM. Then a softmax layer is used for projecting the prob-
ability distribution of the target classes. Note that the CNN
learns the character-level features jointly with the BiLSTM,
minimizing the cross entropy loss. Stochastic Gradient De-
scent (SGD) optimizer was used during the training.

3.2.5. BERT
Deep contextualized language models such as BERT. (De-
vlin et al., 2019) have been shown to perform really well
in many NLP tasks. We fine-tuned BERT-multilingual (re-
ferred to as M-BERT) for offensive language detection. M-
BERT is pretrained on Wikipedia text from 104 languages
that include Arabic. From Table 3, we can see that M-
BERT is outperformed by CNN-BiLSTM. We speculate
that this is because the domain of data M-BERT is trained
on, Wikipedia text, is quite different from the Twitter data
used in the shared task. Articles on Wikipedia are typically
written in a formal way and follow the structure and rules of
grammar. Text on social media platforms such as Twitter,
on the other hand, can be very informal and chaotic.

3.2.6. Ensemble Method
From table 3, we can see that several system are promising
and perform quite close to each other. Since these systems
are quite diverse (SVMs are quite different from BERT, for
example), they are likely to make different types of errors.
In order to improve our results, we experiment on com-
bining multiple systems. We took the output of two SVM

classifiers (No.4 and No.5), the CNN-BiLSTM (No.9) and
M-BERT (No.10) and performed majority voting to decide
on the label for each input. From table 3, we can see that
this ensemble method is the best system on the develop-
ment data and this is the system we submitted for official
ranking. The official scores for this system on the test set is
shown in table 5.

Official Acc. Prec. Recall F1
Rank
1st 93.85% 90.18% 90.85% 90.51%

Table 5: Official results on subtask A test set

NOT OFF OFF
NOT OFF 789 32
OFF 25 154

Table 6: Confusion matrix on subtask A dev set

3.3. Error analysis
To have a better understanding of where our system is
failing will help us improve our system in future and
understand the limitation of the data. We examine 100
samples from the development data and attempt to identify
where and why our best system (No. 11 from table 3) is
failing. Examining the specific tweets provides us with
some interesting insights. Table 4 lists examples of errors
made by our best performing system. The first entry in

63

No. Model Features Acc. Prec. Recall F1
1 SVM Mazajak SG-250 + char[1-5] + word[1-3] 96.2 72 78.2 74.7
2 Char [2-6] Gram 97.1 72.5 88.8 78.2
3 Bagged SVM Mazajak SG-250 + char[1-5] + word[1-3] 96.4 68.9 81.3 73.4
4 CNN-BiLSTM Mazajak SG-100 + CNN Feature Extractor 95.9 76.1 67.5 70.9
5 M-BERT 95.7 72.4 74.9 73
11 Ensemble(1+2+3) 96.6 80 78.7 79.3

Table 7: Comparison of different systems submitted to subtask B

Tweet True Majority Reason
Label Label

. . 	á�� 	K H. A�k ñK. AK
 ú
æ
��«@YË@ AK
 � 	k@ð ©¢�̄ @ HS NOT ?

	á�. �K AK
 ú
ÎK
 	P@QK. AK
 @Q 	k AK
 ½�® 	̄ñK
 B é<Ë @ HS NOT ?

Q 	®J
ÊË @ Ð @Y�̄ ù

KAî 	DË @ I. ªÊJ
K. ð 	Pñ 	®J
K. ð ÐAî 	D�Kñ�K H. Q�̄B@ð ú

�æ�Ë@ AK
 ÐAî 	D�Kñ�K AK
 I. ªÊJ
K. NOT HS ?

�» AK
@ �é�ÓA	mÌ'@ �éËñ¢J. Ë AK. 	Pñ 	®K
 Q�
J.» ÈAÒ�Jk@ð H. Q�̄B@

Table 8: Errors analysis of subtask B

the table contains reference to Game of Thrones. This
is offensive only if context of Game of Thrones is taken
into account. We cannot expect the classifier to be correct
on such instances. The second entry provides us with
an example of error that we can tackle in the future. We
see that the hashtag ¼ñ	JJ. Ë @ ú

	̄ 	àðYJ. Ë @ �HAK. A�k ��C 	« # is

offensive toward immigrants. But it’s out of vocabulary
for our systems. In the future, we can attempt to parse the
hashtags into its constituent words and see if it improves
the performance. The third entry in the table is quite
interesting. The sentence uses an offensive word, ñ�̄Qå���,
which means ”stealing”, but the sentence itself is not
offensive. It’s likely our system picked up the offensive
word but failed to take into account the context in which
the word was used. In future, we can particularly target
resolving issues of ambiguous use of words.

Table 6 shows the confusion matrix of our best system. We
can see that the classifier is much more likely to misclassify
offensive instance as not offensive compared to misclassi-
fying not offensive instances as offensive. This is to be
expected as the data is highly skewed with only 19% of the
instances being offensive.

4. Subtask B: Hate Speech Detection
For subtask B, The preprocessing is the same as section 3.
In this section, we describe the different models we experi-
mented on for subtask B, present the results for the different
models and discuss errors made by the models.

4.1. System Descriptions
Since same tweets are used for both the subtasks, for sub-
task B, we focused only on those systems that were promis-
ing in subtask A. These systems include SVMs, CNN-
BiLSTM and M-BERT. The accuracy, precision, recall and
F1 score are reported in Table 7. The precision, recall and
F1 scores are macro averaged.

4.1.1. SVMs
As the features for SVMs, we use the same features as sub-
task A. In addition, we also experiment with bagged SVM
(5 estimators). The SVMs outperformed CNN-BiLSTM
and M-BERT in this subtask as well.

4.1.2. CNN-BiLSTM
We keep the same structure and settings of the CNN-
BiLSTM used in subtask A.

4.1.3. M-BERT
Once again, we follow the same methodology as subtask A.
The only difference is that the M-BERT is now fine-tuned
on hate speech detection.

4.1.4. Ensemble Method
For subtask B, we opt for a slightly different ensemble
method. The best ensemble on the development set was
obtained by only considering the three SVMs (Nos. 1,2,3
from table 7). We also change the voting mechanism such
that it’s no longer majority voting. We consider an instance
to be hate speech if any of the three SVMs vote it to be hate
speech. This voting scheme was outperforming majority
voting scheme on the development set. The official result
on this ensemble is shown in table 9.

Official Acc. Prec. Recall F1
Rank
4th 96.6% 83.8% 78.1% 80.6%

Table 9: Official results on subtask B test set

NOT HS HS
NOT HS 940 16
HS 18 26

Table 10: Confusion matrix on subtask B dev set

64

4.2. Error analysis
We attempt to perform error analysis similar to subtask A
by collecting 100 samples from development set and exam-
ining them. Unfortunately, we could not identify any par-
ticular reasons for the system to fail. We speculate this to be
because of the data for subtask B being extremely skewed
(with only 5% of the data being hate speech). Table 8 con-
tains examples of errors made by the best system (no. 6
from table 7).
Table 10 shows the confusion matrix of our best system on
subtask 2. As expected, because of the extreme imbalance
of the data, we can see that the classifier is prone to misclas-
sifying hate speech instances as non hate speech instances.

5. Conclusion and Future Work
To conclude, we experimented heavily with classical ma-
chine learning and deep learning approaches to detect if a
tweet is offensive or contains hate speech. We achieve state
of the art results for offensive language detection by com-
bination of SVMs, CNN-BiLSTM and Multilingual BERT.
We achieve competitive results on hate speech detection
with a system combination of SVMs. Our error analysis
indicates certain types of errors for offensive language de-
tection that can be addressed in future. In future, we aim
to explore augmentation of hate speech data to build better
systems.

6. Bibliographical References
Abu Farha, I. and Magdy, W. (2019). Mazajak: An online

Arabic sentiment analyser. In Proceedings of the Fourth
Arabic Natural Language Processing Workshop, pages
192–198, Florence, Italy, August. Association for Com-
putational Linguistics.

Agrawal, S. and Awekar, A. (2018). Deep learning for de-
tecting cyberbullying across multiple social media plat-
forms. CoRR, abs/1801.06482.

Alakrot, A., Murray, L., and Nikolov, N. S. (2018). To-
wards accurate detection of offensive language in online
communication in arabic. Procedia Computer Science,
142:315 – 320. Arabic Computational Linguistics.

Albadi, N., Kurdi, M., and Mishra, S. (2018). Are they our
brothers? analysis and detection of religious hate speech
in the arabic twittersphere. In 2018 IEEE/ACM Interna-
tional Conference on Advances in Social Networks Anal-
ysis and Mining (ASONAM), pages 69–76, Aug.

Davidson, T., Warmsley, D., Macy, M. W., and Weber, I.
(2017). Automated hate speech detection and the prob-
lem of offensive language. CoRR, abs/1703.04009.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2019). BERT: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings of
the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Pa-
pers), pages 4171–4186, Minneapolis, Minnesota, June.
Association for Computational Linguistics.

Djuric, N., Zhou, J., Morris, R., Grbovic, M., Radosavlje-
vic, V., and Bhamidipati, N. (2015). Hate speech de-
tection with comment embeddings. In Proceedings of

the 24th International Conference on World Wide Web,
WWW ’15 Companion, page 29–30, New York, NY,
USA. Association for Computing Machinery.

Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jégou,
H., and Mikolov, T. (2016). Fasttext.zip: Compressing
text classification models. CoRR, abs/1612.03651.

Kim, Y., Jernite, Y., Sontag, D. A., and Rush,
A. M. (2015). Character-aware neural language models.
CoRR, abs/1508.06615.

Mubarak, H. and Darwish, K. (2019). Arabic offensive
language classification on twitter. In International Con-
ference on Social Informatics, pages 269–276. Springer.

Mubarak, H., Darwish, K., and Magdy, W. (2017). Abu-
sive language detection on Arabic social media. In Pro-
ceedings of the First Workshop on Abusive Language On-
line, pages 52–56, Vancouver, BC, Canada, August. As-
sociation for Computational Linguistics.

Mubarak, H., Darwish, K., Magdy, W., Elsayed, T., and Al-
Khalifa, H. (2020). Overview of osact4 arabic offensive
language detection shared task. 4.

65

Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, pages 66–70
with a Shared Task on Offensive Language Detection.

Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020
c© European Language Resources Association (ELRA), licensed under CC-BY-NC

ASU OPTO at OSACT4 - Offensive Language Detection for Arabic text

Amr Keleg 1, Samhaa R. El-Beltagy 2, Mahmoud Khalil 1
1 Faculty of Engineering - Ain Shams University, 2 Optomatica

1 Cairo, 2 Giza
Egypt

amr.keleg@eng.asu.edu.eg, samhaa@computer.org, mahmoud.khalil@eng.asu.edu.eg

Abstract
In the past years, toxic comments and offensive speech are polluting the internet and manual inspection of these comments is becoming a
tiresome task to manage. Having a machine learning based model that is able to filter offensive Arabic content is of high need nowadays.
In this paper, we describe the model that was submitted to the Shared Task on Offensive Language Detection that is organized by (The
4th Workshop on Open-Source Arabic Corpora and Processing Tools). Our model makes use transformer based model (BERT) to detect
offensive content. We came in the fourth place in subtask A (detecting Offensive Speech) and in the third place in subtask B (detecting
Hate Speech).

Keywords: Offensive speech, Hate speech, BERT

1. Background and task description
During the past decade, Social media platforms such as
Facebook and Twitter have attracted millions of users from
the Arab region. These platforms have given people the
chance to express their ideas, beliefs and feelings. Unlike
real life conversations, people tend to be more aggressive
when they are communicating through this virtual online
world. The aggression might also reach an extreme case
where racist, violent and completely unacceptable words
are shared online. Sites are trying to control the spread of
these toxic comments by manually moderating and check-
ing the reports that other users are filing. Moreover, Some
services provide an automatic way to automatically filter
offensive content. For example, Google Search has an op-
tion to use ”SafeSearch Filters” which is allows filtering out
any harmful or violent content before presenting the search
results to the user.
All these facts have attracted researchers from all around
the world to build different techniques that can be used to
automatically detect offensive content. Various definitions
and aspects have been used to tackle this task. Having a
typology that can be clearly agreed upon by humans is of
great importance. Mubarak et al. (2017) have used the term
abusive speech to refer offensive text that contains profane
content. On other hand, Hate speech (Toxic comments) is
often used to refer to offensive text that is targeted towards
a certain person or a group of people based on a common
trait (race, ethnicity, religion, etc.) (Malmasi and Zampieri,
2017).
The competition is composed of two subtasks. Subtask A
aims at differentiating between offensive and non-offensive
text irrespective of the type of the offensive text (Hate
Speech, Profanity, Cyber-bullying, etc). Substask B fo-
cuses on detecting text that contains targeted Hate Speech
towards a person or a group of people.

2. Systems description
Lately, Fine-tuning large models using the idea of transfer
learning such as: BERT (Devlin et al., 2019) and ULMFiT

(Howard and Ruder, 2018) that are pre-trained on language
modeling tasks reaches state-of-the-art results in multiple
classification tasks. For this competition, we have fo-
cused on Subtask A and tested different models/ architec-
tures keeping in mind that fine-tuning BERT based models
should be among the top performing ones. The best per-
forming model for subtask A was then adapted to work on
subtask B as well. The following models were developed
throughout our experiments1:

• Training a basic model using tf-idf (term frequency -
inverse document frequency) and logistic regression.
The tf-idf generates a sparse representation of the in-
put text using character ngrams in range [1, 9] e.g:
Some of the grams of the sentence
, H. AJ
 	« , AJ
 	« , ú

	« , 	̈) are (Pñ	JË @ð hQ 	®Ë @ ½K. AJ
 	« ú

	̄)

, 	áË , È , Pñ	JË @ð , Pñ	JË @ð , ñ 	JË @ð , 	áË@ð , È@ð , @ð ,ð , ½K. AJ
 	«
. (Pñ	K , ñ 	K , 	à ,Pñ	JË ,ñ 	JË

This sparse feature vector is then fed to the logis-
tic regression model to discriminate between the two
classes (offensive and non-offensive). This model rep-
resents the baseline model for all other deep learning
based architectures.

• Training a 1D Convolutional Layer using word em-
beddings from Aravec (Mohammad et al., 2017) as a
2D input array. At first, the line-feed token <LF>is
replaced by a newline character \n. Then, the sen-
tence is cleaned in the way that is used by the Aravec
model. This step includes the removal of diacritics
and fixing elongated words (Replacing any sequence
of the same character of length two or more by a se-
quence of length two of the same character). Then, the
sentence is tokenized using whitespaces. The tokens
are mapped to their respective index in the word2vec
model using 0 as the index for any unknown token.

1The source code for the developed models can be
found through: https://github.com/AMR-KELEG/
offenseval-2020-ASU_OPTO

66

The list of ids is then padded by the id 0 such that it has
a fixed length of 75 ids. The list is truncated to have
the length of 75 in case it had more than 75 tokens.
The list of ids is then used to generate the respective
word embeddings. The word embeddings are concate-
nated to form a 2D array of shape(75, 300) where 300
is the size of the word embedding for each token. 100
different 1D convolutional filters are then applied to
the 2D array with kernel size of 3 and stride of 1 (e.g:
the filter is applied to the word embeddings of all 3-
consecutive tokens). A 1D max-pooling layer is then
applied with a pool size of 4. Drop-out with probabil-
ity of 0.5 succeeds the max pooling layer then a Dense
layer of 1 neuron with a sigmoid activation function
is used to predict the probability that the sentence is
offensive or not. The model is trained for 2 epochs
with L2 regularization (penalty factor is set to 0.0001).
The used cost function is binary cross entropy and it’s
optimized using Adam (Kingma and Ba, 2014). The
initial word vectors will also be fine-tuned during the
training process to minimize the cost function.

• Training a Bi-directional LSTM using word embed-
dings from Aravec. Only the most occurring 300,000
words of the Aravec vocabulary are kept and fine-
tuned as part of the model due to the limited GPU
memory. After the embedding layer, a bidirectional
LSTM layer of 64 cells is used followed by two dense
layers of 64 neurons with relu activation function and
1 neuron with a sigmoid activation function.

• Fine-tuning multilingual BERT that is pre-trained on
cased text of the top 104 languages with the largest
Wikipedias (which includes Arabic). The text is tok-
enized using a word piece tokenizer (Wu et al., 2016)
which is trained on large text in an unsupervised fash-
ion to determine a set of word-pieces that form the
words (e.g: the word unaffable might be split to (un,
##aff, ##able) according the word-pieces that were
generated on training the tokenizer). After tokeniz-
ing the input text, the tokens are padded/truncated to
the length of 75. BERT generates an embedding for
the whole sentence using its self-attention layers. A
Dense layer with softmax activation is then added to
classify the sentence into offensive or not. The whole
pretrained architecture in addition to the added dense
layer are then fine-tuned using the tagged dataset. The
model is fine-tuned for three epochs using a learning
rate of 10-5 and with L2 regularization.

• Fine-tuning AraBERT (a publicly released BERT
model trained on Arabic text 2). The text is tokenized
using Farasa (Abdelali et al., 2016) which is a seg-
menter that is developed to segment an Arabic word
into its affixes. Then, the tokens are fed to the BERT
model. The default values provided by the model’s
authors were used in the fine-tuning process. The
training dataset was divided into batches of size 32,

2The initial version of AraBERT can be found through:
https://github.com/zaidalyafeai/ARBML/
issues/18#issuecomment-580924000

where each sample was tokenized to have a length of
64. Six epochs were used to fine-tune the pre-trained
AraBERT model on the training dataset of 7000 sam-
ples with a learning rate of 10-5.

Moreover, We have built a list of profanity words and used
simple augmentation rules to generate the different forms
of each word. Mubarak et. al (2017) have demonstrated the
effectiveness of using a list of words to detect abusive con-
tent in text documents. They used a seed list of bad words
and collected user data from twitter to find other candidate
words that: 1) are used by those who have any of the seed
words in their tweets. 2) aren’t used by those who don’t
have any of the seed words in their tweets. We build on the
same idea of having a list of profanity words to automat-
ically mark some tweets as offensive irrespective of their
context but we have used a morphological approach for
augmenting our seed list of bad words. First, we used a list
of bad words that is available online3. The list of bad words
was manually augmented to include other common forms
of an Arabic word by substituting �è (Taa-marbuta) with è
(Haa) and substituting 	P (Zain) with 	X (Zaal). Then, the list
was further augmented by other bad words that could be
found in the training data-set using manual inspection. Fi-
nally, a list of prefixes and suffixes were used to generate
the different morphological forms of each word. For ex-
ample, if the word was a verb then the list of prefixes to be
added would be (A� , è , 	à , �H , ø
 , @) and the list of suffixes

would be (A 	K , 	áë , Õ» , Ñë , Aë , ¼ , ú

	G). e.g.: For the verb

Ð 	Që, 113 different morphological forms are generated. The
following words represent a sample of these forms:
, ÑêÓ 	Që@ , AêÓ 	Që@ , ú

	æÓ 	Që@ , A 	JÓ 	Që@ , ÕºÓ 	Që@ , ½Ó 	Që@ , Ð 	Që@ , Ð 	Që
, ÑêÓ 	QîE
 , AêÓ 	QîE
 , ú

	æÓ 	QîE
 , A 	JÓ 	QîE
 , ÕºÓ 	QîE
 , ½Ó 	QîE
 , Ð 	QîE
 , 	áêÓ 	Që@
	áêÓ 	QîE

A seed list of 87 bad words was augmented to reach 5497
different words. Some combinations of the prefixes and
suffixes might result in a word that is not linguistically valid
but our intuition is since the word isn’t part of the language
then nobody will use it and thus considering a word that
is impossible to be used to be a bad word won’t affect the
model’s precision.
Throughout our experiments, we have faced problems with
reproducing the results for models that are trained using
GPUs among multiple runs given that we had used a ran-
dom seed of value 42 in all our experiments. This seems
like a problem that isn’t widely discussed. The repro-
ducibility problem can be partially mitigated by training the
model multiple times while saving the trained weights for
each training run and then choosing the best performing
version of the model.

3. Results
Table 1 reports the accuracy and the macro-averaged pre-
cision, recall and F1 scores for the training and develop-
ment datasets respectively on subtask A. Our best model

3https://github.com/LDNOOBW/List-of-Dirty-Naughty-
Obscene-and-Otherwise-Bad-Words

67

Table 1: Results of the developed models on the training and development datasets

Training dataset Development dataset
Model name Accuracy Precision Recall F1 Accuracy Precision Recall F1

tfidf + logistic regression 0.889 0.938 0.725 0.778 0.888 0.921 0.694 0.746
CNN + Aravec 0.982 0.985 0.959 0.971 0.928 0.906 0.838 0.867
BiLSTM 0.999 0.998 0.998 0.998 0.920 0.856 0.884 0.869
Multi-lingual BERT 0.978 0.975 0.956 0.965 0.905 0.855 0.805 0.826
AraBERT 0.998 0.998 0.994 0.996 0.928 0.881 0.871 0.876

Table 2: Effect of using the list of profane words on the fine-tuned AraBERT reported on the development dataset

Model name Accuracy Precision Recall F1

AraBERT 0.928 0.881 0.871 0.876
AraBERT + augmented list of profane words 0.930 0.883 0.877 0.880

for subtask A was the AraBERT based model which per-
formed better than the cased multilingual BERT model that
is trained using the dumps of the 104 most represented lan-
guages on wikipedia. Researchers focusing on langauges
other than English have found that a BERT model trained
specifically for a certain language such as: German, Greek
and Dutch (de Vries et al., 2019) achieves better results than
the multilingual BERT model that might under-represent
some languages. Additionally, The results of the Offense-
val 2019 (Zampieri et al., 2019) competition reported that
7 out of the top 10 teams have used BERT to build their
models. Risch, et al. (2019) have also showed that using
a BERT model that is trained using large German corpora
performs better than all the other baseline models.
The AraBERT based model was also succeeded by a simple
look-up search that marks a sentence as offensive if it con-
tains any of the words in the augmented profanity words list
irrespective of the prediction of the AraBERT model. Us-
ing this hybrid approach has improved the macro-averaged
precision and recall and consequently improved the macro-
averaged F1 score as shown in table 2. The official macro-
averaged F1 score of this hybrid system on the test and de-
velopment datasets is 0.896 which is much better than that
of our second best system that is based on the Bidirectional
LSTM which achieved an official score of 0.856.
For subtask B, We have fine-tuned AraBERT using the
whole training dataset of 7000 tweets with the same con-
figuration and hyperparameters that were used in subtask
A. Our official macro-averaged F1 score is 0.807 which put
our team in the third place on the scoreboard.

4. Error Analysis
One of the important steps to carry-out on training a ma-
chine learning model is to check the mis-classified samples
and try to find reasonable explanations for such errors. This
task might be hard for text data since one can’t easily find
relations between different samples unlike images for ex-
ample. On checking a random sample of 50 mis-classified
samples, we found that most of the errors were False Neg-
atives (The sample is offensive yet it was classified as not
offensive). Additionally, we found that all these samples
contained the Arabic vocative article AK
 (Ya). This seemed

Table 3: Tweets containing bad words with mixed inconsis-
tent labels

ID Text Label
2206 È 	Q 	K @ úÎJ
	m��' É�@ é 	JÓ �é 	®K
A 	g �I	J» úÎË@ èX

ÈXAJ. �J��K. �A 	JË @ ú�̄B@ úk. @ ð øXA« øPñ�
	àA ��« QK
@ðXð ÑîD� @ Õæ�P AîD
Ê« ð øPñ�

ð 	¬A 	jë A 	K @ èX ** @ 	á�
 	̄ H. ñ ��ñ�Kñ 	®Ë @ 	á�
J. 	K
é 	K @ ð ¨@Y 	g èX 	à@ ��Ëñ�®J.Ó Aêj�Òë ùªJ
J.£
AK
 ú 	æJ
Ê	m�'
 AêkQk. @ ú 	G @ ú 	̄ ñ 	k ��. l�� ��Ó

¡J
��. ��J
Êª�K ��Ê«@ AÓ@ AK
 �Iº�@

NOT
OFF

7177 	àA¿ AÓ AK
 	àA¿ AêÖÞ� @ ùë �èY» �èYg@ð �éJ
 	K A�K B
*** @ Ð@Q» @ AK
 Yª� AK
 ��Ó Ð@Q» AK
 �èXA� AK

OFF

like a really serious problem that needs to be fixed until we
discovered that (6986 out of 7000) of the sentences in the
training and (999 out of 1000) of the sentences in the de-
velopment data-sets contain the article AK
 (Ya). The effect
of such observation on the model needs more analysis but
clearly this article was used by the data-set creators to query
sentences (tweets) and it might limit the distribution of the
corpus.

4.1. Issues with the Annotation scheme
Human annotation is a tiresome task especially in
the field of natural language processing since text
might sometimes be ambiguous in a way that the
same sentence might carry different meanings. In
this section, we will shed the lights on different is-
sues that we have spotted on performing error analysis.

Presence of a bad word in a non-negative context: The
way people perceive and use bad words might depend on
different factors such as: the dialect that they use or their
society’s culture. Some words might be accepted in some
regions but are completely inappropriate in other regions.

68

Table 4: Tweets with offensive semantic meaning and sar-
castic pragmatic meaning

ID Text Label
261 RT @USER:	á�
« ñK.

@ AK
 Èñm× AK
 	á�
 	̄ Aî �DK
Xð ú 	æ ��ñ ��ð

I. m��' AÖÏ . . Pñ«

@ AêÖÞ�

@ ÐAë Èð

@ !? èYg@ð

l�� ú 	æK 	Që ú 	æK 	Qî�E
URL

OFF

7868 It seems like	àA ��« ú

	GA�K ÑêÊ�JkP . . é 	̄ A�K AK
 ú
»

	P AK
 ú

	GA�K

ú

	GA�K ½ÓðYë @ðY 	gAK
ð ¼ñK. Qå	��

NOT
OFF

Additionally, Annotators might neglect the presence of a
bad word if the context isn’t offensive while others consider
the whole sentence to be offensive if it contains a bad word.
Table 3 demonstrates the disagreement problem between
human annotators where the same bad word (with different
forms) was found in a non-offensive context. Annotators
have considered the first to be not offensive but marked the
second one as offensive.
Usage of sarcastic speech quoting popular movie scenes:
Our Arabic culture relies heavily on quoting conversations
from popular movies. The semantic meaning of these
words might be offensive but the pragmatic meaning will
depend on the context in which they are used. Ambiguity is
an issue that rises in almost all the systems that operate on
linguistic data. Table 4 shows two examples where quotes
from movies were used. Although the fact that the model
can only depend on the semantic meaning of the sentence,
we believe that annotators should pick a side and mark them
as either offensive or not. The two sentences have offensive
speech yet one of them was annotated as offensive and the
other was annotated as non offensive.
Wrong annotations: Having errors in annotations gener-
ated by humans is a problem that is almost unavoidable es-
pecially if the dataset was of a large size (10,000 tweets)
and annotators are asked to provide two different labels for
each tweet (Offensive or not offensive and Hate speech or
not hate speech). In table 5, we believe that all these sam-
ples should have marked as offensive and as hate speech.

5. Conclusion
Our experiments reveals that the contextualized word em-
beddings generated using BERT yield better classifiers for
offensive text detection. A BERT model that is pre-trained
on large text corpora achieves state-of-the-art results. On
the other hand, multilingual BERT seemed to lack the abil-
ity to represent Arabic text. This might be attributed to the
fact that Arabic text needs to be tokenized in a different
way than the other languages that are supported by multi-
lingual BERT. Additionally, using a hybrid approach im-
proved our system that is used for subtask A. Relying on
a manually prepared list to mark a sentence that contains
a profane word as offensive is a logical solution to support
machine learning based models.

Table 5: Tweets containing Offensive content with incor-
rect labels

ID Text Label
7106 Õæ��̄ @ �éªÓAm.Ì'AK. �H@Qå 	�AjÖÏ @ ÈðYg. ¡m�'. ú
Í@

X@ñÓ 3 ú
æ.
	« AK
 ! ú
kA� 	àñºK. AÓ é<ËAK.

	àñºK. YJ
»

@ ?? 	J
�
J
» �é«A�Ë@ � 	® 	JK. ��	m��'

I. �JºK. ñëð 	àA¿P

AK. ú

	GQ» 	YK. ÕÎm�'. AK
 Õç'
A 	K AK

	Q�
 	JK
X @PA¿ �H@Yg

@

NOT
OFF
-
NOT
HS

7491 @USER @USER
½ÓC¾K. l .�'
Qî �DË @ ÐA ��ë ÐC¾K. ��Ó l .�'
Qî �DË @
½îD
k. ñ�JK. �éJ
�̄ñ�Ë@ ð ú
kA¢J. 	KB@ ð ú
×B 	Q���B@
	á�� 	ªË ø
 YJ
ë 	á�
J
ÓB 	Q���B@ ø
 XA« .ñË@ ÐC¾Ë@

ú

	̄ 	àA¿ AÓ ñÓC¾K. ù
 ÖÏ 	QË @ YK
Yg. ú
æ

�� ñ 	K @ ��Ó
	�ðQ 	®Ó ú
ÎK
 ú

�æ 	K @ �ºªK. l�'
Qm.�
�' ð �HA 	KAë@

¡ªK
 AÓñÔ« . �P@YÖÏ @ �I«ñ�JK. AK
 �éÒÊª�JÓ AK

NOT
OFF
-
NOT
HS

7358 	àA¾Ó É¾K. 	àAîD
K. ú

	æÒJ
Ë @ è A 	̄ A�k AK
 èAJ. J
« AK

�é�̄ 	Q�KQÖÏ @ é 	KñªÊÖÏ @ é�KXAJ
�̄ I. �. ��. éÊ¿ @ 	Yëð
A 	J 	K @ é<Ë @ð Õç�' é<Ë @ð 	á�
K. ñ 	Jm.» 	ám� 	' éÊ¾ ��ÖÏ @ð
É¿ð ÈAÒ ��Ë@ ú

	̄ I. ª ��Ë@ PY�® 	Kð ÐQ��m� 	'
ú

	̄ ÑêËAÔ«@ð ��Qå�Ë @ Ñî�EXA�̄ �éJ. �. � A 	J 	̄ C 	g
	¬ñ ���
ð ú

	æÒJ
Ë @ I. ª ��Ë@ új��
 ú �æÓ H. ñ	Jm.Ì'@
�é�̄C« ú

	æJ. K
ð ú �æÓ 	à@YÊJ. Ë @ É¿ 	áÓ �HA 	KAëB@
	á�
J
K. ñ 	Jm.Ì'@ ©Ó I. k

NOT
OFF
-
NOT
HS

6. Bibliographical References
Abdelali, A., Darwish, K., Durrani, N., and Mubarak, H.

(2016). Farasa: A fast and furious segmenter for arabic.
06.

de Vries, W., van Cranenburgh, A., Bisazza, A., Caselli, T.,
van Noord, G., and Nissim, M. (2019). Bertje: A dutch
bert model. ArXiv, abs/1912.09582.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2019). BERT: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings of
the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Pa-
pers), pages 4171–4186, Minneapolis, Minnesota, June.
Association for Computational Linguistics.

Howard, J. and Ruder, S. (2018). Universal language
model fine-tuning for text classification. In Proceedings
of the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages
328–339, Melbourne, Australia, July. Association for
Computational Linguistics.

Kingma, D. P. and Ba, J. (2014). Adam: A

69

method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Malmasi, S. and Zampieri, M. (2017). Challenges in
discriminating profanity from hate speech. Journal
of Experimental & Theoretical Artificial Intelligence,
30(2):187202, Dec.

Mohammad, A. B., Eissa, K., and El-Beltagy, S. (2017).
Aravec: A set of arabic word embedding models for use
in arabic nlp. Procedia Computer Science, 117:256–265,
11.

Mubarak, H., Darwish, K., and Magdy, W. (2017). Abu-
sive language detection on Arabic social media. In Pro-
ceedings of the First Workshop on Abusive Language On-
line, pages 52–56, Vancouver, BC, Canada, August. As-
sociation for Computational Linguistics.

Risch, J., Stoll, A., Ziegele, M., and Krestel, R. (2019).
hpidedis at germeval 2019: Offensive language iden-
tification using a german bert model. In Preliminary
proceedings of the 15th Conference on Natural Lan-
guage Processing (KONVENS 2019). Erlangen, Ger-
many: German Society for Computational Linguistics &
Language Technology, pages 403–408.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M.,
Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey,
K., Klingner, J., Shah, A., Johnson, M., Liu, X., ukasz
Kaiser, Gouws, S., Kato, Y., Kudo, T., Kazawa, H.,
Stevens, K., Kurian, G., Patil, N., Wang, W., Young, C.,
Smith, J., Riesa, J., Rudnick, A., Vinyals, O., Corrado,
G., Hughes, M., and Dean, J. (2016). Google’s neural
machine translation system: Bridging the gap between
human and machine translation.

Zampieri, M., Malmasi, S., Nakov, P., Rosenthal, S., Farra,
N., and Kumar, R. (2019). SemEval-2019 task 6: Iden-
tifying and categorizing offensive language in social me-
dia (OffensEval). In Proceedings of the 13th Interna-
tional Workshop on Semantic Evaluation, pages 75–86,
Minneapolis, Minnesota, USA, June. Association for
Computational Linguistics.

70

Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, pages 71–75
with a Shared Task on Offensive Language Detection.

Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020
c© European Language Resources Association (ELRA), licensed under CC-BY-NC

OCAST4 Shared Tasks: Ensembled Stacked Classification for Offensive and
Hate Speech in Arabic Tweets

Hafiz Hassaan Saeed1, Toon Calders2, Faisal Kamiran1

1 Information Technology University, Pakistan, {hassaan.saeed,faisal.kamiran}@itu.edu.pk
2University of Antwerp, Belgium, toon.calders@uantwerpen.be

Abstract
In this paper, we describe our submission for the OCAST4 2020 shared tasks on offensive language and hate speech detection in the
Arabic language. Our solution builds upon combining a number of deep learning models using pre-trained word vectors. To improve the
word representation and increase word coverage, we compare a number of existing pre-trained word embeddings and finally concatenate
the two empirically best among them. To avoid under- as well as over-fitting, we train each deep model multiple times, and we include
the optimization of the decision threshold into the training process. The predictions of the resulting models are then combined into a
tuned ensemble by stacking a classifier on top of the predictions by these base models. We name our approach “ESOTP” (Ensembled
Stacking classifier over Optimized Thresholded Predictions of multiple deep models). The resulting ESOTP-based system ranked 6th
out of 35 on the shared task of Offensive Language detection (sub-task A) and 5th out of 30 on Hate Speech Detection (sub-task B).

Keywords: ESOTP, Arabic Hate Speech, Arabic Offensive Language, Stacked Deep Predictions

1. Introduction
Social media platforms have become a widely-used mode
of communication among individuals or groups from di-
verse backgrounds. With the increasing freedom of expres-
sion in user-generated content on these platforms, the men-
ace of offensive and hate speech is also on the rise (San-
tosh and Aravind, 2019), causing adverse effects on users
and society at large (Lee and Kim, 2015). Because of this
menace, the identification of offensive or hateful statements
towards individuals or groups has become a priority nowa-
days and many social media companies have already in-
vested millions for building automated systems to detect
offensive language and hate speech (Gambäck and Sikdar,
2017).
In this paper, we address the task of offensive language and
hate speech detection in the Arabic language by presenting
our contributions to two shared tasks (A and B) in OCAST4
2020. The objective in shared subtask A is to identify of-
fensive language whereas the objective in shared subtask B
is to identify hate speech in the given tweets. We devel-
oped a common methodology for both tasks, and executed
the classification pipeline twice, once for each of both sub-
tasks.
As a first attempt, we applied classical text classification
techniques including Naı̈ve Bayes, Logistic Regression,
Support Vector Machines, and Random Forests based on
the traditional encoding of the tweets as TF.IDF vectors.
Subsequently, more advanced deep learning techniques us-
ing pre-trained word embeddings were applied and com-
pared to the classical techniques. Both approaches were
compared empirically, showing superior performance for
the deep models.
The superiority of the deep models motivated further ex-
ploration in the direction of deep learning. We compared a
number of pre-trained word-level embeddings available for
Arabic language processing, and in the end, concatenated
the two empirically best performing pre-trained word-level
embeddings.
Using this combined embedding, several network architec-

tures and ways of pre-processing were tried out, and the
resulting models were combined in a tuned ensemble as
follows. The different deep networks were trained and opti-
mized several times, saving their predictions for both tasks.
Finally, a classifier was stacked on top of these predictions
to combine them in one ensemble. The resulting classifier
was further fine-tuned, therefore, we name our approach
“ESOTP” which stands for Ensembled Stacking classifier
over Optimized Thresholded Predictions of multiple deep
models.

2. Related Work
Hate speech detection has been studied extensively in re-
cent years, especially for highly-resourced languages like
English. (Yin et al., 2009) were among the first ones
to apply supervised machine learning approaches in hate
speech detection. They applied Support Vector Machines
to detect harassment in posts from famous social platforms
like MySpace. Similarly, (Warner and Hirschberg, 2012)
trained a Support Vector Machine classifier on word n-
grams and used it to detect hate speech. In recent years,
(Waseem and Hovy, 2016) showed that character n-grams
are better than word n-grams as predictive features for hate
speech detection. Their best performing model was a Gra-
dient Boosted Decision Trees classifier trained on word em-
beddings learned using LSTMs.
There exists, however, very little literature on the prob-
lem of Hate Speech detection in Arabic. Some of the few
works are discussed next. (Magdy et al., 2015) collected a
large number of Arabic tweets and trained a Support Vec-
tor Machine classifier to predict if a user supports or op-
poses ISIS. (Mubarak et al., 2017) proposed a methodol-
ogy for the detection of profane tweets by using an auto-
matically created and expanded list of obscene and offen-
sive words. (Haidar et al., 2017) proposed a multilingual
system that detects cyberbullying attacks in both English
and Arabic texts. They scrapped the data from Facebook
and Twitter. The data collected from Facebook was kept
for validating the system. Their proposed system was a

71

multilingual cyberbullying detection system and two ma-
chine learning models Naive Bayes and Support Vector
Machine were used in it. In another related work, (Al-
badi et al., 2018) prepared the first publicly available Ara-
bic dataset that was especially annotated for religious hate
speech detection. They also developed multiple classifiers
using lexicon-based, n-gram-based, and deep learning ap-
proaches. They found a simple Recurrent Neural Network
(RNN) architecture with Gated Recurrent Units (GRU) and
pre-trained word embeddings to be the best performing
model for the detection of religious hate speech in Arabic.
(Mohaouchane et al., 2019) compared multiple deep mod-
els including CNN, BLSTM with Attention, BLSTM and
Combined CNN-LSTM for detecting offensive language in
Arabic. They showed that CNN-LSTM achieved best re-
call scores whereas CNN achieved highest f1 scores in 5-
fold cross validation. Recently, (Chowdhury et al., 2019)
proposed ARHNET to detect religious hate speech in Ara-
bic by using word embeddings and social network graphs
with deep learning models and improved the classification
scores than (Albadi et al., 2018). The overview of OSACT4
Arabic Offensive Language Detection Shared Task is dis-
cussed by (Mubarak et al., 2020).

3. Methodology
Starting from pre-processing, we now discuss the over-
all methodology (classification pipeline) followed for both
subtasks in OCAST4 2020.

3.1. Pre-processing
One pre-processing step was already done over the origi-
nal tweets by the competition’s organizers, i.e., mentions
of a specific user were replaced with @USER, URLs were
replaced with URL, and empty lines with <LF>. We
removed all these replaced tokens along with emoticons,
emojis, punctuation marks (both Arabic and English), En-
glish characters, digits (both Arabic and English) and Ara-
bic diacritics. We then normalized a few Arabic characters
like Hamza, Ya, Ha, and Qaf, and finally removed a re-
peating character in the string if it is repeated more than 3
times consecutively. An additional pre-processing step is
taken for out-of-word-embeddings-vocabulary (OOWEV)
words with the models that use pre-trained word embed-
dings, which is to split an OOWEV word into 2 tokens
(i.e., the first character and the rest of the word) if the first
character is Wa, Fa, or Sa. The intuition behind this addi-
tional step is that Wa, Fa, or Sa appearing at the beginning
of an Arabic word function like a grammatical particle as
Wa gives added meaning of (“and” or “vow” or “oath”), Fa
gives added meaning of (result to a previous statement) and
Sa gives added meaning of (in very near future). This way
a few more words are covered from the pre-trained word
embeddings.

3.2. Pre-trained Word Vectors
A number of pre-trained word vectors are available for Ara-
bic language processing like FastText (Grave et al., 2018),
Word2Vec1 (Continuous Skip gram trained over Arabic

1http://vectors.nlpl.eu/repository/20/31.
zip

CoNLL17 corpus), AraVec (Soliman et al., 2017), N-Gram
and Uni-Gram models, and recent BERT2 multilingual vec-
tors. We empirically evaluated these available word em-
beddings based on the given evaluation metric and concate-
nated the two best among them which were FastText (300
dimensional vectors) and Word2Vec (100 dimensional vec-
tors) resulting in a 400 dimensional vector representation
for words in the corpus.
The resulting concatenation of word embeddings yields 4
types of words: type 1) words which exist in both embed-
dings; type 2) words which exist in the first embedding but
do not exist in the second; type 3) words which exist in
the second embedding but do not exist in the first; type 4)
words which neither exist in the first nor in the second em-
bedding.

E1

E1

N (µ1, σ1)

N (µ1, σ1)

E2

N (µ2, σ2)

E2

N (µ2, σ2)

Wtype_1

Wtype_2

Wtype_3

Wtype_4

FastText300 D W2V100 D

Figure 1: Assigning vectors to the respective types of words
yielded from the concatenation of FastText and Word2Vec
word embeddings.

The strategy adopted for assigning vectors to all four types
of words is shown in Figure 1 and is explained as:
Let E1 be vector components from the FastText embedding,
E2 be vector components from the Word2Vec embedding,
μ1 be the mean of all vectors in FastText, μ2 be the mean
of vectors in Word2Vec, σ1 be the standard deviation of the
vectors in FastText, σ2 be the standard deviation of the vec-
tors in Word2Vec, then the vectors assigned to the types of
words are: type 1) get E1 and E2; type 2) get E1 and initial-
ize last 100 components with Gaussian distribution using
μ2 & σ2; type 3) get E2 and initialize first 300 components
with Gaussian distribution using μ1 & σ1; type 4) initial-
ize first 300 components with Gaussian distribution using
μ1, σ1 and last 100 components with Gaussian distribution
using μ2, σ2.

3.3. Models Used
We used four different types of neural architectures for
both tasks of offensive language and hate speech detec-
tion, namely: 1) Convolutional Neural Networks (CNN);
2) Nets based on Bidirectional Long Short-Term Memory
(BLSTM); 3) Nets based on Bidirectional Gated Recurrent
Units (BGRU); and 4) Nets based on Bidirectional LSTMs
with CNN (BLSTM+CNN). We briefly explain these archi-
tectures.

2https://github.com/google-research/bert/
blob/master/multilingual.md

72

Ensembled Stacking

CNN

BLSTM

BGRU

BLSTM+CNN

Predictions

NB

LR

SVM

KNN

Final
Prediction

RFDataset

Figure 2: Classification pipeline followed to detect offensive language and hate speech in Arabic language

3.3.1. CNN
This architecture is based on the one presented by (Kim,
2014). The input layer in this architecture is an embed-
ding layer, attached to a 1D spatial dropout layer that is
then reshaped to a 2D matrix of M × V , where M is max-
imum length of tweets in the corpus and V is the size of
embedding vectors. After reshaping the input, 5 convo-
lutional layers are attached in parallel having 128 kernels
in each layer with kernel dimensions ranging from 1 × V ,
to 5 × V . All these parallel layers are then attached to a
global max-pooling layer and concatenated to make a single
feature vector, connected then to a dropout layer, followed
by fully connected layers of 100, 50 and 1 units respec-
tively. The activation function in the last layer is a sigmoid
whereas for the rest of the network we use the exponential
linear unit (ELU) function.

3.3.2. BLSTM
This architecture is taken from (Saeed et al., 2018). The
input to this architecture is an embedding layer followed by
a 1D spatial dropout layer, which is then attached to two
parallel blocks of Bidirectional Long-Short Term Memory
(BLSTM) where the first block has 128 units and the second
block 64 units. Global max-pooling and global average-
pooling layers are attached to both parallel blocks and are
concatenated to make one feature vector, which is then at-
tached to fully connected layers of 100, 50, and 1 units
respectively. The activation function in the last layer is a
sigmoid whereas the BLSTM layers use the tanh activation
function and for the rest of the network we use the expo-
nential linear unit (ELU) function.

3.3.3. BGRU
This architecture is also taken from (Saeed et al., 2018) and
is similar to the BLSTM architecture. The only difference
between this architecture and BLSTM is that we use GRU
instead of LSTM. The rest of the architecture is same as
that of BLSTM.

3.3.4. BLSTM+CNN
This architecture has an input embedding layer connected
to a 1D spatial dropout layer. The output from the 1D spa-
tial dropout layer is given as input to a bidirectional LSTM
layer with 128 units and then a 1D convolutional layer is at-
tached with 64 kernels of size 4, connected on its turn with
a global max-pooling layer, followed by a dropout layer,

and again 3 fully connected layers having 100, 50 and 1
units respectively.

3.4. Ensembled Stacking Classifier
The overall classification pipeline is shown in Figure 2.
We train all four models: CNN, BLSTM, BGRU, and
BLSTM+CNN, for 250, 200, 70 and 30 times respectively.
The decision threshold is optimized for F1 as part of the
training phase. We hence get 550 predictions for each sam-
ple in the validation set. Using these 550 predictions as
a new training set, we built a stacking classifier that is an
ensemble of a Naı̈ve Bayes classifier, a Logistic Regres-
sion model, a Support Vector Machine, a Nearest Neigh-
bours classifier and a Random Forest. We fine-tune this
new Ensembled Stacking Classifier as well. We named our
approach “ESOTP”, which stands for Ensembled Stacking
classifier over Optimized Thresholded Predictions of multi-
ple deep models.

4. Experimentation & Results
We used Keras deep learning framework with Tensorflow
backend to build our deep classification pipeline. The eval-
uation metric used to test the classification system is macro
averaged f1 score. We report cross-validation scores as our
results in this paper, as there was a limit of 10 submissions
at maximum per team during the OCAST4 testing phase.

4.1. Hyper-parameter Tuning
We tune hyper-parameters of the deep models used in this
study by mixing grid search with manual tuning. The
hyper-parameters include batch size, optimizers, learning
rate, the number of kernels in CNN, the number of units
in recurrent layers, and the dropout rates. The hyper-
parameters in ensembled stacking classifier include penalty,
solver and regularization parameter for Logistic Regres-
sion; penalty, kernel function, regularization parameter and
gamma for Support Vector Machine; values of K in Nearest
Neighbours; and number of estimators, splitting criterion
and max. depth of trees in Random Forest.

4.2. Pre-trained Word Vectors
We compared pre-trained word embeddings with CNN ar-
chitecture over 20 runs only due to time limitations. The
average of 20 runs for both subtasks is shown in Table
1, which shows that Word2Vec and FastText achieved the

73

Word Embeddings OFF HS
Bert Multilingual 83.10 ± 0.75 73.45 ± 1.09
AraVec-300-SG 77.94 ± 0.28 72.64 ± 1.57
AraVec-300-CBOW 77.62 ± 0.70 72.77 ± 1.39
AraVec-100-SG 77.51 ± 0.39 72.95 ± 1.52
AraVec-100-CBOW 77.97 ± 0.53 72.56 ± 1.33
Word2Vec 87.03 ± 0.33 75.98 ± 1.21
FastText 87.13 ± 0.23 76.68 ± 1.04

Table 1: Comparison of pre-trained word embeddings av-
eraged over 20 runs for macro f1 score.

highest f1 scores on our cross-validation when used as pre-
trained word vectors, and therefore we selected both these
embeddings to concatenate them for the representation of
words from both embeddings.

4.3. Main Results
The main results are shown in Table 2. Naı̈ve Bayes (NB),
Logistic Regression (LR), Random Forest (RF) and Sup-
port Vector Machines (SVM) give lower F1 scores as com-
pared to deep models in our cross-validation. Besides the
deep models described in section 3.3., we trained two addi-
tional deep models: 1) BLSTM with Attention; 2) BLSTM
with some statistical features like number of punctuation
marks, number of characters, number of words, number of
rare words, number of out-of-vocabulary words, etc. The
cross-validation scores showed deterioration instead of im-
provement, therefore, we ignored them from being into our
ensembled stacking classification.
The scores in Table 2 shown for CNN are averaged over
250 runs, for BLSTM over 200 runs, for BGRU over 70
runs and for BLSTM+CNN over 30 runs. The scores of
“ESTOP” are marked with asterisk (*) sign because we split
the validation set further (into train and validation) to fine-
tune the ensembled stacking classifier.

Models OFF HS
NB+TF.IDF 64.73 48.87
LR+TF.IDF 84.55 ± 0.22 71.12 ± 0.38
RF+TF.IDF 80.92 ± 0.46 72.41 ± 1.25
SVM+TF.IDF 84.86 ± 0.29 72.88 ± 0.11
CNN 88.67 ± 0.47 75.68 ± 1.04
BLSTM 89.02 ± 0.43 76.83 ± 1.40
BGRU 88.75 ± 0.38 76.63 ± 1.36
BLSTM+CNN 87.84 ± 0.42 75.82 ± 1.42
ESTOP 95.51* 77.79*

Table 2: Macro averaged F1 cross-validation scores for
both subtasks

We submitted predictions from CNN, BLSTM, BGRU,
BLSTM+CNN and ESTOP for the actual test set one-
by-one. The test scores indicated that CNN, BLSTM
and BGRU were over-fitting whereas BLSTM+CNN was
under-fitting. Overall, ESTOP approximated better gen-
eralized predictions for the actual test set as it achieved

87.37% f1 for subtask A (ranked 6/35) and 79.85% for sub-
task B (ranked 5/30).

5. Conclusion
We present our submission to the shared tasks of offensive
language and hate speech detection in OCAST4 2020. To
develop a good classification pipeline for both tasks, we se-
lect the empirically best word representations using avail-
able pre-trained word embeddings with some language-
specific pre-processing, and afterwards compare a number
of deep learning approaches. Our final submission is based
on fine-tuning a stacking classifier where we use an ensem-
ble of multiple models as the stacking classifier, built over
different deep models trained for several times. Our clas-
sification pipeline (ESTOP) results in better generalization
as compared to individual deep models.

6. Acknowledgements
We thank Louis Bruyns Foundation, Belgium, for their sup-
port in this research study.

7. Bibliographical References
Albadi, N., Kurdi, M., and Mishra, S. (2018). Are they our

brothers? analysis and detection of religious hate speech
in the arabic twittersphere. In 2018 IEEE/ACM Interna-
tional Conference on Advances in Social Networks Anal-
ysis and Mining (ASONAM), pages 69–76. IEEE.

Chowdhury, A. G., Didolkar, A., Sawhney, R., and Shah,
R. R. (2019). Arhnet - leveraging community interaction
for detection of religious hate speech in arabic. In Fer-
nando Alva-Manchego, et al., editors, Proceedings of the
57th Conference of the Association for Computational
Linguistics, ACL 2019, Florence, Italy, July 28 - August
2, 2019, Volume 2: Student Research Workshop, pages
273–280. Association for Computational Linguistics.

Gambäck, B. and Sikdar, U. K. (2017). Using convolu-
tional neural networks to classify hate-speech. In Pro-
ceedings of the First Workshop on Abusive Language On-
line, ALW@ACL 2017, Vancouver, BC, Canada, August
4, 2017, pages 85–90.

Grave, E., Bojanowski, P., Gupta, P., Joulin, A., and
Mikolov, T. (2018). Learning word vectors for 157 lan-
guages. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation,
LREC 2018, Miyazaki, Japan, May 7-12, 2018.

Haidar, B., Chamoun, M., and Serhrouchni, A. (2017).
Multilingual cyberbullying detection system: Detecting
cyberbullying in arabic content. In 2017 1st Cyber Se-
curity in Networking Conference (CSNet), pages 1–8.
IEEE.

Kim, Y. (2014). Convolutional neural networks for sen-
tence classification. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2014, October 25-29, 2014, Doha,
Qatar, A meeting of SIGDAT, a Special Interest Group
of the ACL, pages 1746–1751.

Lee, S. and Kim, H. (2015). Why people post benevo-
lent and malicious comments online. Commun. ACM,
58(11):74–79.

74

Magdy, W., Darwish, K., and Weber, I. (2015). # faile-
drevolutions: Using twitter to study the antecedents of
isis support. arXiv preprint arXiv:1503.02401.

Mohaouchane, H., Mourhir, A., and Nikolov, N. S. (2019).
Detecting offensive language on arabic social media us-
ing deep learning. In Mohammad A. Alsmirat et al.,
editors, Sixth International Conference on Social Net-
works Analysis, Management and Security, SNAMS
2019, Granada, Spain, October 22-25, 2019, pages 466–
471. IEEE.

Mubarak, H., Darwish, K., and Magdy, W. (2017). Abu-
sive language detection on arabic social media. In Pro-
ceedings of the First Workshop on Abusive Language On-
line, pages 52–56.

Mubarak, H., Darwish, K., Magdy, W., Elsayed, T., and
Al-Khalifa, H. (2020). Overview of osact4 arabic offen-
sive language detection shared task. In Proceedings of
the 4th Workshop on Open-Source Arabic Corpora and
Processing Tools (OSACT), volume 4.

Saeed, H. H., Shahzad, K., and Kamiran, F. (2018). Over-
lapping toxic sentiment classification using deep neural
architectures. In 2018 IEEE International Conference on
Data Mining Workshops, ICDM Workshops, Singapore,
Singapore, November 17-20, 2018, pages 1361–1366.
IEEE.

Santosh, T. Y. S. S. and Aravind, K. V. S. (2019). Hate
speech detection in hindi-english code-mixed social me-
dia text. In Proceedings of the ACM India Joint Inter-
national Conference on Data Science and Management
of Data, COMAD/CODS 2019, Kolkata, India, January
3-5, 2019, pages 310–313.

Soliman, A. B., Eissa, K., and El-Beltagy, S. R. (2017).
Aravec: A set of arabic word embedding models for
use in arabic NLP. In Third International Conference
On Arabic Computational Linguistics, ACLING 2017,
November 5-6, 2017, Dubai, United Arab Emirates,
pages 256–265.

Warner, W. and Hirschberg, J. (2012). Detecting hate
speech on the world wide web. In Proceedings of the
Second Workshop on Language in Social Media, pages
19–26, Montréal, Canada, June. Association for Compu-
tational Linguistics.

Waseem, Z. and Hovy, D. (2016). Hateful symbols or hate-
ful people? predictive features for hate speech detec-
tion on twitter. In Proceedings of the NAACL student
research workshop, pages 88–93.

Yin, D., Xue, Z., Hong, L., Davison, B. D., Kontostathis,
A., and Edwards, L. (2009). Detection of harassment
on web 2.0. Proceedings of the Content Analysis in the
WEB, 2:1–7.

75

Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, pages 76–81
with a Shared Task on Offensive Language Detection.

Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020
c© European Language Resources Association (ELRA), licensed under CC-BY-NC

Arabic Offensive Language Detection with Attention-based Deep Neural

Networks

Bushr Haddad*, Zoher Orabe*, Anas Al-Abood*, Nada Ghneim**

*Damascus University

Damascus, Syria

**AlSham Private University

Damascus, Syria

{bushr.haddad, zoherorabe999, anasabood3}@gmail.com

n.ghneim@aspu.edu.com

Abstract
The abusive content on Arabic social media such as hate speech, sexism, racism has become pervasive, and it has a lot of negative

psychological effects on users. In this paper, we introduce our work aiming to detect Arabic offensive language and hate speech. We

present our two deep neural networks Convolutional Neural Network (CNN) and Bidirectional Gated Recurrent Unit (Bi-GRU) used to

tackle this problem. These models have been further augmented with attention layers. In addition, we have tested various pre-processing

and oversampling techniques to increase the performance of our models. Several machine learning algorithms with different features

have been also tested. Our bidirectional GRU model augmented with attention layer has achieved the highest results among our proposed

models on a labeled dataset of Arabic tweets, where we achieved 0.859 F1 score for the task of offensive language detection, and 0.75

F1 score for the task of hate speech detection.

Keywords: Abusive Language, Text Mining, Arabic Language, Social Media Mining, Deep Learning, Convolutional Neural Network,

Gated Recurrent Unit, Attention Mechanism, Machine Learning.

1. Introduction

The internet and social media provide people with a range

of benefits and opportunities to empower themselves in a

variety of ways. There are millions of people using social

media platforms to maintain social connections and support

networks that otherwise would not be possible. All of these

benefits led to a huge growth of social media interactions

in the last few years. Arabic language has a very high rate

of growth in social networking usage. Based on the Arab

social media report (Salem, 2017), the average rate of using

Arabic language in social media reaches 55% in 2017.

With the massive increase of the social connections, there

has also been an increase of abusive language that should

be detected and eliminated from these networks, due to its

negative impacts on users. This paper has been prepared for

the competition of OSACT4 shared task on offensive

language detection (Mubarak et al., 2020). The competition

was divided into two sub-tasks; sub-task A (offensive

language detection) and sub-task B (hate speech detection).

Offensive language is defined as any implicit or explicit

insult or attack against other people, or any inappropriate

language, while hate speech1 is defined as any abusive

speech targeting individuals (a politician, a celebrity, etc.)

or particular groups (a gender, a religion, a country, etc.).

Hate speech is known to be complex and ambiguous

because it was not just a words identification. (Zhang and

Luo, 2019) showed that detecting a hateful content is a

challenging task compared to non-hateful content due to

their lack of unique, discriminative linguistic features. On

the other hand, Arabic language is known to be difficult and

ambiguous, the Arabic content on social media is noisy

1 https://www.dictionary.com/browse/hate-speech

with different dialects, and most Arabic users do not care

about using correct grammar, or spelling. All of these

factors made these tasks nearly impossible in the past to

detect and identify using conventional features widely

adopted in many language-based tasks.

Based on (Al-Hassan and Al-Dossari, 2019), offensive

language detection task depends mainly on text mining

approaches such as NLP and machine learning algorithms.

In the rest of this paper, a brief of related works are

summarized in section 2. In section 3, we represent our data

preparation process, then our proposed models are

presented in section 4. In section 5, a brief discussion on

the results is addressed. At the end, a short summary and

insights for the future are presented.

2. Related Works

Different researches have addressed both offensive

language detection, and hate detection subjects. (Cambray

and Podsadowski, 2019) evaluated their model on

OffensEval 2019 English dataset and presented their best

model as a bidirectional LSTM; followed by a two-branch

bidirectional LSTM and GRU architecture (macro F1 of

73% for offensive language detection task and 61% for

targeted hate speech detection).

(Mubarak, Darwish, and Magdy, 2017) have created a list

of 288 of Arabic obscene words and other list of 127 of

hashtags. They used this list in addition to patterns to

collect Arabic abusive tweets from Twitter API during

2014. They classified tweet users into two groups, namely:

those who authored tweets that did not include a single

obscene word from list words (clean group) and those who

used at least one of the words in list at least once (obscene

76

group). They computed unigram and bigram counts in both

of them and computed the Log Odds Ratio (LOR) for each

word unigram and bigram that appeared at least 10 times.

(Alakrot, Murray, and Nikolov, 2018) have collected a

dataset of 15,050 comments from YouTube and labelled

them manually by three annotators. This dataset was

collected in July 2017. They applied some preprocessing

operations on the dataset, and then applied SVM classifier

on tf-idf features with different methods for text

normalizing (macro F1 of 82%). (Mohaouchane, Mourhir,

and Nikolov, 2019) have used the same YouTube dataset.

They used Word2Vec embeddings and trained different

neural networks models namely: convolutional neural

network (CNN), bidirectional long short-term memory (Bi-

LSTM), Bi-LSTM with attention mechanism, and

combined CNN and LSTM. The CNN model achieved the

highest accuracy (87.84%), precision (86.10%), and F1

score (84.05%) among other models.

Several works have investigated the problem of hate speech

detection in English language. (Zhang and Luo, 2019)

Firstly: they demonstrated that hateful content exhibits a

‘long tail’ pattern compared to non-hate, and secondly: they

proposed two deep neural networks, CNN and GRU, to

identify specific types of hate speech. They outperformed

the previous state of the art methods by 5 percentage points

in macro-average F1. (Gambäck and Sikdar, 2017)

evaluated CNN model on various word embeddings, and

achieved their best score (F1 score of 78%) with CNN

model trained on Word2Vec word embeddings. (Badjatya

et al, 2017) evaluated several neural architectures on a

16 K annotated tweets benchmark dataset. Their best setup

involved a two-step approach using a short-term word-level

memory (LSTM) model, tuning GLoVe or randomly

initializing word embedding, and then training a gradient

boosted decision tree (GBDT) classifier on the average of

the tuned embedding in each tweet. They achieved the best

results using randomly initialized embeddings (macro F1

of 93%).

In Arabic language there was a limited number of works in

this area. (Mulki et al., 2019) constructed a Levantine hate

speech and abusive dataset from Twitter. (Haddad, Mulki,

and Oueslati, 2019) constructed a Tunisian hate and

abusive speech dataset. (Albadi, Kurdi, and Mishra, 2018)

built a lexicon of Arabic terms related to religion abuse

along with hate score, the labeled dataset is then used to

train several classification models using lexicon-based, n-

grams-based, and deep-learning based approaches. Their

best model achieved 0.84 area under receiver operating

characteristic curve (AUROC).

3. Data Preparation

The main dataset used in this work, is the one that was

firstly presented at OffensEval 2020. This dataset contains

10000 tweets, only 5% of tweets are labeled as hate speech

while 19 % of the tweets are labeled as offensive and the

other 81% as inoffensive tweets. The data has been given

by the following format: a tweet followed by a label

indicating its class {OFF/HS, NOT_OFF/NOT_HS}, all

hate speech tweets considered to be offensive language, but

not vice versa. The dataset was divided into 70% train data,

10% validation data, and the rest 20% test data.

3.1 Data Preprocessing

This dataset run through a series of pre-processing steps in

order to get the most normalized language form. Twitter

data is known for its unstructured and unformed language.

So, making a good preprocessing steps will results in a

much better text representation. As a first step, we removed

non-Arabic words, diacritization, punctuations, emoticons

and some other stopwords, while we replaced some words

with their simplified Arabic equivalent, (example: “URL”

will be substituted with “يورل”). We intend to study the

effect of the emoticons in a future work. Normalization step

was also applied (example, replacing “ة” with “ى“ ,”ه” with

 In addition, elongated and some .(”ا“ with ”[أاإ]“ ,”ي“

consecutive repetitive characters that people usually write

on their dialect speech are converted back to their original

form (example: “هههههه” was be converted to “هه”, and

 This step is very important as some .(”غول“ to ”غووول“

Arabic speakers tend to repeat and elongate some

characters on their dialect speech.

3.2 Data Balancing

After preprocessing, and as the provided dataset is

imbalanced, we applied different methods to balance out

the classes for better model performance. Researches

shows that classifiers trained on imbalanced dataset may

tend to have a high number of false negatives (offensive

tweets which are misclassified as inoffensive tweets) and

thus a lower recall (Mohaouchane, Mourhir, and Nikolov,

2019). Such detection systems are preferable to identify

offensive language even if it sometimes mistakes

inoffensive language as offensive. Because the number of

inoffensive language exceeds the number of offensive

language, so it is preferable to have a higher recall

comparing to a higher precession. A lot of ways have been

used previously trying to balance out the data like loss

function weighting (Cui et al., 2019), down sampling and

oversampling. For our case and for subtask A we used an

external augmenting technique by adding some offensive

and inoffensive comments from an already constructed

Arabic dataset collected from YouTube comments

(Alakrot, Murray, and Nikolov, 2018) (as YouTube have a

similar type of language to Twitter). Thus, augmenting our

data from this YouTube comments data guarantee the

compatibility of the language added with our given data.

We have achieved a balanced dataset that contains

approximately the same number of offensive and

inoffensive samples.

For subtask B, we did not use the same technique used for

sub-task A. Different reasons were behind this decision:

insufficient hate speech examples in these datasets (only

468 tweets) (Mulki et al., 2019), some datasets are specific

for one kind of hate speech, like religious hate speech

(Albadi, Kurdi, and Mishra, 2018), and some datasets are

specific for one or more Arabic dialectical form (example:

Tunisian (Haddad, Mulki, and Oueslati, 2019) or Levantine

(Mulki et al., 2019)). However, for future works, we intend

to test augmenting our given data with the combination of

all the existing hate speech datasets. Instead, we used the

random oversampling technique by shuffling the words

into hate speech tweets to create new samples. This method

repeated many times over the undersampling class (hate

77

speech) until each class in the dataset is represented

apporoximately equally. Table 1 presents the number of

tweets in each category before and after balancing.

 Before After

Offensive 1330 7184

Inoffensive 5670 8705

Subtask A total 7000 15889

Hate Speech 361 7486

Not Hate Speech 6639 6639

Subtask B total 7000 14125

Table 1: Number of samples before and after balancing

3.3 Data Representation

The main idea of data representation is to represent words

as feature vectors. Each entry in a word vector stands for

one hidden feature inside the word meaning. Word

embedding is one of the best data representation neural

network depends on. Word embedding can reveal semantic

or syntactic dependencies. We used the publically available

Word2Vec Arabic model (AraVec) (Mohammad et al.,

2017) that supports two types of words embeddings

skipGram and CBOW, each of which has been trained on

one of three datasets: tweets, Wikipedia articles, or web

pages. AraVec also provides multiple dimensions for its

word vectors. The choice of words embeddings used in this

work is the vectors that was trained on the twitter dataset

with the skipGram architecture. The choice of twitter

model is to be compatible with the language used in the

given dataset and also to ensure a huge cover of the

dialectical words found on the tweets. We have further

checked the overlap between our balanced dataset and the

AraVec Twitter model. Table 2 shows the number of

tokens that has been found on the final balanced datasets,

number of dataset tokens found on the AraVec Twitter

model and the percentage of overlapping between them.

N. of tokens
Balanced

 Dataset

AraVec

Twitter
Overlapping

Sub-task A 40562 33777 83%

Sub-task B 24504 21592 88%

Table 2: Number of tokens found on the balanced

datasets, dataset tokens found on the AraVec Twitter

model, and the percentage of overlapping.

4. Proposed Approaches

Before introducing our attention based models. We will

introduce two deep neural models; convolutional neural

network and Gated Recurrent unit, and then augment these

models with an attention layer, and finally compare the

attention models with the original versions.

4.1 Convolutional Neural Network (CNN)

Although the main purpose of creating CNN was to

convolve over image data, CNN have recently been used a

lot in document classification, and experiment on textual

data has shown improvements in multiple tasks (Kim,

2014). In this work, we use relatively the same model

presented in (Kim, 2014), (Mohaouchane, Mourhir, and

Nikolov, 2019), and (Gong et al., 2016), with some

parameters’ changes (number of filters and filter sizes). The

first layer of this model is an embedding layer (represents

a lookup table for words already in the table, and others are

initialized with random weights, and tuned jointly while

learning). The second layer contains a number of filters

with different filter sizes to capture different contextual

features. Then, a Max-pooling layer was used to capture the

most important features. After that, all feature vectors is

concatenated together in order to be passed for a fully

connected layer of one neuron. The output layer is

responsible of classifying the tweet into a positive class

(offensive/ hate speech) or a negative class (inoffensive/

not hate speech). We refer to this model as CNN. This

model is shown at figure 1.

Figure 1: CNN Model

4.2 Bidirectional Gated Recurrent Unit (Bi-

GRU)

Bidirectional GRUs are a type of bidirectional recurrent

neural networks with only the input and forget gates. It

allows for the use of information from both previous time

steps and later time steps to make predictions about the

current state. We stack two layers of bidirectional GRU on

top of each other, followed by a fully connected layer of

one neuron to predict the output. We refer to this model as

Bi-GRU, figure 2 shows the model.

Figure 2: Bi-GRU Model

4.3 Convolution Neural Network with

Attention (CNN_ATT)
Certainly, some words on the sentence plays more

important role than others and some words are more

important than others to the class of the tweet. (Bahdanau,

Cho, and Bengio, 2014) was the first to present this type of

attention in seq2seq model to improve machine translation

model. After that, attention-based neural networks have

78

been used in various tasks and achieved promising

performance, such as (Gong et al., 2016) retweet

prediction, (Xu et al., 2015) image captioning, (He and

Golub, 2016) question answering, and so on.

In this section, we present a CNN neural network model

augmented with an attention layer. Using an attention layer

after the max pooling layer can learn which max pooled

feature vectors are most important and thus learn which n-

grams are most important for classification. So, after max

pooling the feature vectors, they are stacked above each

other and fed into an attention layer to learn the most

important feature vectors. We refer to this model as

CNN_ATT, Figure 3 shows the model.

Figure 3: CNN_ATT Model

4.4 Bidirectional Gated Recurrent Unit with

Attention (Bi-GRU_ATT)

Although Bidirectional Recurrent model has achieved a

very good results in many tasks, they still treat all steps as

equal. In this model, we stack the vectors of all computed

steps, and then we calculate the score function of each step

and then implement a folding layer to generate a context

vector indicating the importance of each step vector. This

is followed by one dense layer of 64 neurons with Relu

activation function (to increase the nonlinear property of

this model). After that, we add a fully connected layer with

one neuron of a sigmoid activation function as the output

layer. This model is referred as Bi-GRU_ATT and shown

in figure 4.

Figure 4: Bi-GRU_ATT Model

4.5 Basic machine Learning Models

We compared our proposed model with three basic

machine learning classifiers (Ridge, SVM, and Logistic

Regression). The Ridge classifier used RMSE and l2

penalty on both bag of word features (Bow_Ridge) or Tf-

idf features (Tf-idf_Ridge). The SVM classifier was trained

on bag of word (Bow_SVM) or tf-idf features (Tf-

idf_SVM). In this method, we conducted a grid search to

obtain the best parameters of SVM kernel. The Logistic

Regression classifier was trained on bag of word features

(Bow_LR) or tf-idf features (Tf-idf_LR).

5. Experimental Results

For Subtask A and B, we used the Adam optimizer, to adapt

the learning rate and optimize the training of the neural

networks. For both subtasks, we used the binary cross-

entropy loss function. We also used an early stopping

strategy based on a long-term moving-average of the F1

score evaluated at the end of every epoch.

Number of filters, recurrent units and neurons in dense

layers have been optimized using a grid search. We used

filter sizes of 1, 2, 3, and 4 to capture unigram, bigram,

trigram, and quad-gram features. These filters are not

organized in a sequential order, but rather in parallel to each

other as shown in Fig. 1 and Fig. 3.

We used an early stopping strategy to determine the

number of epochs that should be used. For other hyper-

parameter optimization, we performed a manual twerking

over successive runs on the validation set.

As a result, we found that the following parameters yielded

the best validation performance based on our experiment.

- Maximum Tweet length= 100

- Filter sizes = [1,2,3,4]

- Number of Filters = 64

- Recurrent unit in Bidirectional GRUs’ = 128, 64

- Neurons number in dense layers = 64

- Dropout rate = 0.2 and 0.3

- Batch size = 512

- Number of epochs = 5

To initialize the word vectors, the publicly available

AraVec word vectors were used (Mohammad et al., 2017)

(skipGram model from Twitter, with 1,476,715 tokens).

The dimension of the vectors used is 100. Table 2 shows a

good overlapping with our data, and for words that are not

found in the vocabulary of pre-trained words, we initialized

them with random vectors and tuned them while training.

Hereafter, we present our validation results. Table 3 and 4

lists the results of using various baseline machine learning

classifiers (Bow_LR, Tf-idf_LR, Bow_Ridge, Bow_SVM,

Tf-idf_Ridge, and Tf-idf_SVM).

Subtask A Avg. Acc Avg. P Avg. R Avg. F1

Bow_LR 0.86 0.77 0.79 0.78

Tf-idf_LR 0.85 0.75 0.79 0.77

Bow_Ridge 0.880 0.8 0.78 0.79

Tf-idf_Ridge 0.905 0.85 0.8 0.83

Bow_SVM 0.872 0.78 0.77 0.78

Tf-idf_SVM 0.906 0.85 0.81 0.83

Table 3: Performance of baseline models on subtask A

Subtask B Avg. Acc Avg. P Avg. R Avg. F1

Bow_LR 0.491 0.49 0.45 0.36

Tf-idf_LR 0.492 0.51 0.55 0.37

Bow_Ridge 0.463 0.5 0.49 0.35

79

Tf-idf_Ridge 0.462 0.51 0.57 0.36

Bow_SVM 0.391 0.49 0.46 0.31

Tf-idf_SVM 0.386 0.5 0.52 0.31

Table 4: Performance of baseline models on subtask B

Comparing the models of Tf-idf and Bow features, we can

see that tf-idf features is relatively better than Bow features,

which may be due to the tf-idf’s ability to determine how

relevant a given word is in a particular document. We can

also observe that Tf-idf_SVM achieved a high performance

on subtask A, this may be because SVM generalized better

with nonlinear kernel that has been found by a grid search

over its parameters.

Table 5 and 6 shows the comparison of the proposed

models (CNN, Bi-GRU, CNN_ATT, and Bi-GRU_ATT)

when evaluated on subtask task A and B respectively.

Subtask A Avg. Acc Avg. P Avg. R Avg. F1

CNN 0.92 0.63 0.84 0.85

CNN_ATT 0.92 0.86 0.85 0.86

Bi-GRU 0.91 0.85 0.86 0.85

Bi-GRU_ATT 0.93 0.91 0.83 0.86

Table 5: Performance of proposed models on subtask A

Subtask B Avg. Acc Avg. P Avg. R Avg. F1

CNN 0.91 0.63 0.78 0.67

CNN_ATT 0.9 0.63 0.84 0.67

Bi-GRU 0.92 0.65 0.78 0.69

Bi-GRU_ATT 0.93 0.66 0.79 0.7

Table 6: Performance of proposed models on subtask B

We can observe that baseline models was less efficient

compared to our proposed models in both subtasks. The

proposed models have increased the F1 measure of the

baseline models on subtask B (from 37% to 70%). We also

can observe that models augmented with attention layer can

achieve a better performance than the models without the

attention layer. The improvement is in the order of 1 to 2%

in Recall and F1 score. However, attention layer has

achieved a significant improvement in Precision, which

means that attention layer helps in detecting the right

offensive and hate speech words and thus raising precision.

Bi-GRU_ATT achieved the highest accuracy, Precision

and F1 score for both subtasks A and B, and outperformed

the CNN models. This may be due to the fact that GRU

models have more information of text sequence

dependencies and order that CNN models does not have.

These features seems to be very important for such tasks as

shown in (Zhang and Luo, 2019).

Table 7 shows the results of our best model (Bi-

GRU_ATT) evaluated on the test data.

Bi-GRU_ATT Avg. Acc Avg. P Avg. R Avg. F1

Subtask A 0.91 0.88 0.83 0.85

Subtask B 0.95 0.75 0.74 0.75

Table 7: Test performance of Bi-GRU_ATT on subtasks

A and B

We observe that Bi-GRU_ATT performance on test data -

for both subtasks is close to performance on the validation

data, which is a good indication of a good generalization of

the model. We can also notice that general performance on

sub-task B is less efficient than performance on sub-task A,

due to the hard separation of hate speech from other

instances of offensive language.

6. Conclusion

In this paper, we tackle the problem of offensive language

and hate speech detection. We proposed our methods for

data preprocessing and balancing, and then we presented

our Convolutional Neural Network (CNN) and

bidirectional Gated Recurrent Unit (GRU) models used.

After that, we augmented these models with attention layer.

The best results achieved was using the Bidirectional Gated

Recurrent Unit augmented with attention layer (Bi-

GRU_ATT). Comparing the Precision results of models

without attention layers and models with attention layer

reveals that attention layer enabled our model to effectively

select the relevant input series to the output class, and thus

raising Precision score. Future work will consider the same

problem working with both character-level and word-level

features. Another improvement of models could be using

LSTM instead of GRU to capture long range dependencies

in tweets, which plays a big role in offensive language and

hate speech detection tasks.

7. Bibliographical References

Alakrot, A., Murray, L., & Nikolov, N. S. (2018). Dataset

construction for the detection of anti-social behaviour in

online communication in Arabic. Procedia Computer

Science, 142, 174-181.

Alakrot, A., Murray, L., & Nikolov, N. S. (2018). Towards

accurate detection of offensive language in online

communication in arabic. Procedia computer science,

142, 315-320.

Albadi, N., Kurdi, M., & Mishra, S. (2018, August). Are

they our brothers? Analysis and detection of religious

hate speech in the Arabic Twittersphere. In 2018

IEEE/ACM International Conference on Advances in

Social Networks Analysis and Mining (ASONAM) (pp.

69-76). IEEE.

Al-Hassan, A., & Al-Dossari, H. (2019). Detection of hate

speech in social networks: a survey on multilingual

corpus. In 6th International Conference on Computer

Science and Information Technology.

Badjatiya, P., Gupta, S., Gupta, M., & Varma, V. (2017,

April). Deep learning for hate speech detection in tweets.

In Proceedings of the 26th International Conference on

World Wide Web Companion (pp. 759-760).

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural

machine translation by jointly learning to align and

translate. arXiv preprint arXiv:1409.0473.

Cambray, A., & Podsadowski, N. (2019). Bidirectional

Recurrent Models for Offensive Tweet Classification.

arXiv preprint arXiv:1903.08808.

Cui, Y., Jia, M., Lin, T. Y., Song, Y., & Belongie, S.

(2019). Class-balanced loss based on effective number of

samples. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (pp. 9268-

9277).

Gambäck, B., & Sikdar, U. K. (2017, August). Using

convolutional neural networks to classify hate-speech. In

80

Proceedings of the first workshop on abusive language

online (pp. 85-90).

Golub, D., & He, X. (2016). Character-level question

answering with attention. arXiv preprint

arXiv:1604.00727.

Haddad, H., Mulki, H., & Oueslati, A. (2019, October). T-

HSAB: A Tunisian Hate Speech and Abusive Dataset. In

International Conference on Arabic Language

Processing (pp. 251-263). Springer, Cham.

Kim, Y. (2014). Convolutional neural networks for

sentence classification. arXiv preprint arXiv:1408.5882.

Mohaouchane, H., Mourhir, A., & Nikolov, N. S. (2019,

October). Detecting Offensive Language on Arabic

Social Media Using Deep Learning. In 2019 Sixth

International Conference on Social Networks Analysis,

Management and Security (SNAMS) (pp. 466-471).

IEEE.

Mubarak, H., Darwish, K., & Magdy, W. (2017, August).

Abusive language detection on Arabic social media. In

Proceedings of the First Workshop on Abusive Language

Online (pp. 52-56).

Mubarak, H., Darwish, K., Magdy, W., Elsayed, T., & Al-

Khalifa, H. (2020). Overview of OSACT4 Arabic

Offensive Language Detection Shared Task. Proceedings

of the 4th Workshop on Open-Source Arabic Corpora

and Processing Tools (OSACT), 4.

Mulki, H., Haddad, H., Ali, C. B., & Alshabani, H. (2019,

August). L-HSAB: A Levantine Twitter Dataset for Hate

Speech and Abusive Language. In Proceedings of the

Third Workshop on Abusive Language Online (pp. 111-

118).

Salem, F. (2017). Social media and the internet of things

towards data-driven policymaking in the Arab world:

potential, limits and concerns. The Arab Social Media

Report, Dubai: MBR School of Government, 7.

Soliman, A. B., Eissa, K., & El-Beltagy, S. R. (2017).

Aravec: A set of arabic word embedding models for use

in arabic nlp. Procedia Computer Science, 117, 256-265.

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A.,

Salakhudinov, R., ... & Bengio, Y. (2015, June). Show,

attend and tell: Neural image caption generation with

visual attention. In International conference on machine

learning (pp. 2048-2057).

Zhang, Q., Gong, Y., Wu, J., Huang, H., & Huang, X.

(2016, October). Retweet prediction with attention-based

deep neural network. In Proceedings of the 25th ACM

international on conference on information and

knowledge management (pp. 75-84).

Zhang, Z., & Luo, L. (2019). Hate speech detection: A

solved problem? The challenging case of long tail on

twitter. Semantic Web, 10(5), 925-945.

81

Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, pages 82–85
with a Shared Task on Offensive Language Detection.

Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020
c© European Language Resources Association (ELRA), licensed under CC-BY-NC

Offensive Language Detection in Arabic using ULMFiT

Mohamed Abdellatif, Ahmed Elgammal
Rutgers University - Computer Science

Piscataway, NJ, USA
{mma215, elgammal}@cs.rutgers.edu

Abstract
In this paper, we approach the shared task OffenseEval 2020 by Mubarak et al. (2020) using ULMFiT Howard and Ruder (2018)
pre-trained on Arabic Wikipedia Khooli (2019) which we use as a starting point and use the target data-set to fine-tune it. The data set of
the task is highly imbalanced. We train forward and backward models and ensemble the results. We report confusion matrix, accuracy,
precision, recall and F1 of the development set and report summarized results of the test set. Transfer learning method using ULMFiT
shows potential for Arabic text classification.

Keywords: language models, text classification, transfer learning, opinion mining

1. Introduction
Imbalanced data set is a data set that has at least one (minor-
ity) class with significantly smaller population than others
(majority). If the minority class is a label of interest (to
study and predict), imbalanced data represents a challenge
since during the training there is relatively no sufficient
representation of the minority class(es) to stand out in the
trained model. Examples of applications include: finance
(e.g. fraud transaction detection), security (e.g. intrusion
detection), networking (e.g. anomaly traffic detection), sys-
tems (e.g. irregular resource usage detection), medical (e.g.
disease [e.g. cancer] detection), nature (e.g. volcano erup-
tion, earthquake, tsunami predictions) and text processing
(e.g. opinion mining and spotting hate speech).
Opinion mining and spotting hate speech in the context
of social networking using deep learning attracted re-
searchers’ attention recently. For example, Park & Fung
combined results from CNN (convolutional neural net-
work) and LR (logistic regression) in Park and Fung (2017).
They applied their method on the data set by Waseem and
Hovy (2016). The same data-set was subject for experi-
menting a combination of both convolutional and recurrent
units by Zhang et al. in Zhang et al. (2018).
State of the art text classification has been recently pushed
forward by the advancements of the Transfer Learning (e.g.
Devlin et al. (2018), Howard and Ruder (2018) and Radford
et al. (2018))
From the work by Mahendran and Vedaldi (2016), inspect-
ing neural network of more than one layer that was trained
on a certain data-set of images (say a cats vs dogs binary
classification task), the earlier layers tend to capture high
level features (e.g. edges, contours .. etc) while the later
layers tend to capture low level features (e.g. dogs faces,
cats faces .. etc). Even though both types of features are
extracted from the same data-set, the high level one is more
general so it can be made use of in training the same net-
work for a different task (since almost any kind of image
classification will benefit from capturing edges and con-
tours [and similarly general image features] in the weights
of the model as concluded by Sharif Razavian et al. (2014)).
Observing that, Howard & Ruder (Howard and Ruder
(2018)) applied gradual unfreezing associated with dis-

criminative fine-tuning and slanted triangular learning rates
(as concluded by Smith (2017)) and successfully apply it
on text classification.
Our goal is to investigate applying ULMFiT on the im-
balanced Arabic data-sets OffenseEval 2020. Khooli pre-
trained ULMFiT on Arabic Wikipedia in Khooli (2019).
We use their model as a starting point and use the Arabic
data-set of interest to fine tune it.
The rest of the paper is organized as follows: we illustrate
the data-sets properties in section 2.. In section 4. we de-
scribe the model, training parameters and experiments. We
show results in section 5. and finally conclude the work in
section 6..

2. Data sets
For this work, we use data provided by the organizers of
OSACT4. The target of the shared task is to achieve as
high macro F1 score as possible. 10k Arabic tweets were
collected. They are splitted to train (7k), development (1k)
and test (2k) subsets. The train and development are re-
leased along with labels while the test set is released with-
out them. The task has two sub tasks, sub task A is classify-
ing the tweet as ’offensive’ vs ’not offensive’ while sub task
B is about classifying the tweet as ’hateful’ vs ’not hateful’.
So each tweet is labeled twice. The labeled data sets in both
cases are imbalanced with sub task B more so than A.

2.1. Sub task A
A tweet is considered offensive if it has any level of pro-
fanity. Table 1 shows instances count of different classes of
sub task A. As the table shows the distribution of both train-
ing and development data sets show imbalance between the
two existing classes.

2.2. Sub task B
A tweet is considered hateful if it has an attack against one
or more person based on their nationality, ethnicity, gender,
political affiliation, sport affiliation or religious belief. Ta-
ble 2 shows instances count of different classes of sub task
B. As the table shows the distribution of both training and
development data sets show imbalance between the two ex-

82

Figure 1: Part of vocabulary words

(a) Tokenized

(b) Numericalized

Class Train Development Test
Not offensive (regular) 5.6k 821 -

Offensive 1.4k 179 -
Total 7k 1k 2k

Table 1: Classes distribution of sub task A

isting classes that is more significant than in case of sub
task A.

3. Approach
3.1. Pre-processing
We do simple tokenization based on white-spaces and keep
words that appeared more frequently than a certain thresh-
old (replaced by ’xxunk’). Since pre-processing is not spe-
cific to Arabic, we kept all the non-Arabic words as long
as they exist above the threshold (e.g. mentions). Among
the special tokens: ’xxpad’ is a padding token, ’xxeos’ is
an end of scentence token, ’xxup’ is used to indicate the
next word is capitalized (for English parts), ’xxrep’ and
’xxwrep’ are used to indicate repetition. After segmenta-
tion/tokenization, we convert the set of tokens to unique
ids. Figure 1 shows part of the resulting vocabulary.

3.2. Method
Language modeling is a problem that deals with learning
the joint probability function of sequences of words in this
language. Such that given a sequence of a certain number
of words, it can assigns a probability for it (as defined in
Bengio et al. (2003)).
Inductive transfer learning is to make use of the knowl-
edge learned by training a model (model A) on a source
problem to be used towards building another model (model
B) that handles a target (different) problem (as defined in
Ruder et al. (2019)). In the case of ULMFiT, the source
problem is unlabeled (language modeling) and the target
problem is (text classification).
ULMFiT transfer learning method (by Howard and Ruder
(2018)) can be summarized as three steps applied on two
neural networks. The first neural network is a Language
Model (LM) the second one is a text classifier. The three
steps are 1- pre-training the LM on a general corpus (we
used the model by Khooli (2019) for this step), 2- training
fine-tuning the LM on the target data-set and then saving a
part off the LM (the encoder) and 3- Loading the saved part

of the LM (result of step 2) and attaching it to the classifier
then train fine-tuning the classifier with the target data-set.
Following Howard and Ruder (2018) For both the language
model and classifier networks, we used LSTM AWD (by
Merity et al. (2017)) which uses a 3 layers LSTM.

4. Experimental Setup
4.1. Experiments
Following the original work by Howard and Ruder (2018),
we fine-tune two separate (forward and backward) models,
classify twice and average results for each sub-task. That
was shown to be always better on all the six of the English
data-sets experimented on by Howard and Ruder (2018).
We report three different sets of results for each sub task as
well to study whether the same conclusion can be made on
Arabic imbalanced data-set in question.
Since the source task of the transfer learning (language
modeling) needs unlabeled data, we use all the available un-
labeled Arabic text (both train and validation) to fine-tune
and save (forward and backward) language models and use
their encoders for two separate classifiers (two [forward and
backward] for each sub task).

4.2. Settings and training
We use fastai library 1 and adjust the hyper-parameters
based on the observed performance of training on the de-
velopment set. The forward language model was trained
for 2 epochs while the backward one was trained for 3. Af-
ter applying a 3-steps of gradual unfreezing, both the for-
ward and the backward classifiers of sub task A were un-
frozen and fine-tuned for 3 epochs. Similar steps were fol-
lowed for sub task B, except we ended up with 30 epochs
for fine tuning the forward classifier and only 3 to fine tune
the backward one. We use an Nvidia Titan X with 12 GB
of memory that allowed us to use a batch size of 64.

1https://github.com/fastai/fastai

83

Class Train Development Test
Not hateful (regular) 6.6k 956 -

Hateful 0.4k 44 -
Total 7k 1k 2k

Table 2: Classes distribution of sub task B

Model Accuracy Weighted Macro
precision recall F1 precision recall F1

Forward 86 85 86 85 77 71 74
Backward 87 87 87 87 78 78 78
Averaged 89 88 89 89 82 78 80

Table 3: Validation results (%) of sub-task A

5. Results
We report accuracy, weighted and macro F1 as evaluation
metrics for the validation set while we report accuracy and
only the macro F1 for the test set. F1 is the harmonic mean
of Precision (the ratio between the true positives and all
the positive) and Recall (the ratio between the true posi-
tives and all the true). The macro version adds the metrics
values of separate classes with equaly weights while the
weighted version weights them by the ratio of class popula-
tion. Recall that Both the language model and the classifier
networks use AWD LSTM (Merity et al. (2017)).

5.1. Validation results
Table 3 presents validation results of sub task A while ta-
ble 4 present task B. Since we have access to validation
labels, we show the results of the forward, backward and
averaged models. Since weighted measures favor majority
classes (they aggregate using a weighted average), they are
not very descriptive of the performance in case of imbal-
anced datasets where the minority class is important (like
in our case). This can be seen from the tables. In terms of
validation results, training two models instead of one and
averaging results boosts the results in terms of macro F1 in
both sub tasks. The confusion matrix of the validation set
is illustrated in figure 2.

5.2. Test results
Table 5 shows the test results of both sub tasks. Inspect-
ing this table, the imbalance of the data-sets under question
renders accuracy metric not descriptive of the performance.
The very low population minor classes (offensive and hate-
ful tweets in tasks A and B respectively) receive little at-
tention from the trained classifier (relative to the majority
class) since they are not as well represented in the training
either. This is reflected in the low recall which drags F1

down.

6. Conclusion and future work
We applied ULMFiT pre-trained on Arabic Wikipedia to
approach the problem of classifying imbalanced Arabic
data sets. Experiments on imbalanced data-sets of Of-
fenseEval 2020 show that using two models (forward and

(a) Sub task A

(b) Sub task B

Figure 2: Confusion matrix

backward) helps the final result in terms of macro F!.
Arabic-specific tokenization (e.g. based on Arabic morpho-
logical rules) may help building a better representation of
Arabic text and hence improve performance, we leave this
for future work. Another avenue for future work would be

84

Model Accuracy Weighted Macro
Precision Recall F1 Precision Recall F1

Forward 96 94 96 94 75 57 60
Backward 96 95 96 95 77 58 61
Averaged 96 95 96 95 86 57 61

Table 4: Validation results (%) of sub-task B

Sub task Accuracy Macro
precision recall F1

A 86 79 76 77
B 95 75 56 58

Table 5: Test results (%)

using generative models (e.g. language modelling) as a way
of over-sampling the minor classes in imbalanced data sets.
It can be experimented with by its own or associated with
other (existing) techniques (e.g. random Ghazikhani et al.
(2012) and SMOTE Chawla et al. (2002)).

7. Bibliographical References
References

Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin. A
neural probabilistic language model. Journal of machine
learning research, 3(Feb):1137–1155, 2003.

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P.
Kegelmeyer. Smote: synthetic minority over-sampling
technique. Journal of artificial intelligence research, 16:
321–357, 2002.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

A. Ghazikhani, H. S. Yazdi, and R. Monsefi. Class im-
balance handling using wrapper-based random oversam-
pling. In 20th Iranian Conference on Electrical Engi-
neering (ICEE2012), pages 611–616. IEEE, 2012.

J. Howard and S. Ruder. Universal language model
fine-tuning for text classification. arXiv preprint
arXiv:1801.06146, 2018.

A. Khooli. Applied data science. https://github.
com/abedkhooli/ds2, 2019.

A. Mahendran and A. Vedaldi. Visualizing deep convolu-
tional neural networks using natural pre-images. Inter-
national Journal of Computer Vision, 120(3):233–255,
2016.

S. Merity, N. S. Keskar, and R. Socher. Regularizing
and optimizing lstm language models. arXiv preprint
arXiv:1708.02182, 2017.

H. Mubarak, K. Darwish, W. Magdy, T. Elsayed, and H. Al-
Khalifa. Overview of osact4 arabic offensive language
detection shared task. 4, 2020.

J. H. Park and P. Fung. One-step and two-step classification
for abusive language detection on twitter. arXiv preprint
arXiv:1706.01206, 2017.

A. Radford, K. Narasimhan, T. Salimans, and
I. Sutskever. Improving language under-
standing by generative pre-training. URL
https://s3-us-west-2. amazonaws. com/openai-
assets/researchcovers/languageunsupervised/language
understanding paper. pdf, 2018.

S. Ruder, M. E. Peters, S. Swayamdipta, and T. Wolf.
Transfer learning in natural language processing. In Pro-
ceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Tutorials, pages 15–18, 2019.

A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carls-
son. Cnn features off-the-shelf: an astounding baseline
for recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition workshops,
pages 806–813, 2014.

L. N. Smith. Cyclical learning rates for training neural net-
works. In 2017 IEEE Winter Conference on Applica-
tions of Computer Vision (WACV), pages 464–472. IEEE,
2017.

Z. Waseem and D. Hovy. Hateful symbols or hateful peo-
ple? predictive features for hate speech detection on twit-
ter. In Proceedings of the NAACL student research work-
shop, pages 88–93, 2016.

Z. Zhang, D. Robinson, and J. Tepper. Detecting hate
speech on twitter using a convolution-gru based deep
neural network. In European semantic web conference,
pages 745–760. Springer, 2018.

85

Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, pages 86–90
with a Shared Task on Offensive Language Detection.

Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020
c© European Language Resources Association (ELRA), licensed under CC-BY-NC

Multitask Learning for Arabic Offensive Language and Hate-Speech Detection

Ibrahim Abu-Farha1 and Walid Magdy1,2
1 School of Informatics, The University of Edinburgh

Edinburgh, United Kingdom
2 The Alan Turing Institute
London, United Kingdom

i.abufarha@ed.ac.uk, wmagdy@inf.ed.ac.uk

Abstract
Offensive language and hate-speech are phenomena that spread with the rising popularity of social media. Detecting such content
is crucial for understanding and predicting conflicts, understanding polarisation among communities and providing means and tools
to filter or block inappropriate content. This paper describes the SMASH team submission to OSACT4’s shared task on hate-speech
and offensive language detection, where we explore different approaches to perform these tasks. The experiments cover a variety of
approaches that include deep learning, transfer learning and multitask learning. We also explore the utilisation of sentiment information
to perform the previous task. Our best model is a multitask learning architecture, based on CNN-BiLSTM, that was trained to detect
hate-speech and offensive language and predict sentiment.

Keywords: Arabic, hate-speech, offensive language

1 Introduction
Social media platforms provide a versatile medium for peo-
ple to communicate with each other, share ideas and ex-
press opinions. These user-driven platforms have a chal-
lenge when it comes to controlling the content being fed
into them. People have different intentions, while some
might use these platforms for their intended purposes, oth-
ers might be sharing inappropriate content such as porno-
graphic images or racist speech towards others. Detecting
such content is very important for these platforms. For
example, it is necessary to add filtration features to hide
adult-only content in order to protect children (Mubarak et
al., 2017). Also, such detection systems are important to
provide real time monitoring of the content being fed to
these platforms, which could be promoting hate crimes or
racism against various groups of people. An early detection
of this phenomena could help in preventing the escalation
from speech to actions (Waseem and Hovy, 2016). Plat-
forms such as Twitter, Facebook and YouTube are putting
effort into fighting the spread of hate-speech, racism and
xenophobia on their platforms. Thus, having robust detec-
tion systems is extremely important (Waseem and Hovy,
2016). According to Cambridge Dictionary1 hate-speech is
defined as “public speech that expresses hate or encourages
violence towards a person or group based on something
such as race, religion, sex or sexual orientation”. There has
been a large amount of studies on how to automatically de-
tect hate-speech, offensive language and obscene content.
The approaches vary from using word-lists, syntactic and
semantic features to deep learning models.
This paper is a description of our submission (SMASH
team) to the shared task of offensive language and hate-
speech detection (Mubarak et al., 2020). This task is a part
of the Open-Source Arabic Corpora and Corpora Process-
ing Tools (OSACT4) workshop. In this paper, we explore
various approaches to detect hate-speech and offensive lan-

1https://dictionary.cambridge.org/dictionary/english/

guage, which include deep learning, transfer learning and
multitask learning. Our best model is a multitask learning
architecture that was trained to detect both hate-speech and
offensive language.

2 Related Work
There has been some work on tasks related to hate-speech
and offensive language detection, especially in English.
Most of the work view the problem as a classification task
where the goal is to assign a specific label to a given input.
Early work on such task includes (Yin et al., 2009), where
the authors used multiple features such as n-grams and sen-
timent to train a classifier for harassment detection. In their
work, they used a manually labelled dataset of discussion
threads. Razavi et al. (2010) proposed a multilevel clas-
sifier to detect offensive messages, in which they utilised
a set of manually collected words and phrases. Nobata et
al. (2016) proposed a machine learning based approach for
abusive language detection. They utilised multiple features
such as n-grams, linguistic features, syntactic features and
word embeddings. They also created a new dataset using
comments from Yahoo Finance and News. Davidson et al.
(2017) built a corpus of tweets that contain hate-speech.
In their work, they utilised a lexicon of hate-speech key-
words in order to collect relevant tweets. The collected
data was labelled into three classes: hate-speech, offensive
language and neither. They built a classifier to detect hate-
speech, their analysis showed that raciest and homophobic
are likely to be classified as hate-speech. In (Malmasi and
Zampieri, 2017), the authors trained an SVM classifier for
hate-speech detection, the classifier relies on n-gram based
features. In 2019, OffensEval (Zampieri et al., 2019) was
introduced to be part of SemEval. This competition has
multiple sub-tasks such as offensive language detection, of-
fence categorisation and offence target identification.
Regarding Arabic, there were few attempts to approach the
problems of offensive language and hate-speech detection.
These include the work of Mubarak et al. (2017), where the

86

authors proposed a method to automatically expand word
lists for obscene and offensive content. In their work, they
created an initial list of seed words, which was used to col-
lect a set of tweets. From the collected tweets, they ex-
tracted the patterns that are used to express offensiveness.
They followed that with manual assessment and used other
resources to create the final word-list. In another work
(Mubarak and Darwish, 2019), the authors used the word-
list as a seed to create a training set, which they used to
experiment with and create an offensive language detector.
Alakrot et al. (2018) proposed a method to detect abusive
language, they used SVM with n-gram features for the clas-
sification where they achieved an F1-score of 0.82. They
collected their own dataset from YouTube comments. Al-
badi et al. (2018) created a dataset of religious hate-speech
discussions on Twitter, they used this data to train an RNN
based classifier for automatic detection of hate-speech, they
achieved 0.84 Area under the ROC curve. The authors also
used their dataset to create multiple hate-speech lexicons.
Haidar et al. (2017) experimented with cyberbullying de-
tection, where they utilised a dataset that they collected
from Facebook and Twitter. They used n-gram features and
experimented with multiple classifiers such as Naive Bayes
and SVM.

3 Dataset Description
The dataset is the same one provided in SemEval 2020 Ara-
bic offensive language task. It consists of 10,000 tweets
labelled for offensive language and hate-speech. The an-
notation assumes that a tweet is offensive if it contains an
insult, attack or inappropriate language. While a tweet is
assumed to contain hate-speech if it was directed towards a
group or an entity. Table 1 shows the statistics of the train-
ing and development sets. The test set, which contains 2000
tweets, was not released for evaluation purposes.

Label Training Set Development
Set

Hate-Speech 361 44
Non hate-speech 6,639 956
Offensive 1,410 179
Non-offensive 5,590 821

Table 1: Dataset statistics.

4 Proposed Models
In this section, we provide details of the different steps and
models we used in the experiments.

4.1 Data Preprocessing
This step is important in order to clean data from unneces-
sary content and transform it into a coherent form, which
can be processed and analysed easily. Since we are us-
ing Mazajak’s word embeddings (Abu Farha and Magdy,
2019), we used the same steps used by the authors as fol-
lows:

• Letter normalisation: unifying the letters that appear
in different forms. We replace { � , � , � } with {�}, {}
with {£} and {«} with {©} (Darwish et al., 2014).

• Elongation removal: removing the repeated let-
ters which might appear specially in social media
data (Darwish et al., 2012).

• Cleaning: removing unknown characters, diacritics,
punctuation, URLs, etc.

4.2 Text Representation
In this step, we transform textual data into a representation
that can be used for the task we are aiming to accomplish.
There are different ways to represent textual information,
in our implementation we use word embeddings. Word em-
beddings are a dense vector representation of the words, we
utilised the word embeddings provided by (Abu Farha and
Magdy, 2019). These are skip-gram word2vec embeddings,
which were built using a corpus of 250M tweets.

4.3 Models
This section provides details of the different approaches
and models tested for the different tasks.

BiLSTM
Long short-term memory (LSTM)(Hochreiter and Schmid-
huber, 1997) networks are quite powerful at capturing re-
lations over sequences. However, they capture the depen-
dencies in one direction, and sometimes they might lose im-
portant information, here where bidirectional LSTMs (BiL-
STM) are useful. BiLSTMs are two LSTMs where each
one goes over the input in a different direction. This con-
figuration allows the network to have a representation of
the whole sequence at any point. The output of the LSTM
is passed to a dense layer with softmax activation which
emits the final output.

CNN-BiLSTM
This architecture consists of a convolutional neural network
(CNN) followed by a BiLSTM network. Such architecture
is commonly used in the literature for text classification
tasks. The benefits of such architecture is that the CNN has
the capability to capture patterns and correlations within
the input. The CNN would work as a feature extractor and
these features are fed into a BiLSTM network which cap-
tures dependencies within these features.
This architecture consists of a 1D convolutional layer fol-
lowed by a max-pooling layer, then the BiLSTM part. Fi-
nally, we have a dense layers followed by the output layer.

Transfer Learning
Transfer learning has been a turning point in the field
of computer vision which led to huge improvements and
breakthroughs. In the last couple of years, the research
in natural language processing (NLP) has caught up with
the introduction of pre-trained language models such as
Elmo(Peters et al., 2018) and ULMFit(Howard and Ruder,
2018). The introduction of Bidirectional Encoder Repre-
sentation from Transformers (BERT) (Devlin et al., 2019)
led to a revolution in the NLP world. BERT-based models
achieved state-of-the-art results in many tasks. In the pro-
posed architecture, we utilise a pre-trained language model
and fine tune it for a specific task, i.e. transfer learning. In
our experiments we use the multilingual BERT which was

87

trained on 104 languages. It utilises a vocabulary of 110K
WordPeice tokens. BERT’s architecture consists of 12 lay-
ers with 768 hidden units in each of them, and 12 attention
heads.
In the experiments we fine tune BERT to be used for clas-
sification. This is done by adding a fully connected layer
and a softmax layer after the the pre-trained model. Then
the model is trained for a small number of epochs to adjust
the weights for the specific task.

Multitask Learning
In multitask learning (MTL), the objective is to utilise the
process of learning multiple tasks in order to improve the
performance on each of them (Caruana, 1997). These tasks
are usually related and have some common aspects between
them. Thus, having the model to learn these tasks would
give it the ability to utilise some cues from one task to im-
prove the other. MTL has been used to improve many NLP
tasks such as syntactic chunking and POS-tagging (Søgaard
and Goldberg, 2016), even BERT (Devlin et al., 2019) was
built using multitask learning settings.
In this architecture, we utilise that the data is labelled for
both tasks, hate-speech and offensive language. Based on
the given definitions of the tasks and the annotated data,
we can assume that if a sentence contains hate-speech, it is
offensive. Thus, we try to utilise this correlation and train
the model for both tasks at once (the model is called MTL).

Embeddings

CNN

Max Pooling

BiLSTM

Dense

Output(offensive) Output(hate
speech) Output (sentiment)

Figure 1: CNN-BiLSTM architecture in multitask learning
configuration.

To extend this idea, we decided to incorporate more infor-
mation through adding sentiment information. The reason
for this is that offensive language or hate-speech are usually
sentimental and express a negative emotion towards the tar-
get. In order get the sentiment labels, we used Mazajak
sentiment analyser (Abu Farha and Magdy, 2019). With

the sentiment labels added as an objective, the new model
(MTL-S) learns to predict three labels, sentiment, hate-
speech, and offensive language.
An issue that might occur is that when we use the senti-
ment from another system, we might be propagating some
of error and uncertainty to the new model. In order to
reduce such uncertainty in the sentiment labels, we had
two variants of the experiment. In the first one, we used
the labels returned from Mazajak as they are. In the sec-
ond, we masked the sentiment to be negative if the sen-
tence was originally labelled as hate-speech or offensive
language. The notion behind this experiment is that a
hate-speech or offensive content are always bearing neg-
ative sentiment, but those might be expressed in an indirect
way which could result in an incorrect sentiment label, this
model is called (MTL-S-N). In this architecture, we utilised
the CNN-BiLSTM architecture, the only difference is that
we have a forking before the output layer to accommodate
for the different outputs as shown in Figure 1.

5 Performance and Evaluation
5.1 Experimental Setup
In the implementation, we used Python as the programming
language for all the experiments. For the deep learning
experiments, Keras (Chollet and others, 2015) was used
on top of Tensorflow (Abadi et al., 2015) back-end. For
all the experiments, ReLU activation and Adam optimiser
with learning rate of 0.0001 were used. Table 2 shows
the hyper-parameters for each Architecture. Regarding the
experiments with BERT, we utilised HuggingFace’s Trans-
formers library (Wolf et al., 2019). We used the provided
BertForSequenceClassification implementation along with
BertAdam optimiser. We trained the models for 4 epochs
with learning rate of 1e−5. The maximum sequence length
was set to the maximum length seen in the training set.

Hyper-parameter BiLSTM CNN-BiLSTM
#LSTM cells 128 128
recurrent dropout 0.2 0.2
dropout 0.2 0.2
#filters - 300
filter size - 3
pooling size - 2
#hidden units - 128

Table 2: Hyper-parameters used for each architecture.

5.2 Results and evaluation
We experimented with the different models mentioned pre-
viously. To have an initial measure of the performance,
we used two different baselines. One where we always as-
sign the majority label (baseline-1), this was done for both
tasks. The second baseline (baseline-2) was Multinomial
Naive Bayes (MNB) trained on unigram and bigram TF-
IDF representation of the input. The evaluation metric for
both tasks is macro-average F1-score. Table 3 shows the
results on the development set. From the table, it is notice-
able that the multitask learning models (MTL and MTL-S-
N) achieved the best results on the development set. This

88

shows that the extra information learned through learning
multiple objectives was effective to improve the perfor-
mance. It is noticeable that the BERT based model achieved
relatively lower results compared to the other models. This
is due to the fact that BERT has a limited vocabulary and
was trained on the Arabic Wikipedia, which is in modern
standard Arabic (MSA). Thus, BERT was not able to ef-
fectively handle the dialectal content within the dataset. In
general, the models are better in detecting offensive lan-
guage than hate-speech. This is due to the small number of
training examples of hate-speech data.

Model OFF HS
baseline-1 0.450 0.490
baseline-2 0.490 0.390
BiLSTM 0.896 0.671
BERT 0.857 0.719
CNN-BiLSTM 0.901 0.702
MTL 0.899 0.737
MTL-S 0.899 0.712
MTL-S-N 0.904 0.730

Table 3: Macro F1 scores achieved on the development set
for hate-speech (HS) and offensive language (OFF) detec-
tion tasks.

5.3 Submission Results
These tasks are part of a shared competition organised in
OSACT4 (Mubarak et al., 2020), where we participated as
SMASH team. For each task, we submitted the best per-
forming model as our primary submission, the results are
shown in Table 4. For the hate-speech task we submitted
the MTL model which achieved a macro F1-score of 0.76
on the test set (ranked 6th out of 13). For the offensive
language task, we submitted the MTL-S-N model which
achieved and F1-score of 0.877 on test set (ranked 5th out
of 14).

Model OFF HS
MTL - 0.76
MTL-S-N 0.877 -

Table 4: Macro F1 scores achieved by the best models on
the test set for hate-speech (HS) and offensive language
(OFF) detection tasks.

6 Conclusion and Future Work
In this work, we presented our system to perform hate-
speech and offensive language detection. The experiments
show that using a multitask learning setting was extremely
useful due to the high correlation between the two tasks.
We also explored the effect of adding sentiment informa-
tion, which proved to be useful. This is explained by the
fact that hate-speech and offensive content always bear neg-
ative sentiment. Thus, sentiment information is correlated
with hate-speech and offensive language. In the future, we
hope to improve the results through the utilisation of other

resources such as lexicons and experimenting with more
multitask learning settings.

Acknowledgements
This work was supported by the D&S Programme
of The Alan Turing Institute under the EPSRC grant
EP/N510129/1.

7 References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,

Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Is-
ard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M.,
Levenberg, J., Mané, D., Monga, R., Moore, S., Mur-
ray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B.,
Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Va-
sudevan, V., Viégas, F., Vinyals, O., Warden, P., Wat-
tenberg, M., Wicke, M., Yu, Y., and Zheng, X. (2015).
TensorFlow: Large-scale machine learning on heteroge-
neous systems. Software available from tensorflow.org.

Abu Farha, I. and Magdy, W. (2019). Mazajak: An online
Arabic sentiment analyser. In Proceedings of the Fourth
Arabic Natural Language Processing Workshop, pages
192–198, Florence, Italy, August. Association for Com-
putational Linguistics.

Alakrot, A., Murray, L., and Nikolov, N. S. (2018). To-
wards accurate detection of offensive language in online
communication in arabic. Procedia computer science,
142:315–320.

Albadi, N., Kurdi, M., and Mishra, S. (2018). Are they our
brothers? analysis and detection of religious hate speech
in the arabic twittersphere. In 2018 IEEE/ACM Interna-
tional Conference on Advances in Social Networks Anal-
ysis and Mining (ASONAM), pages 69–76. IEEE.

Caruana, R. (1997). Multitask learning. Machine learn-
ing, 28(1):41–75.

Chollet, F. et al. (2015). Keras. https://keras.io.
Darwish, K., Magdy, W., and Mourad, A. (2012). Lan-

guage processing for arabic microblog retrieval. In Pro-
ceedings of the 21st ACM international conference on
Information and knowledge management, pages 2427–
2430. ACM.

Darwish, K., Magdy, W., et al. (2014). Arabic informa-
tion retrieval. Foundations and Trends R© in Information
Retrieval, 7(4):239–342.

Davidson, T., Warmsley, D., Macy, M., and Weber, I.
(2017). Automated hate speech detection and the prob-
lem of offensive language. In Eleventh international
aaai conference on web and social media.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2019). BERT: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings of
the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Pa-
pers), pages 4171–4186, Minneapolis, Minnesota, June.
Association for Computational Linguistics.

Haidar, B., Chamoun, M., and Serhrouchni, A. (2017). A
multilingual system for cyberbullying detection: Arabic

89

content detection using machine learning. Advances in
Science, Technology and Engineering Systems Journal,
2(6):275–284.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-
term memory. Neural Computation, 9(8):1735–1780.

Howard, J. and Ruder, S. (2018). Universal language
model fine-tuning for text classification. In Proceedings
of the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages
328–339, Melbourne, Australia, July. Association for
Computational Linguistics.

Malmasi, S. and Zampieri, M. (2017). Detecting hate
speech in social media. In Proceedings of the Interna-
tional Conference Recent Advances in Natural Language
Processing, RANLP 2017, pages 467–472, Varna, Bul-
garia, September. INCOMA Ltd.

Mubarak, H. and Darwish, K. (2019). Arabic offensive
language classification on twitter. In International Con-
ference on Social Informatics, pages 269–276. Springer.

Mubarak, H., Darwish, K., and Magdy, W. (2017). Abu-
sive language detection on Arabic social media. In Pro-
ceedings of the First Workshop on Abusive Language On-
line, pages 52–56, Vancouver, BC, Canada, August. As-
sociation for Computational Linguistics.

Mubarak, H., Darwish, K., Magdy, W., Elsayed, T., and Al-
Khalifa, H. (2020). Overview of osact4 arabic offensive
language detection shared task. 4.

Nobata, C., Tetreault, J., Thomas, A., Mehdad, Y., and
Chang, Y. (2016). Abusive language detection in on-
line user content. In Proceedings of the 25th Interna-
tional Conference on World Wide Web, WWW ’16, page
145–153, Republic and Canton of Geneva, CHE. Interna-
tional World Wide Web Conferences Steering Commit-
tee.

Peters, M., Neumann, M., Iyyer, M., Gardner, M., Clark,
C., Lee, K., and Zettlemoyer, L. (2018). Deep contextu-
alized word representations. In Proceedings of the 2018
Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 2227–
2237, New Orleans, Louisiana, June. Association for
Computational Linguistics.

Razavi, A. H., Inkpen, D., Uritsky, S., and Matwin, S.
(2010). Offensive language detection using multi-level
classification. In Canadian Conference on Artificial In-
telligence, pages 16–27. Springer.

Søgaard, A. and Goldberg, Y. (2016). Deep multi-task
learning with low level tasks supervised at lower layers.
In Proceedings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 2: Short
Papers), pages 231–235, Berlin, Germany, August. As-
sociation for Computational Linguistics.

Waseem, Z. and Hovy, D. (2016). Hateful symbols or hate-
ful people? predictive features for hate speech detection
on twitter. In Proceedings of the NAACL Student Re-
search Workshop, pages 88–93, San Diego, California,
June. Association for Computational Linguistics.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue,
C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtow-

icz, M., and Brew, J. (2019). Huggingface’s transform-
ers: State-of-the-art natural language processing. ArXiv,
abs/1910.03771.

Yin, D., Xue, Z., Hong, L., Davison, B. D., Kontostathis,
A., and Edwards, L. (2009). Detection of harassment
on web 2.0. Proceedings of the Content Analysis in the
WEB, 2:1–7.

Zampieri, M., Malmasi, S., Nakov, P., Rosenthal, S., Farra,
N., and Kumar, R. (2019). SemEval-2019 task 6: Iden-
tifying and categorizing offensive language in social me-
dia (OffensEval). In Proceedings of the 13th Interna-
tional Workshop on Semantic Evaluation, pages 75–86,
Minneapolis, Minnesota, USA, June. Association for
Computational Linguistics.

90

Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, pages 91–96
with a Shared Task on Offensive Language Detection.

Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020
c© European Language Resources Association (ELRA), licensed under CC-BY-NC

Combining Character and Word Embeddings for the Detection of Offensive
Language in Arabic

Abdullah I. Alharbi1,2, Mark Lee1
1School of Computer Science, University of Birmingham, Birmingham, UK

2Faculty of Computing and Information Technology, King Abdulaziz University, Rabigh, KSA
{aia784, m.g.lee}@cs.bham.ac.uk

aamalharbe@kau.edu.sa

Abstract
Twitter and other social media platforms offer users the chance to share their ideas via short posts. While the easy exchange of ideas has
value, these microblogs can be leveraged by people who want to share hatred. and such individuals can share negative views about an
individual, race, or group with millions of people at the click of a button. There is thus an urgent need to establish a method that can
automatically identify hate speech and offensive language. To contribute to this development, during the OSACT4 workshop, a shared
task was undertaken to detect offensive language in Arabic. A key challenge was the uniqueness of the language used on social media,
prompting the out-of-vocabulary (OOV) problem. In addition, the use of different dialects in Arabic exacerbates this problem. To deal
with the issues associated with OOV, we generated a character-level embeddings model, which was trained on a massive data collected
carefully. This level of embeddings can work effectively in resolving the problem of OOV words through its ability to learn the vectors
of character n-grams or parts of words. The proposed systems were ranked 7th and 8th for Subtasks A and B, respectively.

Keywords: character-level embeddings, word-level embeddings, Arabic offensive language detection

1. Introduction
Microblogging platforms, such as Twitter, offer users a
channel through which they can share ideas and opinions
via short messages. In the case of Twitter, these are known
as tweets. While social media channels can be used for
constructive purposes, they can also be exploited by peo-
ple who wish to share their hatred. These people can share
their negative views about an individual, a race or a group
with millions of people at the click of a button. To coun-
teract this, there is a significant need to develop an effec-
tive method that will automatically identify messages con-
taining offensive language or hate speech. Much research
has been undertaken on detecting offensive language in En-
glish, but as yet, little research has focused on the detection
of offensive language in Arabic (Mubarak and Darwish,
2019).
To contribute to the development of this area, a shared task
on ‘Arabic offensive language detection’ was conducted
at the OSACT4 workshop (Mubarak et al., 2020). This
shared task included two subtasks: Subtask A was to de-
tect offensive language, and Subtask B was to detect hate
speech. These subtasks shared a dataset of 10,000 tweets
that comprised an Arabic offensive language dataset. The
challenges of this shared task included the following:

(i) The distribution of the targeted classes was imbal-
anced in both subtasks. However, Subtask B is more
challenging than Subtask A as only 5% of the tweets
were labelled as hate speech and fell under Subtask
B, 19% of the tweets are labelled as offensive and in-
cluded in Subtask A.

(ii) The language used on social media has unique char-
acteristics, such as sentences that are grammatically
incorrect, and the use of symbols and emojis resulting
in an out-of-vocabulary (OOV) problem.

(iii) This problem becomes even more challenging when
considering that Arabic social media users employ
various dialects and sub-dialects in their communica-
tion. In contrast to Modern Standard Arabic (MSA),
the forms of dialectical Arabic vary widely, and there
is a general lack of rules and standards (Salameh et al.,
2018).

To deal with the issues associated with OOV, we generated
a character-level (char-level) embeddings model, which
was trained on a massive carefully collected dataset. This
level of embeddings can work effectively in resolving the
problem of OOV words through its ability to identify the
vectors of character n-grams or parts of words. Our pro-
posed systems were ranked 7th and 8th for Subtasks A and
B, respectively.
The rest of this paper is organized in the following man-
ner. Section two provides a brief overview of current litera-
ture on hate-speech and offensive speech detection. Section
three includes an overview of the methodology, including
the experimental setup for our proposed systems. Section
four provides an evaluation and analysis of results and some
discussion. Finally, section five concludes the paper with
suggestions for future work.

2. Related Work
The use of offensive language and hate speech in the En-
glish language has been investigated widely, and various
categories of hate speech have been identified, includ-
ing sexism, religious hate speech and racial hate speech
(Davidson et al., 2017; Malmasi and Zampieri, 2017; Ku-
mar et al., 2018; Waseem et al., 2017; Zampieri et al.,
2019). In contrast, limited studies have been done in this
area in the Arabic language (Al-Hassan and Al-Dossari,
2019).

91

One of the earliest works on the detection of offensive lan-
guage in Arabic was by Mubarak et al. (2017). They argued
that some users have a higher likelihood of using offensive
language than others. They used this insight to construct a
list of Arabic words that are offensive. They subsequently
developed an extensive corpus of Arabic tweets that were
annotated manually into three categories: clean, obscene
and offensive. Another contribution was made by Alakrot
et al. (2018) who developed a corpus of offensive Arabic
comments that had been shared on YouTube. This created a
dataset that includes 16K Egyptian, Libyan and Iraqi com-
ments, categorised into one of three classes: offensive, inof-
fensive and neutral. They trained a Support Vector Machine
(SVM) classifier to detect the offensive comments. Based
on their experiments, they concluded that using the N-gram
feature improved the classifier’s accuracy, while a combi-
nation of N-gram and stemming reduced the performance
of the system. Albadi et al. (2018) focused on the detection
of religious hate speech in Arabic but did not consider any
other forms of hate speech. They constructed and scored
a lexicon of the most frequently used religious hate terms
and tested a variety of classifiers for their study.
More recently, Mubarak and Darwish (2019) extended the
list of offensive words and used it to build a massive train-
ing corpus for automatic offensive tweet detection. They
employed a character-level deep learning algorithm to clas-
sify each tweet as to whether or not it was offensive. In
our work, we combined different levels of word embedding
(character and word levels) and incorporated these into a
supervised learning framework for the task of detecting of-
fensive and hate speech tweets.

3. Data and Methodology
3.1. Data Description
The data released by the organisers included two sub-tasks:
Subtask A (detecting offensive language) and Subtask B
(detecting hate speech). The subtasks shared a common
dataset of 10,000 tweets containing offensive language in
Arabic. For Subtask A, the tweets were manually annotated
using the term ’OFF’ for offensive tweets and ’NOT OFF’
for tweets that were not offensive. In Subtask B, tweets
were identified by ’HS’ for hate speech and ’NOT HS’ for
all other cases. An overview of the dataset is provided in
Tables 1 and 2.

Dataset/Class OFF NOT OFF Total
Training 1410 5590 7000

Dev 179 821 1000
Test 402 1598 2000

Table 1: Distribution of classes in Subtask A

3.2. Preprocessing
We followed the procedure described by a number of re-
searchers (Abu Farha and Magdy, 2019; Duwairi and El-
Orfali, 2014), which involves the following steps:

• Cleaning: All unknown symbols and other characters
are eliminated. For example, other language letters,

Dataset/Class HS NOT HS Total
Training 361 6639 7000

Dev 44 956 1000
Test 101 1899 2000

Table 2: Distribution of classes in Subtask B

diacritics, punctuation, etc. However, emojis are not
removed and each emoji is represented by a vector as
same as words.

• Normalisation of letters:Letters which appeared in
different forms in the original tweets were rendered
into a single form. For example, the “hamza” on char-
acters {

@,

@} was replaced with { @}, and the ‘t marbouta’

{ �è} was replaced with { è}.

• Segmenting { AK
} phrases: One of the most com-
mon phrases used in Arabic offensive language is the
phrase that begins with (ya), followed by an offen-
sive word. A large number of writers on social me-
dia do not use a space between these two words, so
they will be recognized as one word. This issue can-
not be handled even by state-of-the-art tools such as
MADAMIRA (Pasha et al., 2014) and Farasa (Abde-
lali et al., 2016). We therefore treated this situation
by using RegEx to segment any strings starting with
(ya) into two words. However, this approach needs to
improved in our future works to treat words such as
Yasser or Yassin.

3.3. Embedding Models
Word embedding is one of the most important methods that
have been applied recently to many natural language pro-
cessing tasks (Devlin et al., 2014; Zhang et al., 2014; Lin
et al., 2015; Bordes et al., 2014). Word embeddings are
learned representations of text, with words of similar mean-
ings represented in similar ways. An essential element of
this methodology is the concept of employing densely dis-
tributed representations for every word. Every word is en-
coded to a real-valued vector with a few hundred dimen-
sions. We employed different levels of word embedding
models, which are detailed in the following subsections.
Table 3 presents a summary of important information about
each of these models including their sizes and pre-trained
corpus.

Model Corpus Size
Ara2Vec General - Twitter 77M tweets
Mazajak Sentiment - Twitter 250M tweets

Our Model Emotion - Twitter 10M tweets

Table 3: Different pre-trained Arabic word embeddings
used for our systems

3.3.1. Word-level Embeddings
We used two Arabic pre-trained word embeddings:
Ara2Vec (Soliman et al., 2017) as well as Mazajak

92

(Abu Farha and Magdy, 2019). One of the largest open-
source word embeddings is Ara2Vec, consisting of six dif-
ferent word embedding models for the Arabic language.
The researchers derived the training data from three sepa-
rate sources: the Wikipedia, Twitter and Common Crawl
web-pages crawl data. They employed two word-level
models to learn word representations for general NLP tasks.
In addition, we used Mazajak, which is considered the
largest word-level embeddings. They used 250M Arabic
tweets to generate a language model. Although these mod-
els are trained on a large number of words, they cannot cap-
ture all words that can be encountered in the real world.
Due to OOV, the inability to identify words is one of the
main limitations of this word-level model.

3.3.2. Char-level Embeddings
As mentioned in the introduction, the form of dialecti-
cal Arabic words used varies widely, which leads to the
OOV problem. Therefore, effective resources and tools
are needed to better understand and treat these various lin-
guistic forms when targeting offensive language in Arabic
tweets. Our main intuition is that while word-Level em-
beddings seems to give more importance to the semantic
similarity, char-level embeddings are more likely to encode
all variants of a word’s morphology closer in the embedded
space. Table 4 shows an example of offensive Arabic word,
where the similarity of these words is mostly based on mor-
phology for the char-level and semantics for the word-level.
Therefore, combining these two different levels of embed-
dings into a supervised learning framework for the task of
detecting offensive tweets can improve the results.
To learn the morphological features found within each
word, we utilised FastText, a character n-grams model (Bo-
janowski et al., 2017). FastText can learn the vectors of
character n-grams or word parts. Therefore, this feature en-
ables the model to capture words that have similar mean-
ings but have different morphological word formations.
To train this model, we used an in-house unlabelled Ara-
bic dataset (consisting of 10 million tweets) 1. This large
dataset contains varied sentiment and emotional words ex-
pressed in different Arabic dialects. We used these data not
only because of their variety of Arabic dialects but also be-
cause we believe a correlation exists between negative emo-
tions and offensive language words. We used the Gensim
library 2 to implement the FastText method. Gensim is an
open source Python library for natural language processing,
which supports an implementation of different word em-
beddings, including FastText. The input for this char-level
model was a composed of n-grams for each word in a given
tweet. For example: the word (mnHTyn) will be treated as
composed of 3-grams: ’<mn’,’mnh’,...,’yn>’. The ’<’ and
’>’ are special symbols which are appended to indicate the
token start and end. We used the following parameters: 300
for size, five for the windows context and three to ignore
words that had a total frequency of less than three. In ad-
dition, to control the length of character n-grams, we used
three and six. We released our generated char-level model
to be used as a pre-trained language model for applications

1https://github.com/aialharbi/ACWE
2https://radimrehurek.com/gensim/models/fasttext.html

and research relying on Arabic NLP.

Example of an offensive query term:
(mnHT)¡j	JÓ

Mazajak Our char-level model
(wmnHT) ¡j	JÓð (wmnHT) ¡j	JÓð

(q*r) P 	Y�̄ (mnHTh) é¢j	JÓ
(wq*r) P 	Y�̄ð (wmnHTh) é¢j	JÓð

(mtxlf) 	Ê 	j�JÓ (AlmnHT) ¡j	JÖÏ @
(wwqH) l�̄ðð (mnHTyn) 	á�
¢j	JÓ

Table 4: The top five most similar words to a given query
term using char and word level embeddings.

3.4. Classification Models
3.4.1. Logistic Regression
We selected logistic regression (LR) as our baseline model
in order to investigate the lower bound performance that we
should compare. We performed a number of experiments to
compare the impact of the preprocessing techniques men-
tioned in section 3.2. We also used LR to compare the im-
pact of using different features such as emojis, URL and
user tags, and the combination of these features. We then
reported the results with the highest scores to consider us-
ing them with other training models.

3.4.2. XGBoost Classifier
The XGBoost learning model (Chen and Guestrin, 2016) is
frequently employed in different situations because it per-
forms extremely well despite substantial challenges. This
is an algorithm of decision trees in which new trees correct
errors of those trees which are already part of the model.
Trees are added to the model until no further changes can
be made. We inputted tweet vector representations obtained
from an average of real-value word vectors for every word
with matching vector representations derived from the pre-
trained embeddings.

3.4.3. Deep Learning Model
For the deep learning model, we utilized the Long Short-
Term Memory (LSTM) (Hochreiter and Schmidhuber,
1997) which is an enhanced form of the recurrent neural
network. It is able to tackle various problems and pro-
vide robust solutions, for example, to the vanishing gradi-
ent problem. The internal structure of the LSTM consists of
four layers that interact with each other. These four layers
can be described as Forget Gate, Input Gate, Modulation
Gate and Output Gate. In order to achieve superior perfor-
mance, we combined all word embedding models (see sec-
tion 3.3), and these were then used to initialize the weights
of the embedding layer. The weights of the embedding
layer were then updated during training to be fine-tuned to
each subtask. This was then connected to the rest of the
layers in the networks. This embedding layer was followed
by two layers each of 1-D convolutions with kernel size
3 and 128 filters. This was followed by two layers of the
LSTM network, with 256 and 128 filters, respectively. In

93

the LSTM layers, 0.2 dropouts were induced, and 0.2 recur-
rent dropouts were employed. Finally, a dense layer with
one output was introduced by exploiting sigmoid as an ac-
tivation function. For all other layers of the network, the
ReLU activation function was utilized. We used the Adam
optimizer as an optimization function for the network.

4. Experiment Results
The evaluation metrics for this shared task is evaluated
by using Macro-F1. From our experiments on the Dev
dataset of Subtask A, we selected the deep learning model
as the first system and XGBoost algorithm as the second
system. However, in Subtask B, the deep learning model
performed poorly compared to XGBoost algorithm, there-
fore we swapped the proposed systems for this Subtask.One
possible reason for this low performance is due to the sig-
nificant imbalanced classes in Subtask B.
The results of subtask A are presented in Table 5. It can be
seen that our model 1 provided an F1-score of 0.89 for the
Dev dataset and 0.87 for the Test dataset with high precision
and recall rates of 0.90 and 0.87, and 0.90 and 0.85, respec-
tively. Similarly, model 2 produced an F1-score of 0.87
with 0.89 precision and 0.85 recall for the Dev dataset, and
an F1 score of 0.85, with a precision of 0.88, and a recall of
0.84 for the Test dataset.

System F1 Accuracy Precision Recall
Dev dataset

1 0.885 0.935 0.901 0.871
2 0.870 0.928 0.895 0.849

Test dataset
1 0.868 0.920 0.896 0.847
2 0.857 0.913 0.877 0.841

Table 5: Results for both systems with Dev and Test dataset
for the Subtask A

The results of Subtask B are presented in Table 5. It can be
seen that our model 1 provided an F1 score of 0.71 for the
Dev dataset and a 0.74 F1 score for Test dataset with high
precision and recall rates of 0.81 and 0.65, and 0.86 and
0.68, respectively. Similarly, model 2 produced an F1-score
of 0.49 which is a little less, with 0.48 for precision and 0.50
for recall for the Dev dataset, while with the Test dataset,
the F1 score was 0.49, with 0.47 precision, and 0.5 for re-
call. The confusion matrix of three sub-tasks are shown
in fig 1 and 2, which is another way to explain the results
discussed above.
Moreover, we evaluated the use of three pre-trained word
embeddings: two open-source word-level models and our
generated char-level model. We compared the performance
of these models individually and by combining all of them.
Our char-level model and Mazajak obtained an F1-score of
0.87, outperforming Ara2Vec (0.86). Although our gener-
ated model trained only on 10 million tweets, it achieved
the same result as Mazajak, which trained on 250 million
tweets. However, combining all these different levels of
models improved the results by about 2%. We believe that
with this combination, we take advantage of these large

System F1 Accuracy Precision Recall
Dev dataset

1 0.706 0.963 0.818 0.655
2 0.489 0.956 0.478 0.5

Test dataset
1 0.742 0.963 0.864 0.685
2 0.487 0.950 0.475 0.5

Table 6: Results for both systems with Dev and Test dataset
for the Subtask B

Figure 1: Confusion Matrix for system 1 for Sub-task A.

Figure 2: Confusion Matrix for system 1 for Sub-task B.

pre-trained word embeddings (Mazajak and Ara2Vec), and
we also overcome their limitation by incorporating our char
model to deal with the OOV problem. An example of OOV
taken from the dataset of this shared task, an offensive word
(éK. ñJ. Ê¾Ë@ - Alklbwbh), meaning the small female dog, could
not be realised by both aforementioned pre-trained word
embeddings. However, our char-level model was able to
capture its meaning by encoding this word close to other
related words that either have the same semantic meaning
or mostly a different form of this word.

5. Conclusion
In this work, we generated a character-level embeddings
model, which was trained on a massive carefully collected
dataset. We incorporated this model with other pretrained
word embeddings into a supervised learning framework
for the task of detecting offensive and hate speech tweets.

94

While the macro averaged F1 score for the majority base-
line was 0.444 (given by the organisers), we achieved al-
most double this score. In future works, we hope to im-
prove our results by applying more preprocessing tech-
niques and exploiting a list of offensive language words.
Additionally, we will investigate different methods to aug-
ment data into our training datasets to make them more ro-
bust.

6. Bibliographical References
Abdelali, A., Darwish, K., Durrani, N., and Mubarak, H.

(2016). Farasa: A fast and furious segmenter for Ara-
bic. In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational
Linguistics: Demonstrations, pages 11–16, San Diego,
California, June. Association for Computational Linguis-
tics.

Abu Farha, I. and Magdy, W. (2019). Mazajak: An online
Arabic sentiment analyser. In Proceedings of the Fourth
Arabic Natural Language Processing Workshop, pages
192–198, Florence, Italy, August. Association for Com-
putational Linguistics.

Al-Hassan, A. and Al-Dossari, H. (2019). Detection of
hate speech in social networks: a survey on multilin-
gual corpus. In 6th International Conference on Com-
puter Science and Information Technology.

Alakrot, A., Murray, L., and Nikolov, N. S. (2018). To-
wards accurate detection of offensive language in online
communication in arabic. Procedia Computer Science,
142:315 – 320. Arabic Computational Linguistics.

Albadi, N., Kurdi, M., and Mishra, S. (2018). Are they our
brothers? analysis and detection of religious hate speech
in the arabic twittersphere. In 2018 IEEE/ACM Interna-
tional Conference on Advances in Social Networks Anal-
ysis and Mining (ASONAM), pages 69–76, Aug.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T.
(2017). Enriching word vectors with subword informa-
tion. Transactions of the Association for Computational
Linguistics, 5:135–146.

Bordes, A., Chopra, S., and Weston, J. (2014). Question
Answering with Subgraph Embeddings. In Proceedings
of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 615–620.

Chen, T. and Guestrin, C. (2016). Xgboost: A scalable
tree boosting system. In Proceedings of the 22nd acm
sigkdd international conference on knowledge discovery
and data mining, pages 785–794.

Davidson, T., Warmsley, D., Macy, M., and Weber, I.
(2017). Automated hate speech detection and the prob-
lem of offensive language. In Eleventh international
aaai conference on web and social media.

Devlin, J., Zbib, R., Huang, Z., Lamar, T., Schwartz, R.,
and Makhoul, J. (2014). Fast and robust neural network
joint models for statistical machine translation. In Pro-
ceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers),
volume 1, pages 1370–1380.

Duwairi, R. and El-Orfali, M. (2014). A study of the
effects of preprocessing strategies on sentiment anal-

ysis for arabic text. Journal of Information Science,
40(4):501–513.

Hochreiter, S. and Schmidhuber, J. (1997). Long
short-term memory. Neural Comput., 9(8):1735–1780,
November.

Kumar, R., Ojha, A. K., Malmasi, S., and Zampieri, M.
(2018). Benchmarking aggression identification in so-
cial media. In Proceedings of the First Workshop on
Trolling, Aggression and Cyberbullying (TRAC-2018),
pages 1–11, Santa Fe, New Mexico, USA, August. As-
sociation for Computational Linguistics.

Lin, C.-C., Ammar, W., Dyer, C., and Levin, L. (2015).
Unsupervised POS Induction with Word Embeddings. In
Proceedings of the 2015 Conference of the North Amer-
ican Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 1311–
1316.

Malmasi, S. and Zampieri, M. (2017). Detecting hate
speech in social media. In Proceedings of the Interna-
tional Conference Recent Advances in Natural Language
Processing, RANLP 2017, pages 467–472, Varna, Bul-
garia, September. INCOMA Ltd.

Mubarak, H. and Darwish, K. (2019). Arabic offensive
language classification on twitter. In International Con-
ference on Social Informatics, pages 269–276. Springer.

Mubarak, H., Darwish, K., and Magdy, W. (2017). Abu-
sive language detection on arabic social media. In Pro-
ceedings of the First Workshop on Abusive Language On-
line, pages 52–56.

Mubarak, H., Darwish, K., Magdy, W., Elsayed, T., and
Al-Khalifa, H. (2020). Overview of osact4 arabic offen-
sive language detection shared task. In Proceedings of
the 4th Workshop on Open-Source Arabic Corpora and
Processing Tools (OSACT), volume 4.

Pasha, A., Al-Badrashiny, M., Diab, M., El Kholy, A.,
Eskander, R., Habash, N., Pooleery, M., Rambow, O.,
and Roth, R. (2014). MADAMIRA: A fast, compre-
hensive tool for morphological analysis and disambigua-
tion of Arabic. In Proceedings of the Ninth Interna-
tional Conference on Language Resources and Eval-
uation (LREC’14), pages 1094–1101, Reykjavik, Ice-
land, May. European Language Resources Association
(ELRA).

Salameh, M., Bouamor, H., and Habash, N. (2018). Fine-
grained Arabic dialect identification. In Proceedings
of the 27th International Conference on Computational
Linguistics, pages 1332–1344, Santa Fe, New Mexico,
USA, August. Association for Computational Linguis-
tics.

Soliman, A. B., Eissa, K., and El-Beltagy, S. R. (2017).
Aravec: A set of arabic word embedding models for use
in arabic nlp. Procedia Computer Science, 117:256–265.

Waseem, Z., Davidson, T., Warmsley, D., and Weber, I.
(2017). Understanding abuse: A typology of abusive
language detection subtasks. In Proceedings of the First
Workshop on Abusive Language Online, pages 78–84,
Vancouver, BC, Canada, August. Association for Com-
putational Linguistics.

Zampieri, M., Malmasi, S., Nakov, P., Rosenthal, S., Farra,

95

N., and Kumar, R. (2019). SemEval-2019 task 6: Iden-
tifying and categorizing offensive language in social me-
dia (OffensEval). In Proceedings of the 13th Interna-
tional Workshop on Semantic Evaluation, pages 75–86,
Minneapolis, Minnesota, USA, June. Association for
Computational Linguistics.

Zhang, J., Liu, S., Li, M., Zhou, M., and Zong, C. (2014).
Bilingually-constrained phrase embeddings for machine
translation. In Proceedings of the 52nd Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), volume 1, pages 111–121.

96

Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, pages 97–101
with a Shared Task on Offensive Language Detection.

Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020
c© European Language Resources Association (ELRA), licensed under CC-BY-NC

Multi-Task Learning using AraBert for Offensive Language Detection

Marc Djandji, Fady Baly, Wissam Antoun, Hazem Hajj
American University of Beirut

{mgd10, fgb06, wfa07,hh63}@aub.edu.lb

Abstract
The use of social media platforms has become more prevalent, which has provided tremendous opportunities for people to connect but
has also opened the door for misuse with the spread of hate speech and offensive language. This phenomenon has been driving more
and more people to more extreme reactions and online aggression, sometimes causing physical harm to individuals or groups of people.
There is a need to control and prevent such misuse of online social media through automatic detection of profane language. The shared
task on Offensive Language Detection at the OSACT4 has aimed at achieving state of art profane language detection methods for Arabic
social media. Our team “BERTologists” tackled this problem by leveraging state of the art pretrained Arabic language model, AraBERT,
that we augment with the addition of Multi-task learning to enable our model to learn efficiently from little data. Our Multitask AraBERT
approach achieved the second place in both subtasks A & B, which shows that the model performs consistently across different tasks.
Keywords: Offensive Language, Hate Speech, AraBERT, Multilabel, Multitask Learning

1. Introduction
Offensive language, including hate speech, is a violent be-
havior that is becoming more and more pervasive across
public social media platforms (Fosler-Lussier et al., 2012).
Hate speech was found to negatively impact the psycholog-
ical well-being of individuals and to deteriorate inter-group
relations on the societal level (Tynes et al., 2008). As such,
detection and prevention mechanisms should be setup to
deal with such content. Machine learning algorithms can
be employed to automatically detect these behaviors by re-
lying on recent techniques in natural language processing
that have shown propitious performance.
A small number of works targeted the problem of simul-
taneously detecting both hate and offensive speech in Ara-
bic. For example, Haddad et al. (2019) targeted the prob-
lem of hate and offensive speech detection for the Tunisian
dialect using Support Vector Machine (SVM) and Naive
Bayes classifiers trained on hand crafted features. Mulki
et al. (2019) targeted the detection of profane language for
the Levantine dialect using SVM and NB models trained
on hand-crafted features. Although these works provided
insights into the features that could be used for Arabic hate
and offensive speech detection and introduced datasets for
these specific dialects, they are limited to these specific di-
alects and do not target the problem of developing models
that can learn efficiently with little data.
In the 4th Workshop on Open-Source Arabic Corpora and
Processing Tools (OSACT4) (Mubarak et al., 2020) the
shared task on offensive language aimed at offensive and
hate speech detection in Arabic tweets. The task is split
up into two Subtasks: Subtask A) which aimed at detect-
ing whether a tweet is offensive or not and Subtask B)
which aimed at detecting whether a tweet is hate-speech
or not. The organizers labeled a tweet as offensive if it
contained explicit or implicit insults directed towards other
people or inappropriate language. While a tweet labeled as
hate speech contains targeted insults towards a group based
on their nationality, ethnicity, gender, political or sport af-
filiation. Each subtask is evaluated independently with a
macro-F1 score. The dataset had the following issues that
also needed to be addressed: (i) The labeled tweets were

written in dialectal Arabic which had inconsistent writing
style and vocabulary (ii) The class labels were highly im-
balanced especially in the hate speech case where only 5%
of the data was labeled as hate speech.
The models that we experimented with are all based on
fine-tuning the Arabic Bidirectional Encoder Representa-
tion from Transformer (AraBERT) model (AUBMind-Lab,
2020) with different training classification schemes. To en-
able the model to learn from little data and not overfit to the
dominant class, we train AraBERT in a multitask paradigm.
Our contributions can be summarized as follows:

• Comprehensive evaluation including the impact of dif-
ferent sampling techniques and weighted loss func-
tions that penalizes wrong predictions on the minority
class in an attempt to balance the data.

• Propose a new model that combines AraBert and
multi-task learning to achieve accurate predictions and
address data imbalance.

• Propose a model that provides consistent performance
on both hate and offensive speech detection with the
presence of different Arabic dialects.

The rest of the paper is organized as follows: Section 2. re-
views related work on offensive and hate-speech detection.
In section 3., we provide details on our models. Section 4.3.
provides and discusses the results of the conducted exper-
iments. A conclusion of the work is presented in Section
5.

2. Related Work
2.1. Hate and Offensive Speech Detection in

English
Hate Speech Detection Schmidt and Wiegand (2017)
concluded that the most used models are Support Vector
Machine (SVM) and Recurrent Neural Network (RNN)
variant. The most used features are surface features such as
bag of words, word and character n-gram, word generaliza-
tion features such as word embeddings, and reported that
lexicon features are usually used as a baseline. Waseem

97

and Hovy (2016) investigated the usefulness of different
features for hate speech detection, where they found that
among character n-gram, gender, and location features, a
combination of character n-gram and gender features yields
the best macro-F1 score. Recently, different competitions
has been organized to accelerate the development of accu-
rate hate speech detection models. For example, HateEval
competition (Basile et al., 2019) targeted the problem of
detecting hate speech directed towards women and immi-
grants in English and Spanish tweets. The winning team in
English achieved a 65.1% macro-F1 score using an SVM
classifier with an RBF kernel trained on Universal Sentence
Encoder embeddings (Cer et al., 2018). Mandl et al. (2019)
organized a competition for hate speech detection in Hindi,
English, and German, where the winning team for English
hate speech detection has used a Long-short term memory
(LSTM) with attention model.

Offensive Speech Detection Offensive speech detection
was the topic of interest in the last offenseval competition
(Zampieri et al., 2019), where it was shown that BERT (De-
vlin et al., 2018) trained with two epochs and 64 maximum
sequence length achieved the first place outperforming
Convolutional Neural Network (CNN), LSTM and SVM
baselines and an ensemble of LSTM and Bidirectional-
Gated Recurrent Unit (Bi-GRU) on word2vec embeddings.

Hate and Offensive Speech Detection Few works in the
literature have targeted the problem of detecting hate and
offensive tweets. Davidson et al. (2017) provided a dataset
that contains both hate and offensive examples. They pro-
posed the use of a combination of (bi, uni, tri)-gram fea-
tures weighted by TF-IDF, lexicon sentiment score for each
tweet, and Flesch-Kincaid grade level and Flesch Read-
ing Ease scores. It was found that logistic regression with
the L2 norm provided the best results among other shallow
classifiers.
In summary, The most used features in the literature are
character and word n-gram, TF-IDF feature weighing,
Flesch-Kincaid grade, and ease of reading scores, word em-
beddings. The most popular classifiers in the literature are
SVM, Logistic regression, LSTM, CNN, GRU, BERT. The
best performing models are BERT and SVM with RBF ker-
nel on sentence embeddings for offensive and hate-speech
detection, respectively. The current work does not address
the problem of providing a model that can learn efficiently
from little data.

2.2. Hate and Offensive Speech Detection
Hate Speech Detection An extensive overview of the dif-
ferent works on hate speech detection was done by (Al-
Hassan and Al-Dossari, 2019), but very few works in the
literature target the problem of Arabic hate speech detec-
tion. Albadi et al. (2018) introduced the first dataset con-
taining 6.6K Arabic hate-speech tweets targeting religious
groups. The authors compared a lexicon-based classifier,
SVM classifier trained with character n-gram features, and
a Deep Learning approach consisting of a GRU trained on
AraVec embeddings (Soliman et al., 2017). The GRU ap-
proach outperformed all other approaches with a 77% F1
score.

Offensive Speech Detection For offensive speech detec-
tion in Arabic, different approaches can be found in the lit-
erature. Alakrot et al. (2018), introduced a dataset for of-
fensive speech in Arabic collected from 15K YouTube com-
ments. For classifying the different comments, the data was
preprocessed by removing stop words and diacritics, cor-
recting misspelled words, then tokenization and stemming
was performed in order to extract features that are used by
a binary SVM classifier. Mohaouchane et al. (2019), ex-
plored the use of different Deep Learning architectures for
offensive language detection. AraVec embeddings of each
comment were used to train several models: CNN-LSTM,
CNN-BiLSTM with attention, Bi-LSTM, and CNN model
on the dataset proposed in (Alakrot et al., 2018) where the
CNN model was found to provide the best F1 score. In
Mubarak and Darwish (2019) 36 million tweets were col-
lected and used it to train a FastText deep learning model
and SVM classifier on character n-gram features where it
was found that the Arabic FastText DL model provided the
best results.

Hate and Offensive Speech Detection A very limited
number of works targeted the problem of detecting both
hate and offensive speech in Arabic. Haddad et al. (2019)
created a dataset of 6K tweets containing hate and offen-
sive speech in the Tunisian dialect. For binary (offensive,
non-offensive) and multi-class (offensive, hate, or normal)
classification of hate and offensive speech, the authors ex-
tracted several n-gram features from each tweet and applied
Term Frequency (TF) weighing to select the most effective
features. The extracted features were then used to develop
an SVM and Naive Bayesian (NB) classifiers. The NB
classifier provided superior performance with 92.3% and
83.6% F1 scores for binary and multi-class classification,
respectively. Mulki et al. (2019) introduced a dataset of 6K
tweets containing hate and offensive speech in the Levan-
tine dialect. Similar to (Haddad et al., 2019), they extracted
n-gram features with TF weighing and used the features to
develop an SVM and NB classifiers. The NB classifier was
found to be superior.

In summary, The most used features in the literature are
character n-gram, stemming, and tokenization. The most
popular classifiers in the literature are SVM, NB, LSTM,
CNN, GRU. The best performing systems employed a CNN
model and AraVec embeddings for offensive speech detec-
tion and a GRU model on AraVec embeddings for hate-
speech detection. Very little work can be found in the lit-
erature for Arabic hate and offensive speech detection. The
current work does not address the multiple dialects and lit-
tle data challenges for these tasks.

3. Proposed Models
We based our approaches on the recently released
AraBERT model. AraBERT is a Bidirectional representa-
tion of a text sequence, pretrained on a large Arabic corpus
that achieved state of the art performance on multiple Ara-
bic NLP tasks. Our best model is based on augmenting
AraBERT with Multitask Learning, which solves the data
imbalance problem by leveraging information from multi-
ple tasks simultaneously. We also compare our best model

98

with other approaches that are used to solve class imbal-
ance issues such as balanced batch sampling and Multilabel
classification.

Figure 1: The trained Multitask Learning model given an
input offensive tweet

3.1. Multitask Learning (MTL)
Multitask Learning is a learning paradigm that endows the
developed models with the human-like abilities of trans-
ferring the important learned information between related
tasks in what is called inductive transfer of knowledge un-
der the assumption that commonalities exist between the
learned tasks. Furthermore, the main advantages of MTL
are that it reduces the requirements for large amounts of la-
beled data, improves the performance of a task with fewer
data by leveraging the shared information from the related
tasks with more data, and enables the model to be robust to
missing observations for some tasks (Caruana, 1997; Qiu
et al., 2017). Given that little data is available for both
hate and offensive classes, we use an MTL approach to aug-
ment the initial AraBERT model such that it can learn both
tasks simultaneously, which reduces the overfitting effect
induced by the dominant not offensive and not hate exam-
ples. Our MTL-Arabert model consists of two components
as can be seen in Figure 1: a part that gets trained by all
the tasks’ data in order to extract a general feature repre-
sentation for all the tasks and a task-specific part that gets
trained only by the task-specific examples to capture the
task-specific characteristics.

1. Shared Part: Contains the pretrained AraBert model
that gets tuned by the combined loss of both tasks in
order to learn a shared set of information between both
tasks

2. Task-specific layers: These consist of a task-specific
dense layer that are dedicated to extracting the unique
information per task.

3.2. Other Approaches
Multilabel Classification Multilabel classification is the
task of classifying a single instance with multiple labels.

We considered using this approach for two main reasons.
Firstly, the subtasks are very coherent as they both try to
solve problems that behaviorally fall under the same gen-
eral idea, detecting violent behaviors. Secondly, consider-
ing that subtask B has very little hate speech labeled data
and that all hate speech data is also labeled as offensive, we
assumed that a multilabel classifier would help leverage and
provide a better understanding of the hate speech instances
as they are being trained simultaneously with the offensive
instances. We also explored oversampling the Task B in-
stances and made sure that each training batch included
samples of hate speech data.

Weighted Cross-Entropy loss Cross-entropy loss is use-
ful in classification tasks, since the loss increases as the
predicted probability diverges from the actual label. The
Weighted version, penalizes each class differently, accord-
ing to the given weight. The weighted cross-entropy loss of
a class i with weight Wi is shown in 1, the weight vector is
given in 2

L(xi) = −Wi log

(
exp(xi)∑
j exp(xj)

)
(1)

Wi =
NoSamples

NoClasses× Count(i)
(2)

Balanced batch sampling We re-sample the dataset
in such a way that we under-sample the majority class
and over-sample the minority class at the same time.
Which reduces information loss due to under-sampling,
and minimizes overfitting due to over-sampling, since the
over/under-sampling is done to a lesser extent compared to
independently implementing over/under-sampling.

4. Experiments
4.1. Data Description
The dataset for both tasks is the same containing 10K
tweets that were annotated for offensiveness with labels
(OFF or NOT OFF) and hate speech with labels (HS or
NOT HS). The data was split by the competition organiz-
ers into 70% training set, 10% development set, and 20%
test set. Table 1 shows the data distribution among the dif-
ferent labels and splits. By examining Table 1, it can be
seen that the data is very imbalanced having only 5% of the
examples labeled as hate speech and 20% of the examples
labeled as offensive in the training dataset, which makes
the tasks much harder and calls for methods that can learn
efficiently from little data.

Table 1: The data distribution for both tasks. The first two
rows show the class distribution of task A. The second two
rows show the class distribution of task B

Class Training Developement

NOT OFF 5468 821
OFF 1371 179

NOT HS 6489 956
HS 350 44

99

4.2. Preprocessing
For preprocessing the data, we tokenized Arabic words
with the Farasa Arabic segmenter (Abdelali et al., 2016)
so that the input would be compatible with the AraBERT
input. For example, ” �é�PYÖÏ @ - Almadrasa” becomes
” �è + �PYÓ + È@ - Al+ madras +T”. We also removed all
mentions of the user tokens “USER”, retweet mentions “RT
USER:”, URL tokens, the “<LF>” tokens, diacritics, and
emojis. As for hashtags, we replaced the underscore within
a hashtag “ ” with a white space to regain separate under-
standable tokens, and we pad the hashtag with a whites-
pace as well. For instance, ”ú
æ.

	£ ñK.

@” turns into ”ú
æ.

	£ ñK.

@#”.

We should also mention that these preprocessing steps are
precisely applied to all the experiments conducted for both
subtasks.

4.3. Results
Both tasks were evaluated using the unweighted-average F1
of all classes, which is the macro-F1 score. Given the high
imbalance in the dataset and that the macro-F1 score is pe-
nalized by the minority class, achieving a high macro-F1
score is challenging. Table 2 and 3 provide the results of
our models on the development and test set, respectively.
All three models were trained on the whole training set for
five epochs with a batch size of 32 and a sequence length of
256 in a GPU-accelerated environment. The epoch-model
that achieved the highest macro-F1 score on the dev-set is
reported in Table 2.

Table 2: The performance of the different approaches on
the development set for both tasks using the Macro-F1
score metric. It can be seen that the Multitask approach
outperforms all other approaches

Model Macro-F1
Offensive Language Hate Speech

AraBERT 89.56 80.60
AraBERT-S* 87.24 79.42

AraBERT-W** 88.17 79.85
AraBERT-SW*** 90.02 78.13

Multilable AraBERT 89.41 79.83
Multilable AraBERT* 89.55 80.81
Multitask AraBERT 90.15 83.41

* AraBERT with balanced batch sampling
** AraBERT with weighted loss
*** AraBERT with both balanced batch sampling and weighted loss

Table 3: The performance of the Multitask Learning (MTL)
model on the test set for both tasks using the Macro-F1
score metric.

Model Task A: Macro-F1 Task B: Macro-F1
Multitask AraBERT 90 82.28

We only show the results of our best MTL model on the
test data in Table 3 as provided by the competition organiz-
ers. Our Multitask approach shows consistent performance
on both the dev and test sets across both tasks. The results
show that training both tasks jointly in a Multitask setting
improves the model generalizability with the presence of
little data for each task. The results for the hate speech task

are not as good as the offensive language task due to the
minimal number of hate speech training examples, which
constitute 5% of the training data. Although when com-
bined, balanced batch sampling and weighted loss achieved
the second best results on task A. When used separately,
both approaches performed worse than the baseline model.
This might be due to the overfitting effect of oversampling
the minority class.
While examining the false predictions of our MTL model
on the dev set, we noticed that the model was classifying
tweets with a negative sentiment as offensive tweets. While
it is intuitive for offensive tweets to have a negative sen-
timent by nature, our model did not capture the fact that
not all tweets with negative sentiment are offensive. On
another note, the use of words that are offensive in a non-
offensive context was found to confuse the model. For ex-
ample, the words ”I. Ê¿” and ”Õæ

JË” in the following tweets
(720, 828), respectively, were not used with an offensive in-
tent and made the model classify both tweets as offensive.
We also found that the model has learned that a tweet can-
not be hate-speech unless it is offensive, which would be
ideal in case the offensive prediction was perfect. How-
ever, in our case, this also made the model falsely predict
three tweets as hate-speech after they were falsely predicted
as offensive. Furthermore, tweets 785, 881 in the dev set
were found to be mislabeled as hate speech, and the model
was able to detect this error showing a good understanding
of what characterizes hate speech in a tweet. Finally, we
found our model to falsely predict tweets that mostly con-
tain mockery, sarcasm, or quoting other offensive/hateful
statements.
Future work should explore the use of data augmenta-
tion techniques such as adversarial examples and learning
from little data approaches such as meta-learning in order
to enable state-of-the-art Natural Language Understanding
(NLU) models such as AraBERT to be trained efficiently
with little data.

5. Conclusion

The presence of hate speech and offensive language on Ara-
bic social platforms is a major issue affecting the social
lives of many individuals in the Arab world. The lack of
annotated data and the presence of different dialects con-
stitutes major challenges for automated Arabic offensive
and hate speech detection systems. In this paper, we pro-
posed the use of pre-trained Arabic BERT for accurate clas-
sification of the different tweets. We further augment the
AraBERT model using Multitask Learning to enable the
model to jointly learn both tasks efficiently with the pres-
ence of little labeled data per-task. Our results show the su-
periority of our proposed Multitask AraBERT model over
single-task and Multilabel AraBERT. We explore different
methods in order to cope with the presence of imbalanced
training classes such as the use a weighted loss function
and data re-sampling techniques, but found these methods
to not introduce any improvements. Our method achieved
the second place on both tasks in the OSACT4 competi-
tion.

100

6. References
Abdelali, A., Darwish, K., Durrani, N., and Mubarak, H.

(2016). Farasa: A fast and furious segmenter for ara-
bic. In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational
Linguistics: Demonstrations, pages 11–16.

Al-Hassan, A. and Al-Dossari, H. (2019). Detection of
hate speech in social networks: a survey on multilin-
gual corpus. In 6th International Conference on Com-
puter Science and Information Technology.

Alakrot, A., Murray, L., and Nikolov, N. S. (2018). To-
wards accurate detection of offensive language in online
communication in arabic. Procedia computer science,
142:315–320.

Albadi, N., Kurdi, M., and Mishra, S. (2018). Are they our
brothers? analysis and detection of religious hate speech
in the arabic twittersphere. In 2018 IEEE/ACM Interna-
tional Conference on Advances in Social Networks Anal-
ysis and Mining (ASONAM), pages 69–76. IEEE.

AUBMind-Lab. (2020). https://github.com/aub-
mind/arabert.

Basile, V., Bosco, C., Fersini, E., Nozza, D., Patti, V.,
Pardo, F. M. R., Rosso, P., and Sanguinetti, M. (2019).
Semeval-2019 task 5: Multilingual detection of hate
speech against immigrants and women in twitter. In Pro-
ceedings of the 13th International Workshop on Semantic
Evaluation, pages 54–63.

Caruana, R. (1997). Multitask learning. Machine learn-
ing, 28(1):41–75.

Cer, D., Yang, Y., Kong, S.-y., Hua, N., Limtiaco, N., John,
R. S., Constant, N., Guajardo-Cespedes, M., Yuan, S.,
Tar, C., et al. (2018). Universal sentence encoder. arXiv
preprint arXiv:1803.11175.

Davidson, T., Warmsley, D., Macy, M., and Weber, I.
(2017). Automated hate speech detection and the prob-
lem of offensive language. In Eleventh international
aaai conference on web and social media.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2018). Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint
arXiv:1810.04805.

Fosler-Lussier, E., Riloff, E., and Bangalore, S. (2012).
Proceedings of the 2012 conference of the north ameri-
can chapter of the association for computational linguis-
tics: Human language technologies. In Proceedings of
the 2012 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies.

Haddad, H., Mulki, H., and Oueslati, A. (2019). T-hsab:
A tunisian hate speech and abusive dataset. In Inter-
national Conference on Arabic Language Processing,
pages 251–263. Springer.

Mandl, T., Modha, S., Majumder, P., Patel, D., Dave, M.,
Mandlia, C., and Patel, A. (2019). Overview of the
hasoc track at fire 2019: Hate speech and offensive con-
tent identification in indo-european languages. In Pro-
ceedings of the 11th Forum for Information Retrieval
Evaluation, pages 14–17.

Mohaouchane, H., Mourhir, A., and Nikolov, N. S. (2019).

Detecting offensive language on arabic social media us-
ing deep learning. In 2019 Sixth International Confer-
ence on Social Networks Analysis, Management and Se-
curity (SNAMS), pages 466–471. IEEE.

Mubarak, H. and Darwish, K. (2019). Arabic offensive
language classification on twitter. In International Con-
ference on Social Informatics, pages 269–276. Springer.

Mubarak, H., Darwish, K., Magdy, W., Elsayed, T., and Al-
Khalifa, H. (2020). Overview of osact4 arabic offensive
language detection shared task. 4.

Mulki, H., Haddad, H., Ali, C. B., and Alshabani, H.
(2019). L-hsab: A levantine twitter dataset for hate
speech and abusive language. In Proceedings of the
Third Workshop on Abusive Language Online, pages
111–118.

Qiu, M., Zhao, P., Zhang, K., Huang, J., Shi, X., Wang,
X., and Chu, W. (2017). A short-term rainfall prediction
model using multi-task convolutional neural networks.
In 2017 IEEE International Conference on Data Mining
(ICDM), pages 395–404. IEEE.

Schmidt, A. and Wiegand, M. (2017). A survey on hate
speech detection using natural language processing. In
Proceedings of the Fifth International Workshop on Nat-
ural Language Processing for Social Media, pages 1–10.

Soliman, A. B., Eissa, K., and El-Beltagy, S. R. (2017).
Aravec: A set of arabic word embedding models for use
in arabic nlp. Procedia Computer Science, 117:256–265.

Tynes, B. M., Giang, M. T., Williams, D. R., and Thomp-
son, G. N. (2008). Online racial discrimination and psy-
chological adjustment among adolescents. Journal of
adolescent health, 43(6):565–569.

Waseem, Z. and Hovy, D. (2016). Hateful symbols or hate-
ful people? predictive features for hate speech detec-
tion on twitter. In Proceedings of the NAACL student
research workshop, pages 88–93.

Zampieri, M., Malmasi, S., Nakov, P., Rosenthal, S., Farra,
N., and Kumar, R. (2019). Semeval-2019 task 6: Identi-
fying and categorizing offensive language in social me-
dia (offenseval). arXiv preprint arXiv:1903.08983.

101

Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, pages 102–108
with a Shared Task on Offensive Language Detection.

Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020
c© European Language Resources Association (ELRA), licensed under CC-BY-NC

Leveraging Affective Bidirectional Transformers for Offensive Language
Detection

AbdelRahim Elmadany, Chiyu Zhang, Muhammad Abdul-Mageed, Azadeh Hashemi
{a.elmadany,muhammad.mageeed,azadeh.hashemi}@ubc.ca, chiyuzh@mail.ubc.ca

Natural Language Processing Lab
University of British Columbia

Abstract
Social media are pervasive in our life, making it necessary to ensure safe online experiences by detecting and removing offensive and
hate speech. In this work, we report our submission to the Offensive Language and hate-speech Detection shared task organized with the
4th Workshop on Open-Source Arabic Corpora and Processing Tools Arabic (OSACT4). We focus on developing purely deep learning
systems, without a need for feature engineering. For that purpose, we develop an effective method for automatic data augmentation
and show the utility of training both offensive and hate speech models off (i.e., by fine-tuning) previously trained affective models (i.e.,
sentiment and emotion). Our best models are significantly better than a vanilla BERT model, with 89.60% acc (82.31% macro F1) for
hate speech and 95.20% acc (70.51% macro F1) on official TEST data.

1. Introduction
Social media are widely used at a global scale. Com-
munication between users from different backgrounds,
ideologies, preferences, political orientations, etc. on
these platforms can result in tensions and use of offensive
and hateful speech. This negative content can be very
harmful, sometimes with real-world consequences. For
these reasons, it is desirable to control this type of uncivil
language behavior by detecting and removing this destruc-
tive content.

Although there have been a number of works on detecting
offensive and hateful content in English (e.g. (Agrawal and
Awekar, 2018; Badjatiya et al., 2017; Nobata et al., 2016)),
works on many other languages are either lacking or rare.
This is the case for Arabic, where there have been only
very few works (e.g., (Alakrot et al., 2018; Albadi et al.,
2018; Mubarak et al., 2017; Mubarak and Darwish, 2019)).
For these motivations, we participated in the Offensive
Language and hate-speech Detection shared task organized
with the 4th Workshop on Open-Source Arabic Corpora
and Processing Tools Arabic (OSACT4).

Offensive content and hate speech are less frequent online
than civil, acceptable communication. For example, only
19% and ∼ 5% of the released shared task data are of-
fensive and hate speech, respectively. This is the case in
spite of the fact that the data seems to have been collected
based on trigger seeds that are more likely to accompany
this type of harmful content. As such, it is not easy to ac-
quire data for training machine learning systems. For this
reason, we direct part of our efforts to automatically aug-
menting training data released by the shared task organizers
(Section 3.1.). Our experiments show the utility of our data
enrichment method. In addition, we hypothesize trained af-
fective models can have useful representations that might
be effective for the purpose of detecting offensive and hate-
ful content. To test this hypothesis, we fine-tune one senti-
ment analysis model and one emotion detection model on
our training data. Our experiments support our hypothesis
(Section 4.). All our models are based on the Bidirectional

Encoder from Transformers (BERT) model. Our best mod-
els are significantly better than competitive baseline based
on vanilla BERT. Our contributions can be summarized as
follows:

• We present an effective method for automatically aug-
menting training data. Our method is simple and
yields sizable additional data when we run it on a large
in-house collection.

• We demonstrate the utility of fine-tuning off-the-shelf
affective models on the two downstream tasks of of-
fensive and hate speech.

• We develop highly accurate deep learning models for
the two tasks of offensive content and hate speech de-
tection.

The rest of the paper is organized as follows: We intro-
duce related works in Section 2., shared task data and our
datasets in Section 3., our models in Section 4., and we
conclude in Section 5..

2. Related Work
Thematic Focus: Research on undesirable content shows
that social media users sometimes utilize profane, obscene,
or offensive language (Jay and Janschewitz, 2008; Wiegand
et al., 2018); aggression (Kumar et al., 2018; Modha et al.,
2018); toxic content (Georgakopoulos et al., 2018; Fortuna
et al., 2018; Zampieri et al., 2019), and bullying (Dadvar
et al., 2013; Agrawal and Awekar, 2018; Fortuna et al.,
2018).

Overarching Applications: Several works have taken
as their target detecting these types of negative content
with a goal to build applications for (1) content filtering
or (2) quantifying the intensity of polarization (Barberá
and Sood, 2015; Conover et al., 2011), (3) classifying
trolls and propaganda accounts that often use offensive
language (Darwish et al., 2017), (4) identifying hate
speech that may correlate with hate crimes (Nobata et al.,
2016), and (5) detecting signals of conflict, which are often

102

Dataset #tweets # NOT OFF # OFF OFF% # NOT HS # HS HS %
Shard-task data TRAIN 6994 5585 1409 20% 6633 361 5%

DEV 1000 821 179 18% 956 44 4%
TEST 2000 - - - - - -

Augmented data AUG-TRAIN-HS 209780 - - - 199291 10489 5%
AUG-TRAIN-OFF 480777 215365 265413 55% - - -

Table 1: Offensive (OFF) and Hate Speech (HS) Labels distribution in datasets

preceded by verbal hostility (Chadefaux, 2014).

Methods: A manual way for detecting negative language
can involve building a list of offensive words and then
filtering text based on these words. As Mubarak and
Darwish (2019) also point out, this approach is limited
because (1) offensive words are ever evolving with new
words continuously emerging, complicating the mainte-
nance of such lists and (2) the offensiveness of certain
words is highly context- and genre-dependent and hence a
lexicon-based approach will not be very precise. Machine
learning approaches, as such, are much more desirable
since they are more nuanced to domain and also usually
render more accurate, context-sensitive predictions. This is
especially the case if there are enough data to train these
systems.

Most work based on machine learning employs a super-
vised approach at either (1) character level (Malmasi and
Zampieri, 2017), (2) word level (Kwok and Wang, 2013),
or (3) simply employ some representation incorporating
word embeddings (Malmasi and Zampieri, 2017). These
studies use different learning methods, including Naive
Bayes (Kwok and Wang, 2013), SVMs (Malmasi and
Zampieri, 2017), and classical deep learning such as
CNNs and RNNs (Nobata et al., 2016; Badjatiya et
al., 2017; Alakrot et al., 2018; Agrawal and Awekar,
2018). Accuracy of the aforementioned systems range
between 76% and 90%. It is also worth noting that
some earlier works (Weber et al., 2013) use sentiment
words as features to augment other contextual features.
Our work has affinity to this last category since we also
leverage affective models trained on sentiment or emotion
tasks. Our approach, however, differs in that we build
models free of hand-crafted features. In other words, we
let the model learn its representation based on training
data. This is a characteristic attribute of deep learning
models in general. 1 In terms of the specific information
encoded in classifiers, researchers use profile information
in addition to text-based features. For example, Abozi-
nadah (2017) apply SVMs on 31 features extracted from
user profiles in addition to social graph centrality measures.

Methodologically, our work differs in three ways: (1) we
train offensive and hate speech models off affective models
(i.e., we fine-tune already trained sentiment and emotion
models on both the offensive and hate speech tasks). (2)

1Of course hand-crafted features can also be added to a repre-
sentation fed into a deep learning model. However, we do not do
this here.

We apply BERT language models on these two tasks. We
also (3) automatically augment offensive and hate speech
training data using a simple data enrichment method.

Arabic Offensive Content: Very few works have been
applied to the Arabic language, focusing on detecting
offensive language. For example, (Mubarak et al., 2017)
develop a list of obscene words and hashtags using patterns
common in offensive and rude communications to label
a dataset of 1,100 tweets. Mubarak and Darwish (2019)
applied character n-gram FasText model on a large dataset
(3.3M tweets) of offensive content. Our work is similar
to Mubarak and Darwish (2019) in that we also automati-
cally augment training data based on an initial seed lexicon.

3. Data
In our experiments, we use two types of data: (1) data
distributed by the Offensive Language Detection shared
task and (2) an automatically collected dataset that we
develop (Section 3.1.). The shared task dataset comprises
10,000 tweets manually annotated for two sub-tasks: of-
fensiveness (Sub task A) 2 and hate speech (Sub task B) 3.
According to shared task organizers, 4, offensive tweets
in the data contain explicit or implicit insults or attacks
against other people, or inappropriate language. Organizers
also maintain that hate speech tweets contains insults or
threats targeting a specific group of people based on the
nationality, ethnicity, gender, political or sport affilia-
tion, religious belief, or other common characteristics
of such a group. The dataset is split by shared task
organizers into 70% TRAIN, 10% DEV, and 20% TEST.
Both labeled TRAIN and DEV splits were shared with
participating teams, while tweets of TEST data (without la-
bels) was only released briefly before competition deadline.

It is noteworthy that the dataset is imbalanced. For
offensiveness (Sub task A), only 20% of the TRAIN split
are labeled as offensive and the rest is not offensive.
For hate speech (Sub task B), only 5% of the tweets
are annotated as hateful. Due to this imbalanced, the
official evaluation metric is macro F1 score. Table 1 shows
the size and label distribution in the shared task data splits. 5

2https://competitions.codalab.org/
competitions/22825.

3https://competitions.codalab.org/
competitions/22826

4http://edinburghnlp.inf.ed.ac.uk/
workshops/OSACT4/.

5Table 1 also shows size and class distribution for our auto-

103

The following are example tweets from the shared task
TRAIN split.

Examples of offensive and hateful tweets:

1) 	à@ YgB@ ÐñK
 ��m�'. Yg

@ AK
 Yg@ð AK
 H. P AK

. @ñ»PA �� 	áÒJ
Ë @ ÈA 	®£@ Ég. B . 	á�
ÓQj. ÖÏ @ Xñª� ú

	æK. ½Êî�E

Oh my Lord, O One and Only, destroy the family of
Sau‘d, for they are the criminals who put children of
Yemen to suffer. 6

2) 	á�
J
 	K A 	JJ. ÊË @ ú
æ� 	�Q 	®Ë @ PAÒª�J�B@ �HC 	� 	̄ AK
 ú

	GA 	JJ. Ë AK

�H@QëA« Ñî 	E @ñ�	� 	àñÊ 	ª ���
 i. J
Ê	mÌ'AK.
Hey, you Lebanese guy, you’re the wastes of the
French colonizers. The Lebanese in the Gulf put their
women in prostitution work.

Examples for offensive but not hate-speech tweets:

3) Aî 	E @ ÕºK. P @ðYÔg

@. . Q�KA� AK
 . . 	J
¢Ë AK

é 	®�̄ @ð Aî 	E @ ñË 	J
» �èYª�®�J�Ó
Oh my lord... Thank God she has disability. What
would have happened if she were not disabled?

4) �I	K@ ñ 	J� 	àñk� AK
 éK
 @ A 	JÊJ
J. 	m× øQ�K AK

ø
 X ½J. 	Jk. ú
ÎË @ �éK. ñJ. Ê¾Ë@ ð
I wonder what you, and this little pitch by your side,
are hiding for us, John Snow?

Examples for not offensive and not hate-speech tweets:

5) 	àñ»

@ ø
 YK. AÓ AÓ@ AK
 Ñë

B@ ½�KAJ
m�'. 	àñºK. AK

Either I become the most important in your life, or I
become nothing at all.

6) É�«AK
 ¼YK
 ÕÎ��� éJ
ÖÞ
�� AK
 @ 	X ñÊmÌ'@ É¿ B@ ���
@

ú
æ
�� É¿ AK
 é 	K A 	J 	̄ AK
 é 	kAJ.£ AK
 èQº ��AK
 èñÊgAK
 é¢ ���̄ AK

Wow! How wonderful this food is, Sumaia! You’re
such a honey, beauty, sweetie, and good cook! You’re
are artist! You’re everything!

3.1. Data Augmentation
As explained earlier, the positive class in the offensive

sub-task (i.e., the category ‘offensive’) is only 20% and
in the hateful sub-task (i.e., the class ‘hateful’) it is only
5%. Since our goal is to develop exclusively deep learning

matically extracted dataset, to which we refer to as augmented
(AUG).

6Original tweets can be run-on sentences, lack proper gram-
matical structures or punctuation. In presented translation, for
readability, while we maintain the meaning as much as possible,
we render grammatical, well-structured sentence.

models, we needed to extend our training data such that
we increase the positive samples. For this reason, we
develop a simple method to automatically augment our
training data. Our method first depends on extracting
tweets that contain any of a seed lexicon (explained below)
and satisfy a predicted sentiment label condition. We
hypothesize that both offensive and hateful content would
carry negative sentiment and so it would be intuitive to
restrict any automatically extracted tweets to those that
carry these negative sentiment labels. To further test this
hypothesis, we analyzing the distribution of the sentiment
classes in the TRAIN split using an off-the-shelf tool,
AraNet (Abdul-Mageed et al., 2020). As shown in Figure
3, AraNet assigns sensible sentiment labels to the data.
For the ‘offensive’ class, the tool assigns 65% negative
sentiment tags and for the non-offensive class it assigns
only 60% positive sentiment labels. 7 For the hate speech
data, we find that AraNet assigns 72% negative labels to
the ‘hateful’ class and 55% positive sentiment labels for
the ‘non-hateful’ class. Based on this analysis, we decide
to impose a sentiment-label condition on the automatically
extended data as explained earlier. In other words, we only
choose ‘offensive’ and ‘hateful’ class data from tweets
predicted as negative sentiment. Similarly, we only choose
‘non-offensive’ and ‘non-hateful’ tweets assigned positive
sentiment labels by AraNet. We now explain how we
extend the dataset. We now explain our approach to extract
tweets with an offensive and hateful seed lexicon.

To generate a seed lexicon, we extract all words that follow
the Ya (Oh, you) in the shared task TRAIN split positive
class in the two sub-tasks (i.e., ‘offensive’ and ‘hateful’).
The intuition here is that the word Ya acts as a trigger word
that is likely to be followed by negative lexica. This gives
us a set of 2,158. We find that this set can have words that
are neither offensive nor hateful outside context and so we
manually select a smaller set of 352 words that we believe
are much more likely to be effective offensive seeds and
only 38 words that we judge as more suitable carriers of
hateful content. Table 2 shows samples of the offensive
and hateful seeds. Table 3 shows examples of seeds in
our initial larger set that we filtered out since these are
less likely to carry negative meaning (whether offensive or
hateful).

To extend the offensive and hateful tweets, we use 500K
randomly sampled, unlabeled, tweets from (Abdul-Mageed
et al., 2019) that each have at least one occurrence of the
trigger word Ya and at least one occurrence of a word
from either of our two seed lexica (i.e., the offensive and
hateful seeds). 8 We then apply AraNet (Abdul-Mageed
et al., 2020) on this 500K collection and keep only
tweets assigned negative sentiment labels. Tweets that

7AraNet (Abdul-Mageed et al., 2020) assigns only positive and
negative sentiment labels. In other words, it does not assign neu-
tral labels.

8The 500K collection is extracted via searching a larger sam-
ple of ∼ 21M tweets that all have the trigger word Ya. This corpus
is also taken from (Abdul-Mageed et al., 2019). Note that a tweet
can have both an offensive and a hateful seed.

104

Arabic Offensive English Arabic Hateful English
�I�
J
 	k AK
 You, fat ass! ø
 ðAj. 	JÓ AK
 You’re Manjawi

¨A«P AK
 You’re mobby ø
 @ðPY	KX AK
 You’re Dandarawi

XQå���JÓ AK
 You’re a tramp 	á�
K
Xñª� AK
 You Saudis
	á�
 	K Am.× AK
 You’re crazy ú
æ

��AJ.kX AK
 You’re Dahbashi
	àAªk. AK
 You, hungry man! ù

KA«X@ AK
 You, false claimer

èQk. A 	̄ AK
 You, morally loose ú

�Gñk AK
 You, Houthi

ÈAÖÞ�� AK
 Oh, whore ù
 ªJ
 �� AK
 You, Shiite

éËAK. 	P AK
 You, junky ÉJ
Ô« AK
 You, spay
Õç'
 @ AîE. AK
 You, animals ú
m.

� 	' @ñ 	k@ AK
 You, Ikhwangis
	�J
 	ªK. AK
 You, hateful 	à@ñ 	k@ AK
 You, Ikhwan

é	m��ð AK
 You, dirty woman ©J
K. @Qm.Ì'@ 	áK. @ AK
 You, son of tramps

éJ
 	«A£ AK
 You, tyrant Ð@QmÌ'@ 	áK. @ AK
 You, bastard
Qk. A 	̄ AK
 You, salacious A 	K 	QË @ 	áK. @ AK
 You, bastard
É 	® 	ªÓ AK
 You, idiot éK
XñîD
Ë @ 	áK. @ AK
 You, son of Jewish woman
éÔ 	gP AK
 You, silly woman éJ
 	K @ 	QË @ 	áK. @ AK
 You, son of adulterous woman
�m�	' AK
 You, sinister éÓñëñÖÏ @ 	áK. @ AK
 You, son of deceived woman
ZAJ. 	« AK
 You, stupid head �QªË@ 	áK. @ AK
 You, son of pimp

I. �
J» AK
 You, gloomy head é» A 	J�JÖÏ @ 	áK. @ AK
 You, son of adulterous
@QÓ AK
 You, unworthy woman �H@PAÓ@ AK
 You, Emirate

ù

�®Ôg AK
 You, fools ø
 XAm��' @ AK
 You, Itihadi

Table 2: Examples of offensive and hateful seeds in our lexica

carry offensive seeds are labeled as ‘offensive’ and those
carrying hateful seeds are tagged as ‘hateful’. This gives
us 265,413 offensive tweets and 10,489 hateful tweets.
For reference, the majority (%=67) of the collection
extracted with our seed lexicon are assigned negative
sentiment labels by AraNet. This reflects the effectiveness
of our lexicon as it matches our observations about the dis-
tribution of sentiment labels in the shared task TRAIN split.

To add positive class data (i.e., ‘not-offensive’ and ‘not-
hateful’) to this augmented collection, we randomly sample
another 500K tweets that carry Ya from (Abdul-Mageed
et al., 2019) that do not carry any of the two offensive
and hateful seed lexica. We apply AraNet on these tweets
and keep only tweets assigned a positive sentiment label
(%=70). We use 215,365 tweets as ‘non-offensive’ but
only 199,291 as ‘non-hateful’. 9 Table 1 shows the size and
distribution of class labels in our extended dataset.

Figure 2 and Figure 1 are word clouds of unigrams in our
extended training data (offensive and hateful speech, re-
spectively) after we remove our seed lexica from the data.
The clouds show that the data carries lexical cues likely to
occur in each of the two classes (offensive and hateful). Ex-
amples of frequent words in the offensive class include dog,
animal, son of, mother, dirty woman, monster, mad, and on
you. Examples in the hateful data include shut up, dogs, son
of, animal, dog, haha, and for this reason. We note that the

9We decided to keep only 199,291 ‘non-hateful’ tweets since
our augmented ‘hateful’ class comprises only 10,489 tweets.

hateful words do not include direct names of groups since
these were primarily our seeds that we removed before we
prepare the word cloud. Overall, the clouds provide sensi-
ble cues of our phenomena of interest across the two tasks.

Figure 1: A word cloud of unigrams in our extended train-
ing offensive data (AUG-TRAIN-OFF).

4. Models

4.1. Data Pre-Processing
We perform light Twitter-specific data cleaning (e.g.,
replacing numbers, usernames, hashtags, and hyperlinks
by unique tokens NUM, USER, HASH, and URL respec-
tively). We also perform Arabic-specific normalization
(e.g., removing diacritics and mapping various forms of
Alef and Yeh each to a canonical form). For text tokeniza-
tion, we use byte-pair encoding (PBE) as implemented in

105

Arabic Non-OFF/Non-HS English
ÈA¢�. @ AK
 You, heros

	àA 	J 	̄ AK
 You, artist
©J
Ò��. « AK
 You, Absemee’

ÕË @ A« AK
 Oh, people
ú
æ� 	JÓ AK
 Oh, forgotten man

¼Y	J«AÓ AK
 You have a lot
AÓAÓ AK
 Oh, mum
PQÔ�̄ AK
 You, beautiful lady
YÓAg. AK
 You, wonderful man
É 	®£ AK
 Oh, child
é¢�̄ AK
 Oh, delicate lady

Aî �DÊJ
k AK
 You, lulled
Aî �DK
 @ AK
 Oh you. . .
ú
«@P AK
 You, caregiver

ú
æ. J
J.k AK
 Oh, darling

H. P AK
 Oh, my Lord
Yg@ð AK
 Oh, the One
�A	K AK
 You, people
Q 	k@ AK
 Oh, the Last
AK. AK. AK
 Oh, daddy

Table 3: Examples of non-offensive/non-hateful seeds fil-
tered out from our lexica.

Figure 2: A word cloud of unigrams in our extended train-
ing hate speech data (AUG-TRAIN-HS).

Multilingual Cased BERT model.

4.2. BERT
Our experiments are based on BERT-Base Multilingual
Cased model released by (Devlin et al., 2018) 10. BERT
stands for Bidirectional Encoder Representations from
Transformers. It is an approach for language modeling that
involves two self-supervised learning tasks, (1) masked
language models (MLM) and (2) next sentence predication
(NSP). BERT is equipped with an Encoder architecture
which naturally conditions on bi-directional context.
It randomly masks a given percentage of input tokens
and attempts to predict these masked tokens. (Devlin
et al., 2018) mask 15% of the tokens (the authors use

10https://github.com/google-research/bert/
blob/master/multilingual.md.

Figure 3: Distribution of Negative and Positive Tweets after
applied AraNet on Shared-Task TRAIN Data

word pieces) and use the hidden states of these masked
tokens from last layer for prediction. To understand
the relationship between two sentences, the BERT also
pre-trains with a binarized NSP task, which is also a type
of self-supervises learning. For the sentence pairs (e.g.,
A-B) in pre-training examples, 50% of the time B is the
actual next sentence that follows A in the corpus (positive
class) and 50% of the time B is a random sentence from
corpus (negative class). Google’s pre-trained BERT-Base
Multilingual Cased model is trained on 104 languages
(including Arabic) with 12 layers, 768 hidden units each,
12 attention heads. The model has 119,547 shared word
pieces vocabulary, and was pre-trained on the entire
Wikipedia for each language.

In our experiments, we train our classification models
on BERT-Base Multilingual Cased model. For all of our
fine-tuning BERT models, we use a maximum sequence
size of 50 tokens and a batch size of 32. We add a ‘[CLS]’
token at the beginning of each input sequence and, then,
feed the final hidden state of ‘[CLS]’ to a Softmax linear
layer to get predication probabilities across classes. We set
the learning rate to 2e− 6 and train for 20 epochs. We save
the checkpoint at the end of each epoch, report F1-score
and accuracy of the best model, and use the best checkpoint
to predict the labels of the TEST set. We fine-tune the
BERT model under five settings. We describe each of these
next.

106

Dev Test
OFF HS OFF HS

Model Acc F1 Acc F1 Acc F1 Acc F1
BERT 87.10 78.38 95.70 70.96 87.30 77.70 95.20 70.51
BERT-SENTI 87.40 78.84 95.50 68.01 87.45 80.51 93.15 61.57
BERT-EMO 88.30 80.39 95.40 68.54 – – – –
BERT-EMO-AUG 89.60 82.31 93.90 62.52 89.35 82.85 – –

Table 4: Offensive (OFF) and Hate Speech (HS) results on DEV and TEST datasets

Vanilla BERT: We fine-tune BERT-Base Multilingual
Cased model on TRAIN set of offensive task and hate
speech task respectively. We refer these two models to
BERT. The offensive model obtains the best result with 8
epochs. As Table 4 shows, for offensive language classifi-
cation, this model obtains 87.10% accuracy and 78.38 F1

score on DEV set. We submit the TEST prediction of this
model to the shared task and obtain 87.30% accuracy and
77.70 F1 on the TEST set. The hate speech model obtains
best result (accuracy = 95.7-%, F1 = 70.96) with 6 epochs.

BERT-SENTI We use a BERT model fine-tuned with on
binary Arabic sentiment dataset as released by (Abdul-
Mageed et al., 2020). We use this off-the-shelf (already
trained) model to further fine-tune on offensive and hate
speech tasks, respectively. We replace the Softmax linear
layer for sentiment classification with a randomly initial-
ized Softmax linear layer for each task. We refer to these
two models as BERT-SENTI. We train the BERT-SENTI
models on the TRAIN sets for offensive and hate speech
tasks respectively. On F1 score, BERT-SENTI is 0.3 better
than vanilla BERT on the offensive task, but 2.95 lower
(than vanilla BERT) on the hate speech task. We submit
the TEST predictions of both tasks. The offensive model
obtain 87.45% accuracy and 80.51 F1 on TEST. The hate
speech model acquire 93.15% accuracy and 61.57 F1 on
TEST.

BERT-EMO Similar to BERT-SENTI, we use a BERT
model trained on 8-class Arabic emotion identification
from (Abdul-Mageed et al., 2020) to fine-tune on the
offensive and hate speech tasks, respectively. We refer to
this setting as BERT-EMO. We train the models on the
TRAIN sets for both offensive and hate speech tasks for
20 epochs. The offensive model obtains its best result
(accuracy = 88.30%, F1 = 80.39) with 11 epochs. The hate
speech model acquires its best result (accuracy = 95.40%,
F1 = 68.54) also with 11 epochs. We do not submit an
BERT-EMO on the hate speech task TEST set.

BERT-EMO-AUG Similar to BERT-EMO, we also fine-
tune the emotion BERT model (BERT-EMO) with the aug-
mented offensive dataset (AUG-TRAIN-OFF) and aug-
mented hate speech dataset (AUG-TRAIN-HS). On the
DEV set, the offensive model acquires its best result (ac-
curacy = 89.60%, F1 = 82.31) with 13 epochs. The best
results for the hate speech model (accuracy = 93.90%, F1 =
62.52) is obtained with 9 epochs. Our best offensive predi-

cation on TEST is BERT-EMO-AUG. It which achieves an
accuracy of 89.35% and F1 of 82.85. We do not submit an
BERT-EMO-AUG on the hate speech task TEST set.

5. Conclusion
We described our submission to the offensive language de-
tection in Arabic shared task. We offered a simple method
to extend training data and demonstrated the utility of such
augmented data empirically. We also deploy affective lan-
guage models on the two sub-tasks of offensive language
detection and hate speech identification. We show that fine-
tuning such affective models is useful, especially in the case
of offensive language detection. In the future, we will in-
vestigate other methods for improving our automatic offen-
sive and hateful language acquisition methods. We also ex-
plore other machine learning methods on the tasks. For ex-
ample, we plan to investigate the utility of semi-supervised
methods as a vehicle of improving our models.

6. Bibliographic References
Abdul-Mageed, M., Zhang, C., Elmadany, A., Rajendran,

A., and Ungar, L. (2019). Dianet: Bert and hierarchi-
cal attention multi-task learning of fine-grained dialect.
arXiv preprint arXiv:1910.14243.

Abdul-Mageed, Muhammad, Z. C., Nagoudi, E. M. B., and
Hashemi, A. (2020). Aranet: A deep learning toolkit
for arabic social media. In The 4th Workshop on Open-
Source Arabic Corpora and Processing Tools (OSACT4),
LREC.

Abozinadah, E. (2017). Detecting abusive arabic lan-
guage twitter accounts using a multidimensional anal-
ysis model. Ph.D. thesis.

Agrawal, S. and Awekar, A. (2018). Deep learning for de-
tecting cyberbullying across multiple social media plat-
forms. In European Conference on Information Re-
trieval, pages 141–153. Springer.

Alakrot, A., Murray, L., and Nikolov, N. S. (2018). To-
wards accurate detection of offensive language in online
communication in arabic. Procedia computer science,
142:315–320.

Albadi, N., Kurdi, M., and Mishra, S. (2018). Are they our
brothers? analysis and detection of religious hate speech
in the arabic twittersphere. In 2018 IEEE/ACM Interna-
tional Conference on Advances in Social Networks Anal-
ysis and Mining (ASONAM), pages 69–76. IEEE.

Badjatiya, P., Gupta, S., Gupta, M., and Varma, V. (2017).
Deep learning for hate speech detection in tweets. In
Proceedings of the 26th International Conference on
World Wide Web Companion, pages 759–760.

107

Barberá, P. and Sood, G. (2015). Follow your ideology:
Measuring media ideology on social networks. In An-
nual Meeting of the European Political Science Associa-
tion, Vienna, Austria. Retrieved from http://www. gsood.
com/research/papers/mediabias. pdf.

Chadefaux, T. (2014). Early warning signals for war in the
news. Journal of Peace Research, 51(1):5–18.

Conover, M. D., Ratkiewicz, J., Francisco, M., Gonçalves,
B., Menczer, F., and Flammini, A. (2011). Political po-
larization on twitter. In Fifth international AAAI confer-
ence on weblogs and social media.

Dadvar, M., Trieschnigg, D., Ordelman, R., and de Jong,
F. (2013). Improving cyberbullying detection with user
context. In European Conference on Information Re-
trieval, pages 693–696. Springer.

Darwish, K., Alexandrov, D., Nakov, P., and Mejova, Y.
(2017). Seminar users in the arabic twitter sphere. In In-
ternational Conference on Social Informatics, pages 91–
108. Springer.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2018). Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint
arXiv:1810.04805.

Fortuna, P., Ferreira, J., Pires, L., Routar, G., and Nunes, S.
(2018). Merging datasets for aggressive text identifica-
tion. In Proceedings of the First Workshop on Trolling,
Aggression and Cyberbullying (TRAC-2018), pages 128–
139.

Georgakopoulos, S. V., Tasoulis, S. K., Vrahatis, A. G.,
and Plagianakos, V. P. (2018). Convolutional neural
networks for toxic comment classification. In Proceed-
ings of the 10th Hellenic Conference on Artificial Intelli-
gence, pages 1–6.

Jay, T. and Janschewitz, K. (2008). The pragmatics of
swearing. Journal of Politeness Research. Language,
Behaviour, Culture, 4(2):267–288.

Kumar, R., Ojha, A. K., Malmasi, S., and Zampieri, M.
(2018). Benchmarking aggression identification in so-
cial media. In Proceedings of the First Workshop on
Trolling, Aggression and Cyberbullying (TRAC-2018),
pages 1–11.

Kwok, I. and Wang, Y. (2013). Locate the hate: Detecting
tweets against blacks. In Twenty-seventh AAAI confer-
ence on artificial intelligence.

Malmasi, S. and Zampieri, M. (2017). Detect-
ing hate speech in social media. arXiv preprint
arXiv:1712.06427.

Modha, S., Majumder, P., and Mandl, T. (2018). Filtering
aggression from the multilingual social media feed. In
Proceedings of the First Workshop on Trolling, Aggres-
sion and Cyberbullying (TRAC-2018), pages 199–207.

Mubarak, H. and Darwish, K. (2019). Arabic offensive
language classification on twitter. In International Con-
ference on Social Informatics, pages 269–276. Springer.

Mubarak, H., Darwish, K., and Magdy, W. (2017). Abu-
sive language detection on arabic social media. In Pro-
ceedings of the First Workshop on Abusive Language On-
line, pages 52–56.

Nobata, C., Tetreault, J., Thomas, A., Mehdad, Y., and

Chang, Y. (2016). Abusive language detection in online
user content. In Proceedings of the 25th international
conference on world wide web, pages 145–153.

Weber, I., Garimella, V. R. K., and Batayneh, A. (2013).
Secular vs. islamist polarization in egypt on twitter. In
Proceedings of the 2013 IEEE/ACM international con-
ference on advances in social networks analysis and min-
ing, pages 290–297.

Wiegand, M., Siegel, M., and Ruppenhofer, J. (2018).
Overview of the germeval 2018 shared task on the iden-
tification of offensive language.

Zampieri, M., Malmasi, S., Nakov, P., Rosenthal, S., Farra,
N., and Kumar, R. (2019). Semeval-2019 task 6: Identi-
fying and categorizing offensive language in social me-
dia (offenseval). arXiv preprint arXiv:1903.08983.

108

Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, pages 109–114
with a Shared Task on Offensive Language Detection.

Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020
c© European Language Resources Association (ELRA), licensed under CC-BY-NC

Quick and Simple Approach for Detecting Hate Speech in Arabic Tweets
 Abeer Abuzayed Tamer Elsayed
 Islamic University of Gaza Qatar University
 Gaza, Palestine Doha, Qatar
 aabuzayed1@students.iugaza.edu.ps telsayed@qu.edu.qa

Abstract
As the use of social media platforms increases extensively to freely communicate and share opinions, hate speech becomes an
outstanding problem that requires urgent attention. This paper focuses on the problem of detecting hate speech in Arabic tweets. To
tackle the problem efficiently, we adopt a “quick and simple” approach by which we investigate the effectiveness of 15 classical (e.g.,
SVM) and neural (e.g., CNN) learning models, while exploring two different term representations. Our experiments on 8k labelled
dataset show that the best neural learning models outperform the classical ones, while distributed term representation is more effective
than statistical bag-of-words representation. Overall, our best classifier (that combines both CNN and RNN in a joint architecture)
achieved 0.73 macro-F1 score on the dev set, which significantly outperforms the majority-class baseline that achieves 0.49, proving
the effectiveness of our “quick and simple” approach.

Keywords: Offensive language, Twitter, Text classification, Learning models, Neural models, Distributed term representation.

1. Introduction
Twitter is a place where 330 million users (in 2019) from 1

every background, race, religion, and nationality interact
and communicate, and freely share their ideas, opinions,
and beliefs. This makes Twitter easy to exploit in sharing
content that targets and threatens individuals or groups
based on their common characteristics or identities by
spreading hate speech. According to Twitter hateful
conduct policy , hate speech is to "attack or threaten other 2

people on the basis of race, ethnicity, national origin,
caste, sexual orientation, gender, gender identity, religious
affiliation, age, disability, or serious disease", such as the
tweet: الیهود“ منبع یا ارهابیین یا خوارج ”یا (O Kharijites,
terrorists, the source of the Jews). Twitter encourages
users to report any kind of hate speech that violates the
hateful conduct policy, so that an action can be made such
as suspending the user or deleting the tweet. Despite the
considerable effort that social media sites are making in
trying to curb hate speech, it is still threatening the online
communities and users are still seeing it on many
platforms. As hate speech might result in serious physical
or mental abuse, there is an imperative need to detect and
prevent such content on social media platforms.

Several researchers studied hate speech in the social
media domain and proposed various approaches to detect
it with more focus on English language, e.g., Malmasi and
Zampieri (2018), Watanabe et al. (2018), Zhang and Luo
(2018), and Zhang et al. (2018). However, detecting hate
speech in Arabic content is still nascent. The richness and
complexity of the nature and structure of the Arabic
language, the variety of dialects, and the problems at
orthographic, morphological, and syntactic levels make
detecting hate speech in Arabic very challenging.

In this work, we conduct a preliminary study on the
detection of hate speech in Arabic tweets as part of our
participation in the Hate Speech Detection subtask in
OSACT4 workshop (Mubarak et al., 2020). Given the 3

tight time we had for participation , we aim to tackle the 4

1 https://www.statista.com/statistics/282087/number-of-monthly-active-twitter-users/

2 https://help.twitter.com/en/rules-and-policies/hateful-conduct-policy

3 http://edinburghnlp.inf.ed.ac.uk/workshops/OSACT4/

4 We only had 3 days before the submission deadline.

classification problem in a simple, quick, yet effective
approach. We elect to use “simple” features that are not
problem-specific but easy to compute or use, while
leveraging the richness, maturity, and strong support for
“quick” development that current popular machine
learning frameworks (e.g., Keras) provide. Adopting this
quick and simple approach for developing our
classification system for hate speech detection, we
investigate the performance of several learning models
and aim to answer two research questions in the context of
this problem:
RQ1. Is distributed (latent) word representation (e.g.,
Word2Vec embeddings) more effective than standard
statistical bag-of-words representation (e.g., tf-idf)?
RQ2. Are neural models more effective than classical
machine learning models?

To answer both questions, we conducted experiments
over seven classical and eight neural learning models
using the labelled dataset of 8,000 tweets, provided by the
shared task organizers, and submitted two runs on the test
set. Our results show that, surprisingly, the bag-of-words
tf-idf representation is more effective than distributed
word embeddings representation; however the best neural
models outperform classical models. Overall, our best
classifier achieved a reasonable 0.73 macro-F1 score on
the dev set, which significantly outperforms the
majority-class baseline that achieves 0.49, proving the
effectiveness of our quick and simple approach.

Our contribution in this work is two-fold:
1. We conducted a preliminary study investigating

the performance of 15 different classical and
neural learning models for detecting hate speech
in Arabic tweets.

2. We demonstrated a simple and quick approach of
developing a system that is implemented in less
than 3 days to tackle the problem, yet achieved
reasonable performance. We make all of our
code open-source for the research community . 5

The paper is organized as follows. Section 2 describes
related work. Section 3 outlines our approach in tackling
the problem. Section 4 presents our experimental

5 https://github.com/AbeerAbuZayed/QUIUG_Hate-Speech-Detection_OSACT4-Workshop

109

evaluation results. Section 5 concludes our work with
potential future work.

2. Related Work
As mentioned earlier, there are several research studies
conducted to study hate speech in online communities
over English content. Mondal et al. (2017) conducted a
study in online social media to understand how social
media platforms are rich with hate speech and to
investigate the most popular hate expressions and the
main targets of online hate speech. Malmasi and Zampieri
(2018) aimed to distinguish hate speech from general
profanity using a dataset annotated as “hate, offensive,
and ok”, with advanced ensemble classifiers and stacked
generalization along with various features such as
n-grams, skip-grams, and clustering-based word
representations. Additionally, Watanabe et al. (2018)
classify tweets based on three labels (clean, offensive and
hateful) using sentiment-based features, semantic features,
unigram features, and pattern features. Zhang and Luo
(2018) and Zhang et al. (2018) also conducted studies on
Twitter hate speech for the English language.

Other researchers focused on detecting offensive
language over Arabic content, where a number of studies
were conducted to detect offensive and abusive language
for Arabic Tweets and for YouTube comments (Mubarak
and Darwish, 2019; Alakrot et al., 2018; Mohaouchane et
al., 2018; Mubarak et al., 2017). However, hate speech is
different from offensive and abusive language (Malmasi
and Zampieri, 2018). Also, Zhang and Luo (2018) argue
the same point and pointed out that the term “hate speech”
might be overlapping with other terms such as
“offensive”, “profane” and “abusive”. In order to
distinguish them, they defined hate speech as “targeting
individuals or groups on the basis of their characteristics
and demonstrating a clear intention to incite harm, or to
promote hatred and this speech may or may not use
offensive or profane words”.

Consequently, hate speech should be distinguished
from other offensive and profane languages. Thus, other
studies focus only on hate speech detection. Albadi et al.
(2018) developed a system to detect religious hate speech
in Arabic tweets. They used three various approaches to
tackle this problem. Firstly, they constructed an Arabic
lexicon of religious hate speech and used it to classify
tweets to “hate” if the tweet terms exist in the lexicon,
otherwise it is labelled as “not hate”. Secondly, they
trained Logistic Regression and SVM classifiers using
n-gram models. Finally, a GRU model with the
pre-trained embedding model AraVec (Twitter-CBOW
300D architecture) showing 0.77 F1 score was adopted.

Moreover, Chowdhury et al. (2019) studied religious
hate speech in Arabic tweets too, where they argued that
considering the community interactions can raise the
ability to detect hate speech content on social media. To
investigate this, Arabic word embedding (AraVec,
Twitter-CBOW 300D architecture), social network
graphs, and neural networks (e.g., RNN+CNN) were used.
They pointed out that considering community interactions
significantly improves the result and outperforms Albadi
et al. (2018) performance, where the combination of
social network graphs and joint LSTM and CNN model
achieved 0.78 F1 score.

Furthermore, there are studies on hate speech detection
in multilingual tweets including Arabic. Ousidhoum et al.
(2019) used the bag of words (BOW) as features with
Logistic Regression (LR) and deep learning models to
detect hate speech in multilingual tweets. Smedt et al.
(2018) conducted an experiment to detect online Jihadist
hate speech in multilingual tweets, where SVM was used
to classify tweets.

In this study, we focus on detecting hate speech in
Arabic tweets using several classical and neural learning
models with tf-idf and word embeddings features. We
adopt a quick and simple approach of developing our
classifiers and conducting our experiments, focusing on
unigram representations that are problem-independent,
while leveraging the power and ease-of-use of existing
learning frameworks.

3. Approach
We approach hate speech detection as a supervised
learning problem. In our study, we experimented with
several classical and neural learning models trained for
detecting Arabic hate speech on Twitter. We adopted
basic text preprocessing and two main feature extraction
techniques for comparison.

3.1 Preprocessing
To prepare our dataset for the feature extraction process,
basic text preprocessing is done as follows:

● Punctuations, foreign characters and numbers
(including user mentions and URLs), and
diacritics (tashdid, fatha, tanwin fath, damma,
tanwin damm, kasra, tanwin kasr, sukun, and
tatwil/kashida) are all removed. We also
removed repeated characters.

● The remaining Arabic text is normalized. Letters
are normalized as follows:

● {"ا" to "إأآا"}
● {"ى" to "ي"}
● {"ء" to "ؤ"}
● {"ء" to "ئ"}
● {"ه" to "ة"}
● {" ك" to "گ"}

While some normalization has been done through
building the pre-trained word embedding model
(AraVec2.0) used in our experiment, we augmented it
with additional steps.

3.2 Feature Extraction
We adopted two main simple and problem-independent
feature extraction techniques: tf-idf and word embeddings.

Firstly, tf-idf term weight (term frequency-inverse
document frequency) indicates how relevant a term is to a
document in a collection of documents. In our
experiments, tf-idf weights are only used with the
classical machine learning algorithms in order to compare
against using word embeddings as features.

Secondly, word embeddings are the most popular
distributed representation of words (or terms). Each word
in the vocabulary is represented as a vector of a few
hundred dimensions, where words that have the same

110

meaning are closer to each other, while the words with
different meanings are far apart. This is done by learning
the vector representation of the words through the
contexts in which they appear. One of the popular
techniques for efficiently learning a standalone word
embedding from a text corpus is Word2Vec (Mikolov et
al., 2013). There are two different learning models to
learn the embeddings, Skip Gram and Continuous Bag of
Words (CBOW). The CBOW model learns the
embeddings by predicting the current word using the
context as an input, while the continuous skip-gram takes
the current word as input and learns the embeddings by
predicting the surrounding words (Mikolov et al., 2013).

In our experiments, we used the pre-trained Arabic
word embedding model AraVec2.0 (Soliman et al., 2017),
which provides various pre-trained Arabic word
embedding model architectures; each is trained on one of
three different datasets: tweets, Web pages, and Wikipedia
Arabic articles. Moreover, for each dataset, two models
are built: one using Skip Gram and another using CBOW.
For the purpose of this study, we used the pre-trained
SkipGram 300D-embeddings trained on more than 77M
tweets, since we work on tweets. We used the pre-trained
model in both classical and neural learning approaches.
To use it with classical learning algorithms, the average
vector of all the embeddings of the tweet words is
computed and used as the feature vector of the tweet.
However, for the neural learning models, the embedding
vectors are used to initialize the weights of the embedding
layer, which is then connected to the rest of the layers in
the network.

3.3 Models
This section describes the classical and neural learning
models used in our experiments.

3.3.1 Classical Learning Models
We experimented with various classical machine learning
models, namely SVM, Random Forest, XGBoost, Extra
Trees, Decision Trees, Gradient Boosting, and Logistic
Regression. These models are trained along with both
types of features we described earlier, tf-idf and
pre-trained word embeddings.

3.3.2 Neural Learning Models
We experimented with two types of neural models,
Recurrent Neural Networks (RNN), and Convolutional
Neural Networks (CNN). We tried different RNN
architectures, namely Long Short-Term Memory (LSTM),
Bidirectional LSTM (BLSTM), and Gated Recurrent Unit
(GRU).

We also tried a combination of both CNN and RNN.
Previous studies showed that the joint CNN and RNN
architecture outperforms CNN or RNN alone in natural
language processing tasks such as sentiment analysis and
text classification tasks (Wang et al., 2016 and Zhou et al.
2015). This combined architecture allows the network to
learn local features from the CNN, and long-term
dependencies, positional relation of features, and global
features from the RNN (Wang et al., 2016). The combined

architecture used in this work consists of one CNN layer
with max-pooling and time distributed layer, followed by
one RNN layer and dropout layer, as shown in the
example joint CNN and LSTM architecture in Figure 1.

Figure 1: Joint CNN and LSTM model architecture.

4. Experimental Evaluation
In this section, we present and analyze the performance of
our trained models. We start with the experimental setup,
followed by the analysis of the two experiments we
conducted to answer the two research questions. Finally,
we discuss the results of our two submitted runs to the
shared task.

4.1 Experimental Setup
For the purpose of this study, we use SemEval 2020
Arabic offensive language dataset (OffensEval 2020,
Subtask B for detecting hate speech) (Mubarak et al.,
2020). The dataset was split into train, dev, and test sets
(70%, 10%, and 20% respectively). There are 7,000
training tweets, only 361 of them (about 5.2%) are
labelled as hate speech. There are 1,000 dev tweets, only
44 of them (4.4%) are labelled as hate speech. This shows
how the two classes in the dataset are clearly unbalanced.

As expected, we used the training set to learn each
model’s parameters and the dev set to tune its

111

hyperparameters. The hyperparameters and their tuned
values are listed in Table 1.

Hyperparameter Value

Number of filters (CNN) 25

Kernel size (CNN) 5

Number of hidden units (RNN) 16

Dropout rate (Regularizer) 0.5

Learning rate (Adam optimizer) 0.001

Table 1: Tuned values of the hyperparameters.

To answer the two research questions we listed in

Section 1, we conducted two main experiments. The first
compares the use of tf-idf vs word embeddings features,
conducted on classical machine learning models. The
second compares classical vs. neural models.

We evaluated the performance of our models using two
measures: macro-averaged F1 (the official shared task
measure) and F1 score on the hate speech (HS) class
(since the target HS class is scarce). All reported results in
this section are on the dev set unless otherwise mentioned.
Notice that the majority-class baseline on the dev set
yields a 0.49 macro-F1 score.

It is worth noting that all of our development and
experiments were performed through Google
Colaboratory using Python and Keras libraries.

4.2 RQ1: tf-idf vs. Word Embeddings
To answer RQ1, we conducted an experiment over the
seven classical models listed in Section 3.3.1 using both
tf-idf and pre-trained word embeddings (AraVec 2.0).

Figures 2 depicts the performance of the models in
each of the two cases measured in macro-averaged F1.
There are several interesting observations. First, we notice
that the performance using tf-idf varies from 0.49 to 0.68,
while using word embeddings it varies from 0.51 to 0.57.
Second, some models (e.g., SVM) exhibited slightly better
performance using word embeddings, however more
models (e.g., Random Forest) exhibited much better
performance using tf-idf. Overall, the best three models
(namely Extra Trees, Random Forest, and Gradient
Boosting, respectively) are all indeed using tf-idf. This is
a surprising result, since tf-idf features neither capture
meaning nor are contextualized; both attributes are (or at
least should be) captured by word embeddings. This
observation definitely needs more investigation.

Figure 3 illustrates the performance of the models in
each of the two cases, but this time measured in F1 over

the positive class. It indicates very similar, but even
stronger, observations. Moreover, it clearly shows that the
task of detecting the HS tweets is, not surprisingly, much
harder than non-HS, achieving an F1 score of 0.39 at best.

Figure 2: Macro F1 of classical learning models.

Figure 3: F1 on HS class of classical learning models.

4.3 RQ2: Classical vs. Neural Models
We now turn our attention to RQ2, which is concerned
with comparing classical and neural models. We
considered the best-performing classical model, i.e., Extra
Trees with tf-idf features, as the baseline, which we
compare against eight neural models:

● The first three are RNN models, namely LSTM,
BLSTM, and GRU.

● The fourth is CNN.
● The next three are combined CNN and RNN

models, one for each RNN type.
● The last one is a combined CNN and LSTM

version that is trained on an oversampled training
data to address the unbalanced data problem,
where some HS (i.e., the minority class)
examples are replicated.

Due to time constraints, we only trained the neural
models using word embeddings. According to the results
of the first experiment in Section 4.2, using tf-idf features
is worth trying too. We defer this to future exploration.

112

Tweet True
label

Predicted
(Extra Trees,
Embeddings)

Predicted
(Extra Trees,

tf- idf)

Predicted
(CNN+LST

M)

 إحنا أتباع إیران یا آل سلول یا نسل الیهود
We are followers of Iran, O family of Salul, descendants of the Jews. HS HS HS HS

 بس یا فاشل یا خاین یا عمیل
Shut up, O loser and traitor! NOT_HS NOT_HS NOT_HS NOT_HS

😂😂 اددددددااا الحصالة خبوا الصداااااارة ف الاهلي یاادیب عمرو یا هنیدي یا
 #للخلف_درر_یا_زمالك

O Hinaidi, O Amr Adeeb, Al-Ahly is taking the lead. #GoBack_Zamalek team.
HS NOT_HS HS NOT_HS

 یا كافر یا زندیق یا مرتد یا انت عاوز یبقى عندنا دیمقراطیة زى الكفرة اللى ما یعرفوش ربنا
O bastard and Godless! You want us to have a democracy like the infidels, who
do not believe in God.

NOT_HS NOT_HS NOT_HS HS

 هههههههههههههههههههههه یا طحلبي یا صغیر جدة یا جاهل شوف بطولات الاتحاد قبل 1417
Hahahahahahaha! You, little kid of Jeddah, you ignorant. Check the Al-Ittihad
[tournaments/ championships] before 1417.

HS NOT_HS NOT_HS HS

Table 2: Examples (from the dev-set) of correct (bolded) and incorrect (underlined) classification using Extra Trees
models with word embeddings and tf- idf and the combined CNN+LSTM neural model.

Figure 4 depicts the performance of all tried neural
models along with the baseline measured in
macro-averaged F1. Similar to the first experiment, we
have several interesting observations. First, the figure
shows that combining CNN and RNN models improved
performance over individual models. Second, the classical
model unexpectedly exhibits a comparable performance to
several neural models. Third, combining CNN and LSTM
exhibited the best performance, outperforming all other
neural models in addition to the baseline classical model.
Finally, oversampling did not help, at least when applied
to the best performing model.

Figure 5 indicates the same exact performance patterns
measured in F1 on the HS class. However, the
performance gap between the best neural model and the
baseline is even widened.

Table 2 shows examples (from the dev-set) of correct
and incorrect classification using both of tf-idf and word
embeddings with Extra Trees classifier and combined
CNN and LSTM neural model. The table shows that the
models made different mistakes.

Figure 4: Macro F1 of neural learning models compared
to the best-performing classical model.

4.4 Submitted Runs
Based on the results above, we chose the combined CNN
and LSTM model in addition to its oversampling version
to submit results on the test set to the shared task. Table 3
shows the results of the two models as reported by the
task organizers, compared to the results on the dev set. As
expected, the performance on the test set is slightly lower
than on the dev set, however the unsampled version still
outperforms the oversampled one.

Figure 5: F1 on HS class of neural learning models
compared to the best-performing classical model.

Model Macro F1
(dev-set)

Macro F1
(test-set)

CNN+LSTM 0.73 0.69

CNN-LSTM (OS) 0.70 0.65

Table 3: Macro F1 scores of submitted models.

5. Conclusion and Future Work
In this paper, we presented a quick and simple approach to
tackle the problem of detecting hate speech in Arabic

113

tweets. Our approach adopts simple problem-independent
features to represent terms in tweets and leverages the
quick development service supported by existing powerful
machine learning libraries. We compared 15 classical and
neural learning models along with two different term
representations (tf-idf and word embeddings). Our
experiments over 8k labelled dataset of Arabic tweets
showed that tf-idf representation is more effective than
word embeddings when used in classical models, and that
the best neural learning model (a joint CNN and LSTM
architecture) outperforms the classical ones. To our
knowledge, this is the first time a combined CNN and
LSTM is used to detect hate speech over Arabic tweets.
The classification performance achieved by this combined
model exhibited a significant improvement over the
majority-class baseline, proving the effectiveness of our
“quick and simple” approach.

For future work, we plan to conduct several
experiments. Firstly, as it shows better performance with
classical learning models, we will consider using tf-idf
representation with neural models as well. Secondly, we
plan to experiment with transfer learning techniques to
leverage the models that are trained for related tasks such
as offensive language detection. Thirdly, we will further
investigate the sampling techniques to overcome the
unbalanced data problem. Finally, since the pre-trained
model BERT yields the state of the art performance in
several natural language processing tasks (Devlin et al.,
2018), it is worth trying for hate speech detection too.

6. References

Alakrot, A., Murray, L. and Nikolov, N.S., 2018. Towards
accurate detection of offensive language in online
communication in arabic. Procedia computer science,
142, pp.315-320.

Albadi, N., Kurdi, M. and Mishra, S., 2018, August. Are
they our brothers? Analysis and detection of religious hate
speech in the Arabic Twittersphere. In 2018 IEEE/ACM
ASONAM (pp. 69-76).

Chowdhury, A.G., Didolkar, A., Sawhney, R. and Shah,
R., 2019. ARHNet-Leveraging Community Interaction for
Detection of Religious Hate Speech in Arabic. In
Proceedings of ACL: Student Research Workshop (pp.
273-280).

Devlin, J., Chang, M.W., Lee, K. and Toutanova, K.,
2018. BERT: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805.

Malmasi, S. & Zampieri, M., 2018. Challenges in
discriminating profanity from hate speech. Journal of
Experimental & Theoretical Artificial Intelligence, 30(2),
pp. 187-202.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S. and
Dean, J., 2013. Distributed representations of words and

phrases and their compositionality. In Advances in neural
information processing systems (pp. 3111-3119).

Mohaouchane, H., Mourhir, A. and Nikolov, N.S., 2019,
October. Detecting Offensive Language on Arabic Social
Media Using Deep Learning. In IEEE SNAMS (pp.
466-471).

Mondal, M., Silva, L. A. & Benevenuto, F., 2017. A
Measurement Study of Hate Speech in Social Media.. New
York, USA, ACM, p. 85–94.

Mubarak, H. & Darwish, K., 2019. Arabic Offensive
Language Classification on Twitter. In International
Conference on Social Informatics (pp. 269-276). Springer.

Mubarak, H., Darwish, K. and Magdy, W., 2017, August.
Abusive language detection on Arabic social media. In
Proceedings of the First Workshop on Abusive Language
Online (pp. 52-56).

Mubarak, H., Darwish, K., Magdy, W., Elsayed, T. and
Al-Khalifa, H., 2020. Overview of OSACT4 Arabic
Offensive Language Detection Shared Task. In
Proceedings of the 4th Workshop on Open-Source Arabic
Corpora and Processing Tools (OSACT), vol. 4.

Ousidhoum, N., Lin, Z., Zhang, H., Song, Y. and Yeung,
D.Y., 2019. Multilingual and Multi-Aspect Hate Speech
Analysis. arXiv preprint arXiv:1908.11049.

Smedt, T., De Pauw, G. and Van Ostaeyen, P., 2018.
Automatic detection of online jihadist hate speech. arXiv
preprint arXiv:1803.04596.

Soliman, A.B., Eissa, K. and El-Beltagy, S.R., 2017.
Aravec: A set of arabic word embedding models for use in
arabic nlp. Procedia Computer Science, 117, pp.256-265.

Wang, X., Jiang, W. and Luo, Z., 2016. Combination of
convolutional and recurrent neural network for sentiment
analysis of short texts. In Proceedings of COLING 2016:
Technical papers (pp. 2428-2437).

Watanabe, H., Bouazizi, M. & Ohtsuki, T., 2018. Hate
speech on Twitter: A pragmatic approach to collect
hateful and offensive expressions and perform hate speech
detection. IEEE Access, 6, pp. 13825-13835.

Zhang, Z. & Luo, L., 2018. Hate speech detection: A
solved problem? the challenging case of long tail on
Twitter. CoRR abs/1803.03662 (2018).

Zhang, Z., Robinson, D. & Tepper, a. J., 2018. Hate
Speech Detection Using a Convolution-LSTM Based
Deep Neural Network. In Proceedings of ACM WWW
conference (WWW’2018). New York, NY, USA.

Zhou, C., Sun, C., Liu, Z. and Lau, F., 2015. A C-LSTM
neural network for text classification. arXiv preprint
arXiv:1511.08630.

114

Author Index

Abdelali, Ahmed, 61
Abdellatif, Mohamed, 82
Abdul-Mageed, Muhammad, 16, 40, 102
Abu Farha, Ibrahim, 32, 86
Abu Kwaik, Kathrein, 1
Abuzayed, Abeer, 109
Al-Abood, Anas, 76
Al-Khalifa, Hend, 48
Al-Mulla, Sara, 24
Alharbi, Abdullah I., 91
Alshehri, Ali, 40
antoun, wissam, 9, 97

Baly, Fady, 9, 97

Calders, Toon, 71
Chatzikyriakidis, Stergios, 1
Chowdhury, Shammur Absar, 61

Darwish, Kareem, 48
Djandji, Marc, 97
Dobnik, Simon, 1

El-Beltagy, Samhaa R., 66
Elgammal, Ahmed, 82
Elmadany, AbdelRahim, 102
Elsayed, Tamer, 48, 109

Ghneim, Nada, 76

Haddad, Bushr, 76
Hajj, Hazem, 9, 97
Hashemi, Azadeh, 16, 102
Hassan, Sabit, 61
Husain, Fatemah, 53

Johansson, Richard, 1

Kamiran, Faisal, 71
Keleg, Amr, 66
Khalil, Mahmoud, 66

Lee, Mark, 91

Magdy, Walid, 32, 48, 86
Mubarak, Hamdy, 48, 61

Nagoudi, El Moatez Billah, 16, 40

Orabe, Zoher, 76

Rashed, Ammar, 61

Saad, Motaz, 1
Saeed, Hafiz Hassaan, 71
Samih, Younes, 61

Zaghouani, Wajdi, 24
Zhang, Chiyu, 16, 102

115

	Program
	An Arabic Tweets Sentiment Analysis Dataset (ATSAD) using Distant Supervision and Self Training
	AraBERT: Transformer-based Model for Arabic Language Understanding
	AraNet: A Deep Learning Toolkit for Arabic Social Media
	Building a Corpus of Qatari Arabic Expressions
	From Arabic Sentiment Analysis to Sarcasm Detection: The ArSarcasm Dataset
	Understanding and Detecting Dangerous Speech in Social Media
	Overview of OSACT4 Arabic Offensive Language Detection Shared Task
	OSACT4 Shared Task on Offensive Language Detection: Intensive Preprocessing-Based Approach
	ALT Submission for OSACT Shared Task on Offensive Language Detection
	ASU_OPTO at OSACT4 - Offensive Language Detection for Arabic text
	OSACT4 Shared Tasks: Ensembled Stacked Classification for Offensive and Hate Speech in Arabic Tweets
	Arabic Offensive Language Detection with Attention-based Deep Neural Networks
	Offensive language detection in Arabic using ULMFiT
	Multitask Learning for Arabic Offensive Language and Hate-Speech Detection
	Combining Character and Word Embeddings for the Detection of Offensive Language in Arabic
	Multi-Task Learning using AraBert for Offensive Language Detection
	Leveraging Affective Bidirectional Transformers for Offensive Language Detection
	Quick and Simple Approach for Detecting Hate Speech in Arabic Tweets

